| |
| /* Generic object operations; and implementation of None (NoObject) */ |
| |
| #include "Python.h" |
| |
| #ifdef Py_REF_DEBUG |
| long _Py_RefTotal; |
| #endif |
| |
| int Py_DivisionWarningFlag; |
| |
| /* Object allocation routines used by NEWOBJ and NEWVAROBJ macros. |
| These are used by the individual routines for object creation. |
| Do not call them otherwise, they do not initialize the object! */ |
| |
| #ifdef Py_TRACE_REFS |
| /* Head of circular doubly-linked list of all objects. These are linked |
| * together via the _ob_prev and _ob_next members of a PyObject, which |
| * exist only in a Py_TRACE_REFS build. |
| */ |
| static PyObject refchain = {&refchain, &refchain}; |
| |
| /* Insert op at the front of the list of all objects. If force is true, |
| * op is added even if _ob_prev and _ob_next are non-NULL already. If |
| * force is false amd _ob_prev or _ob_next are non-NULL, do nothing. |
| * force should be true if and only if op points to freshly allocated, |
| * uninitialized memory, or you've unlinked op from the list and are |
| * relinking it into the front. |
| * Note that objects are normally added to the list via _Py_NewReference, |
| * which is called by PyObject_Init. Not all objects are initialized that |
| * way, though; exceptions include statically allocated type objects, and |
| * statically allocated singletons (like Py_True and Py_None). |
| */ |
| void |
| _Py_AddToAllObjects(PyObject *op, int force) |
| { |
| #ifdef Py_DEBUG |
| if (!force) { |
| /* If it's initialized memory, op must be in or out of |
| * the list unambiguously. |
| */ |
| assert((op->_ob_prev == NULL) == (op->_ob_next == NULL)); |
| } |
| #endif |
| if (force || op->_ob_prev == NULL) { |
| op->_ob_next = refchain._ob_next; |
| op->_ob_prev = &refchain; |
| refchain._ob_next->_ob_prev = op; |
| refchain._ob_next = op; |
| } |
| } |
| #endif /* Py_TRACE_REFS */ |
| |
| #ifdef COUNT_ALLOCS |
| static PyTypeObject *type_list; |
| extern int tuple_zero_allocs, fast_tuple_allocs; |
| extern int quick_int_allocs, quick_neg_int_allocs; |
| extern int null_strings, one_strings; |
| void |
| dump_counts(void) |
| { |
| PyTypeObject *tp; |
| |
| for (tp = type_list; tp; tp = tp->tp_next) |
| fprintf(stderr, "%s alloc'd: %d, freed: %d, max in use: %d\n", |
| tp->tp_name, tp->tp_allocs, tp->tp_frees, |
| tp->tp_maxalloc); |
| fprintf(stderr, "fast tuple allocs: %d, empty: %d\n", |
| fast_tuple_allocs, tuple_zero_allocs); |
| fprintf(stderr, "fast int allocs: pos: %d, neg: %d\n", |
| quick_int_allocs, quick_neg_int_allocs); |
| fprintf(stderr, "null strings: %d, 1-strings: %d\n", |
| null_strings, one_strings); |
| } |
| |
| PyObject * |
| get_counts(void) |
| { |
| PyTypeObject *tp; |
| PyObject *result; |
| PyObject *v; |
| |
| result = PyList_New(0); |
| if (result == NULL) |
| return NULL; |
| for (tp = type_list; tp; tp = tp->tp_next) { |
| v = Py_BuildValue("(siii)", tp->tp_name, tp->tp_allocs, |
| tp->tp_frees, tp->tp_maxalloc); |
| if (v == NULL) { |
| Py_DECREF(result); |
| return NULL; |
| } |
| if (PyList_Append(result, v) < 0) { |
| Py_DECREF(v); |
| Py_DECREF(result); |
| return NULL; |
| } |
| Py_DECREF(v); |
| } |
| return result; |
| } |
| |
| void |
| inc_count(PyTypeObject *tp) |
| { |
| if (tp->tp_allocs == 0) { |
| /* first time; insert in linked list */ |
| if (tp->tp_next != NULL) /* sanity check */ |
| Py_FatalError("XXX inc_count sanity check"); |
| tp->tp_next = type_list; |
| /* Note that as of Python 2.2, heap-allocated type objects |
| * can go away, but this code requires that they stay alive |
| * until program exit. That's why we're careful with |
| * refcounts here. type_list gets a new reference to tp, |
| * while ownership of the reference type_list used to hold |
| * (if any) was transferred to tp->tp_next in the line above. |
| * tp is thus effectively immortal after this. |
| */ |
| Py_INCREF(tp); |
| type_list = tp; |
| #ifdef Py_TRACE_REFS |
| /* Also insert in the doubly-linked list of all objects, |
| * if not already there. |
| */ |
| _Py_AddToAllObjects((PyObject *)tp, 0); |
| #endif |
| } |
| tp->tp_allocs++; |
| if (tp->tp_allocs - tp->tp_frees > tp->tp_maxalloc) |
| tp->tp_maxalloc = tp->tp_allocs - tp->tp_frees; |
| } |
| #endif |
| |
| #ifdef Py_REF_DEBUG |
| /* Log a fatal error; doesn't return. */ |
| void |
| _Py_NegativeRefcount(const char *fname, int lineno, PyObject *op) |
| { |
| char buf[300]; |
| |
| PyOS_snprintf(buf, sizeof(buf), |
| "%s:%i object at %p has negative ref count %i", |
| fname, lineno, op, op->ob_refcnt); |
| Py_FatalError(buf); |
| } |
| |
| #endif /* Py_REF_DEBUG */ |
| |
| void |
| Py_IncRef(PyObject *o) |
| { |
| Py_XINCREF(o); |
| } |
| |
| void |
| Py_DecRef(PyObject *o) |
| { |
| Py_XDECREF(o); |
| } |
| |
| PyObject * |
| PyObject_Init(PyObject *op, PyTypeObject *tp) |
| { |
| if (op == NULL) |
| return PyErr_NoMemory(); |
| /* Any changes should be reflected in PyObject_INIT (objimpl.h) */ |
| op->ob_type = tp; |
| _Py_NewReference(op); |
| return op; |
| } |
| |
| PyVarObject * |
| PyObject_InitVar(PyVarObject *op, PyTypeObject *tp, int size) |
| { |
| if (op == NULL) |
| return (PyVarObject *) PyErr_NoMemory(); |
| /* Any changes should be reflected in PyObject_INIT_VAR */ |
| op->ob_size = size; |
| op->ob_type = tp; |
| _Py_NewReference((PyObject *)op); |
| return op; |
| } |
| |
| PyObject * |
| _PyObject_New(PyTypeObject *tp) |
| { |
| PyObject *op; |
| op = (PyObject *) PyObject_MALLOC(_PyObject_SIZE(tp)); |
| if (op == NULL) |
| return PyErr_NoMemory(); |
| return PyObject_INIT(op, tp); |
| } |
| |
| PyVarObject * |
| _PyObject_NewVar(PyTypeObject *tp, int nitems) |
| { |
| PyVarObject *op; |
| const size_t size = _PyObject_VAR_SIZE(tp, nitems); |
| op = (PyVarObject *) PyObject_MALLOC(size); |
| if (op == NULL) |
| return (PyVarObject *)PyErr_NoMemory(); |
| return PyObject_INIT_VAR(op, tp, nitems); |
| } |
| |
| /* for binary compatibility with 2.2 */ |
| #undef _PyObject_Del |
| void |
| _PyObject_Del(PyObject *op) |
| { |
| PyObject_FREE(op); |
| } |
| |
| /* Implementation of PyObject_Print with recursion checking */ |
| static int |
| internal_print(PyObject *op, FILE *fp, int flags, int nesting) |
| { |
| int ret = 0; |
| if (nesting > 10) { |
| PyErr_SetString(PyExc_RuntimeError, "print recursion"); |
| return -1; |
| } |
| if (PyErr_CheckSignals()) |
| return -1; |
| #ifdef USE_STACKCHECK |
| if (PyOS_CheckStack()) { |
| PyErr_SetString(PyExc_MemoryError, "stack overflow"); |
| return -1; |
| } |
| #endif |
| clearerr(fp); /* Clear any previous error condition */ |
| if (op == NULL) { |
| fprintf(fp, "<nil>"); |
| } |
| else { |
| if (op->ob_refcnt <= 0) |
| fprintf(fp, "<refcnt %u at %p>", |
| op->ob_refcnt, op); |
| else if (op->ob_type->tp_print == NULL) { |
| PyObject *s; |
| if (flags & Py_PRINT_RAW) |
| s = PyObject_Str(op); |
| else |
| s = PyObject_Repr(op); |
| if (s == NULL) |
| ret = -1; |
| else { |
| ret = internal_print(s, fp, Py_PRINT_RAW, |
| nesting+1); |
| } |
| Py_XDECREF(s); |
| } |
| else |
| ret = (*op->ob_type->tp_print)(op, fp, flags); |
| } |
| if (ret == 0) { |
| if (ferror(fp)) { |
| PyErr_SetFromErrno(PyExc_IOError); |
| clearerr(fp); |
| ret = -1; |
| } |
| } |
| return ret; |
| } |
| |
| int |
| PyObject_Print(PyObject *op, FILE *fp, int flags) |
| { |
| return internal_print(op, fp, flags, 0); |
| } |
| |
| |
| /* For debugging convenience. See Misc/gdbinit for some useful gdb hooks */ |
| void _PyObject_Dump(PyObject* op) |
| { |
| if (op == NULL) |
| fprintf(stderr, "NULL\n"); |
| else { |
| fprintf(stderr, "object : "); |
| (void)PyObject_Print(op, stderr, 0); |
| fprintf(stderr, "\n" |
| "type : %s\n" |
| "refcount: %d\n" |
| "address : %p\n", |
| op->ob_type==NULL ? "NULL" : op->ob_type->tp_name, |
| op->ob_refcnt, |
| op); |
| } |
| } |
| |
| PyObject * |
| PyObject_Repr(PyObject *v) |
| { |
| if (PyErr_CheckSignals()) |
| return NULL; |
| #ifdef USE_STACKCHECK |
| if (PyOS_CheckStack()) { |
| PyErr_SetString(PyExc_MemoryError, "stack overflow"); |
| return NULL; |
| } |
| #endif |
| if (v == NULL) |
| return PyString_FromString("<NULL>"); |
| else if (v->ob_type->tp_repr == NULL) |
| return PyString_FromFormat("<%s object at %p>", |
| v->ob_type->tp_name, v); |
| else { |
| PyObject *res; |
| res = (*v->ob_type->tp_repr)(v); |
| if (res == NULL) |
| return NULL; |
| #ifdef Py_USING_UNICODE |
| if (PyUnicode_Check(res)) { |
| PyObject* str; |
| str = PyUnicode_AsUnicodeEscapeString(res); |
| Py_DECREF(res); |
| if (str) |
| res = str; |
| else |
| return NULL; |
| } |
| #endif |
| if (!PyString_Check(res)) { |
| PyErr_Format(PyExc_TypeError, |
| "__repr__ returned non-string (type %.200s)", |
| res->ob_type->tp_name); |
| Py_DECREF(res); |
| return NULL; |
| } |
| return res; |
| } |
| } |
| |
| PyObject * |
| _PyObject_Str(PyObject *v) |
| { |
| PyObject *res; |
| int type_ok; |
| if (v == NULL) |
| return PyString_FromString("<NULL>"); |
| if (PyString_CheckExact(v)) { |
| Py_INCREF(v); |
| return v; |
| } |
| #ifdef Py_USING_UNICODE |
| if (PyUnicode_CheckExact(v)) { |
| Py_INCREF(v); |
| return v; |
| } |
| #endif |
| if (v->ob_type->tp_str == NULL) |
| return PyObject_Repr(v); |
| |
| res = (*v->ob_type->tp_str)(v); |
| if (res == NULL) |
| return NULL; |
| type_ok = PyString_Check(res); |
| #ifdef Py_USING_UNICODE |
| type_ok = type_ok || PyUnicode_Check(res); |
| #endif |
| if (!type_ok) { |
| PyErr_Format(PyExc_TypeError, |
| "__str__ returned non-string (type %.200s)", |
| res->ob_type->tp_name); |
| Py_DECREF(res); |
| return NULL; |
| } |
| return res; |
| } |
| |
| PyObject * |
| PyObject_Str(PyObject *v) |
| { |
| PyObject *res = _PyObject_Str(v); |
| if (res == NULL) |
| return NULL; |
| #ifdef Py_USING_UNICODE |
| if (PyUnicode_Check(res)) { |
| PyObject* str; |
| str = PyUnicode_AsEncodedString(res, NULL, NULL); |
| Py_DECREF(res); |
| if (str) |
| res = str; |
| else |
| return NULL; |
| } |
| #endif |
| assert(PyString_Check(res)); |
| return res; |
| } |
| |
| #ifdef Py_USING_UNICODE |
| PyObject * |
| PyObject_Unicode(PyObject *v) |
| { |
| PyObject *res; |
| PyObject *func; |
| static PyObject *unicodestr; |
| |
| if (v == NULL) |
| res = PyString_FromString("<NULL>"); |
| if (PyUnicode_CheckExact(v)) { |
| Py_INCREF(v); |
| return v; |
| } |
| /* XXX As soon as we have a tp_unicode slot, we should |
| check this before trying the __unicode__ |
| method. */ |
| if (unicodestr == NULL) { |
| unicodestr= PyString_InternFromString("__unicode__"); |
| if (unicodestr == NULL) |
| return NULL; |
| } |
| func = PyObject_GetAttr(v, unicodestr); |
| if (func != NULL) { |
| res = PyEval_CallObject(func, (PyObject *)NULL); |
| Py_DECREF(func); |
| } |
| else { |
| PyErr_Clear(); |
| if (PyUnicode_Check(v)) { |
| /* For a Unicode subtype that's didn't overwrite __unicode__, |
| return a true Unicode object with the same data. */ |
| return PyUnicode_FromUnicode(PyUnicode_AS_UNICODE(v), |
| PyUnicode_GET_SIZE(v)); |
| } |
| if (PyString_CheckExact(v)) { |
| Py_INCREF(v); |
| res = v; |
| } |
| else { |
| if (v->ob_type->tp_str != NULL) |
| res = (*v->ob_type->tp_str)(v); |
| else |
| res = PyObject_Repr(v); |
| } |
| } |
| if (res == NULL) |
| return NULL; |
| if (!PyUnicode_Check(res)) { |
| PyObject *str; |
| str = PyUnicode_FromEncodedObject(res, NULL, "strict"); |
| Py_DECREF(res); |
| if (str) |
| res = str; |
| else |
| return NULL; |
| } |
| return res; |
| } |
| #endif |
| |
| |
| /* Helper to warn about deprecated tp_compare return values. Return: |
| -2 for an exception; |
| -1 if v < w; |
| 0 if v == w; |
| 1 if v > w. |
| (This function cannot return 2.) |
| */ |
| static int |
| adjust_tp_compare(int c) |
| { |
| if (PyErr_Occurred()) { |
| if (c != -1 && c != -2) { |
| PyObject *t, *v, *tb; |
| PyErr_Fetch(&t, &v, &tb); |
| if (PyErr_Warn(PyExc_RuntimeWarning, |
| "tp_compare didn't return -1 or -2 " |
| "for exception") < 0) { |
| Py_XDECREF(t); |
| Py_XDECREF(v); |
| Py_XDECREF(tb); |
| } |
| else |
| PyErr_Restore(t, v, tb); |
| } |
| return -2; |
| } |
| else if (c < -1 || c > 1) { |
| if (PyErr_Warn(PyExc_RuntimeWarning, |
| "tp_compare didn't return -1, 0 or 1") < 0) |
| return -2; |
| else |
| return c < -1 ? -1 : 1; |
| } |
| else { |
| assert(c >= -1 && c <= 1); |
| return c; |
| } |
| } |
| |
| |
| /* Macro to get the tp_richcompare field of a type if defined */ |
| #define RICHCOMPARE(t) (PyType_HasFeature((t), Py_TPFLAGS_HAVE_RICHCOMPARE) \ |
| ? (t)->tp_richcompare : NULL) |
| |
| /* Map rich comparison operators to their swapped version, e.g. LT --> GT */ |
| int _Py_SwappedOp[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE}; |
| |
| /* Try a genuine rich comparison, returning an object. Return: |
| NULL for exception; |
| NotImplemented if this particular rich comparison is not implemented or |
| undefined; |
| some object not equal to NotImplemented if it is implemented |
| (this latter object may not be a Boolean). |
| */ |
| static PyObject * |
| try_rich_compare(PyObject *v, PyObject *w, int op) |
| { |
| richcmpfunc f; |
| PyObject *res; |
| |
| if (v->ob_type != w->ob_type && |
| PyType_IsSubtype(w->ob_type, v->ob_type) && |
| (f = RICHCOMPARE(w->ob_type)) != NULL) { |
| res = (*f)(w, v, _Py_SwappedOp[op]); |
| if (res != Py_NotImplemented) |
| return res; |
| Py_DECREF(res); |
| } |
| if ((f = RICHCOMPARE(v->ob_type)) != NULL) { |
| res = (*f)(v, w, op); |
| if (res != Py_NotImplemented) |
| return res; |
| Py_DECREF(res); |
| } |
| if ((f = RICHCOMPARE(w->ob_type)) != NULL) { |
| return (*f)(w, v, _Py_SwappedOp[op]); |
| } |
| res = Py_NotImplemented; |
| Py_INCREF(res); |
| return res; |
| } |
| |
| /* Try a genuine rich comparison, returning an int. Return: |
| -1 for exception (including the case where try_rich_compare() returns an |
| object that's not a Boolean); |
| 0 if the outcome is false; |
| 1 if the outcome is true; |
| 2 if this particular rich comparison is not implemented or undefined. |
| */ |
| static int |
| try_rich_compare_bool(PyObject *v, PyObject *w, int op) |
| { |
| PyObject *res; |
| int ok; |
| |
| if (RICHCOMPARE(v->ob_type) == NULL && RICHCOMPARE(w->ob_type) == NULL) |
| return 2; /* Shortcut, avoid INCREF+DECREF */ |
| res = try_rich_compare(v, w, op); |
| if (res == NULL) |
| return -1; |
| if (res == Py_NotImplemented) { |
| Py_DECREF(res); |
| return 2; |
| } |
| ok = PyObject_IsTrue(res); |
| Py_DECREF(res); |
| return ok; |
| } |
| |
| /* Try rich comparisons to determine a 3-way comparison. Return: |
| -2 for an exception; |
| -1 if v < w; |
| 0 if v == w; |
| 1 if v > w; |
| 2 if this particular rich comparison is not implemented or undefined. |
| */ |
| static int |
| try_rich_to_3way_compare(PyObject *v, PyObject *w) |
| { |
| static struct { int op; int outcome; } tries[3] = { |
| /* Try this operator, and if it is true, use this outcome: */ |
| {Py_EQ, 0}, |
| {Py_LT, -1}, |
| {Py_GT, 1}, |
| }; |
| int i; |
| |
| if (RICHCOMPARE(v->ob_type) == NULL && RICHCOMPARE(w->ob_type) == NULL) |
| return 2; /* Shortcut */ |
| |
| for (i = 0; i < 3; i++) { |
| switch (try_rich_compare_bool(v, w, tries[i].op)) { |
| case -1: |
| return -2; |
| case 1: |
| return tries[i].outcome; |
| } |
| } |
| |
| return 2; |
| } |
| |
| /* Try a 3-way comparison, returning an int. Return: |
| -2 for an exception; |
| -1 if v < w; |
| 0 if v == w; |
| 1 if v > w; |
| 2 if this particular 3-way comparison is not implemented or undefined. |
| */ |
| static int |
| try_3way_compare(PyObject *v, PyObject *w) |
| { |
| int c; |
| cmpfunc f; |
| |
| /* Comparisons involving instances are given to instance_compare, |
| which has the same return conventions as this function. */ |
| |
| f = v->ob_type->tp_compare; |
| if (PyInstance_Check(v)) |
| return (*f)(v, w); |
| if (PyInstance_Check(w)) |
| return (*w->ob_type->tp_compare)(v, w); |
| |
| /* If both have the same (non-NULL) tp_compare, use it. */ |
| if (f != NULL && f == w->ob_type->tp_compare) { |
| c = (*f)(v, w); |
| return adjust_tp_compare(c); |
| } |
| |
| /* If either tp_compare is _PyObject_SlotCompare, that's safe. */ |
| if (f == _PyObject_SlotCompare || |
| w->ob_type->tp_compare == _PyObject_SlotCompare) |
| return _PyObject_SlotCompare(v, w); |
| |
| /* If we're here, v and w, |
| a) are not instances; |
| b) have different types or a type without tp_compare; and |
| c) don't have a user-defined tp_compare. |
| tp_compare implementations in C assume that both arguments |
| have their type, so we give up if the coercion fails or if |
| it yields types which are still incompatible (which can |
| happen with a user-defined nb_coerce). |
| */ |
| c = PyNumber_CoerceEx(&v, &w); |
| if (c < 0) |
| return -2; |
| if (c > 0) |
| return 2; |
| f = v->ob_type->tp_compare; |
| if (f != NULL && f == w->ob_type->tp_compare) { |
| c = (*f)(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| return adjust_tp_compare(c); |
| } |
| |
| /* No comparison defined */ |
| Py_DECREF(v); |
| Py_DECREF(w); |
| return 2; |
| } |
| |
| /* Final fallback 3-way comparison, returning an int. Return: |
| -2 if an error occurred; |
| -1 if v < w; |
| 0 if v == w; |
| 1 if v > w. |
| */ |
| static int |
| default_3way_compare(PyObject *v, PyObject *w) |
| { |
| int c; |
| const char *vname, *wname; |
| |
| if (v->ob_type == w->ob_type) { |
| /* When comparing these pointers, they must be cast to |
| * integer types (i.e. Py_uintptr_t, our spelling of C9X's |
| * uintptr_t). ANSI specifies that pointer compares other |
| * than == and != to non-related structures are undefined. |
| */ |
| Py_uintptr_t vv = (Py_uintptr_t)v; |
| Py_uintptr_t ww = (Py_uintptr_t)w; |
| return (vv < ww) ? -1 : (vv > ww) ? 1 : 0; |
| } |
| |
| #ifdef Py_USING_UNICODE |
| /* Special case for Unicode */ |
| if (PyUnicode_Check(v) || PyUnicode_Check(w)) { |
| c = PyUnicode_Compare(v, w); |
| if (!PyErr_Occurred()) |
| return c; |
| /* TypeErrors are ignored: if Unicode coercion fails due |
| to one of the arguments not having the right type, we |
| continue as defined by the coercion protocol (see |
| above). Luckily, decoding errors are reported as |
| ValueErrors and are not masked by this technique. */ |
| if (!PyErr_ExceptionMatches(PyExc_TypeError)) |
| return -2; |
| PyErr_Clear(); |
| } |
| #endif |
| |
| /* None is smaller than anything */ |
| if (v == Py_None) |
| return -1; |
| if (w == Py_None) |
| return 1; |
| |
| /* different type: compare type names; numbers are smaller */ |
| if (PyNumber_Check(v)) |
| vname = ""; |
| else |
| vname = v->ob_type->tp_name; |
| if (PyNumber_Check(w)) |
| wname = ""; |
| else |
| wname = w->ob_type->tp_name; |
| c = strcmp(vname, wname); |
| if (c < 0) |
| return -1; |
| if (c > 0) |
| return 1; |
| /* Same type name, or (more likely) incomparable numeric types */ |
| return ((Py_uintptr_t)(v->ob_type) < ( |
| Py_uintptr_t)(w->ob_type)) ? -1 : 1; |
| } |
| |
| /* Do a 3-way comparison, by hook or by crook. Return: |
| -2 for an exception (but see below); |
| -1 if v < w; |
| 0 if v == w; |
| 1 if v > w; |
| BUT: if the object implements a tp_compare function, it returns |
| whatever this function returns (whether with an exception or not). |
| */ |
| static int |
| do_cmp(PyObject *v, PyObject *w) |
| { |
| int c; |
| cmpfunc f; |
| |
| if (v->ob_type == w->ob_type |
| && (f = v->ob_type->tp_compare) != NULL) { |
| c = (*f)(v, w); |
| if (PyInstance_Check(v)) { |
| /* Instance tp_compare has a different signature. |
| But if it returns undefined we fall through. */ |
| if (c != 2) |
| return c; |
| /* Else fall through to try_rich_to_3way_compare() */ |
| } |
| else |
| return adjust_tp_compare(c); |
| } |
| /* We only get here if one of the following is true: |
| a) v and w have different types |
| b) v and w have the same type, which doesn't have tp_compare |
| c) v and w are instances, and either __cmp__ is not defined or |
| __cmp__ returns NotImplemented |
| */ |
| c = try_rich_to_3way_compare(v, w); |
| if (c < 2) |
| return c; |
| c = try_3way_compare(v, w); |
| if (c < 2) |
| return c; |
| return default_3way_compare(v, w); |
| } |
| |
| /* Compare v to w. Return |
| -1 if v < w or exception (PyErr_Occurred() true in latter case). |
| 0 if v == w. |
| 1 if v > w. |
| XXX The docs (C API manual) say the return value is undefined in case |
| XXX of error. |
| */ |
| int |
| PyObject_Compare(PyObject *v, PyObject *w) |
| { |
| int result; |
| |
| if (v == NULL || w == NULL) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| if (v == w) |
| return 0; |
| if (Py_EnterRecursiveCall(" in cmp")) |
| return -1; |
| result = do_cmp(v, w); |
| Py_LeaveRecursiveCall(); |
| return result < 0 ? -1 : result; |
| } |
| |
| /* Return (new reference to) Py_True or Py_False. */ |
| static PyObject * |
| convert_3way_to_object(int op, int c) |
| { |
| PyObject *result; |
| switch (op) { |
| case Py_LT: c = c < 0; break; |
| case Py_LE: c = c <= 0; break; |
| case Py_EQ: c = c == 0; break; |
| case Py_NE: c = c != 0; break; |
| case Py_GT: c = c > 0; break; |
| case Py_GE: c = c >= 0; break; |
| } |
| result = c ? Py_True : Py_False; |
| Py_INCREF(result); |
| return result; |
| } |
| |
| /* We want a rich comparison but don't have one. Try a 3-way cmp instead. |
| Return |
| NULL if error |
| Py_True if v op w |
| Py_False if not (v op w) |
| */ |
| static PyObject * |
| try_3way_to_rich_compare(PyObject *v, PyObject *w, int op) |
| { |
| int c; |
| |
| c = try_3way_compare(v, w); |
| if (c >= 2) |
| c = default_3way_compare(v, w); |
| if (c <= -2) |
| return NULL; |
| return convert_3way_to_object(op, c); |
| } |
| |
| /* Do rich comparison on v and w. Return |
| NULL if error |
| Else a new reference to an object other than Py_NotImplemented, usually(?): |
| Py_True if v op w |
| Py_False if not (v op w) |
| */ |
| static PyObject * |
| do_richcmp(PyObject *v, PyObject *w, int op) |
| { |
| PyObject *res; |
| |
| res = try_rich_compare(v, w, op); |
| if (res != Py_NotImplemented) |
| return res; |
| Py_DECREF(res); |
| |
| return try_3way_to_rich_compare(v, w, op); |
| } |
| |
| /* Return: |
| NULL for exception; |
| some object not equal to NotImplemented if it is implemented |
| (this latter object may not be a Boolean). |
| */ |
| PyObject * |
| PyObject_RichCompare(PyObject *v, PyObject *w, int op) |
| { |
| PyObject *res; |
| |
| assert(Py_LT <= op && op <= Py_GE); |
| if (Py_EnterRecursiveCall(" in cmp")) |
| return NULL; |
| |
| /* If the types are equal, and not old-style instances, try to |
| get out cheap (don't bother with coercions etc.). */ |
| if (v->ob_type == w->ob_type && !PyInstance_Check(v)) { |
| cmpfunc fcmp; |
| richcmpfunc frich = RICHCOMPARE(v->ob_type); |
| /* If the type has richcmp, try it first. try_rich_compare |
| tries it two-sided, which is not needed since we've a |
| single type only. */ |
| if (frich != NULL) { |
| res = (*frich)(v, w, op); |
| if (res != Py_NotImplemented) |
| goto Done; |
| Py_DECREF(res); |
| } |
| /* No richcmp, or this particular richmp not implemented. |
| Try 3-way cmp. */ |
| fcmp = v->ob_type->tp_compare; |
| if (fcmp != NULL) { |
| int c = (*fcmp)(v, w); |
| c = adjust_tp_compare(c); |
| if (c == -2) { |
| res = NULL; |
| goto Done; |
| } |
| res = convert_3way_to_object(op, c); |
| goto Done; |
| } |
| } |
| |
| /* Fast path not taken, or couldn't deliver a useful result. */ |
| res = do_richcmp(v, w, op); |
| Done: |
| Py_LeaveRecursiveCall(); |
| return res; |
| } |
| |
| /* Return -1 if error; 1 if v op w; 0 if not (v op w). */ |
| int |
| PyObject_RichCompareBool(PyObject *v, PyObject *w, int op) |
| { |
| PyObject *res; |
| int ok; |
| |
| /* Quick result when objects are the same. |
| Guarantees that identity implies equality. */ |
| if (v == w) { |
| if (op == Py_EQ) |
| return 1; |
| else if (op == Py_NE) |
| return 0; |
| } |
| |
| res = PyObject_RichCompare(v, w, op); |
| if (res == NULL) |
| return -1; |
| if (PyBool_Check(res)) |
| ok = (res == Py_True); |
| else |
| ok = PyObject_IsTrue(res); |
| Py_DECREF(res); |
| return ok; |
| } |
| |
| /* Set of hash utility functions to help maintaining the invariant that |
| if a==b then hash(a)==hash(b) |
| |
| All the utility functions (_Py_Hash*()) return "-1" to signify an error. |
| */ |
| |
| long |
| _Py_HashDouble(double v) |
| { |
| double intpart, fractpart; |
| int expo; |
| long hipart; |
| long x; /* the final hash value */ |
| /* This is designed so that Python numbers of different types |
| * that compare equal hash to the same value; otherwise comparisons |
| * of mapping keys will turn out weird. |
| */ |
| |
| fractpart = modf(v, &intpart); |
| if (fractpart == 0.0) { |
| /* This must return the same hash as an equal int or long. */ |
| if (intpart > LONG_MAX || -intpart > LONG_MAX) { |
| /* Convert to long and use its hash. */ |
| PyObject *plong; /* converted to Python long */ |
| if (Py_IS_INFINITY(intpart)) |
| /* can't convert to long int -- arbitrary */ |
| v = v < 0 ? -271828.0 : 314159.0; |
| plong = PyLong_FromDouble(v); |
| if (plong == NULL) |
| return -1; |
| x = PyObject_Hash(plong); |
| Py_DECREF(plong); |
| return x; |
| } |
| /* Fits in a C long == a Python int, so is its own hash. */ |
| x = (long)intpart; |
| if (x == -1) |
| x = -2; |
| return x; |
| } |
| /* The fractional part is non-zero, so we don't have to worry about |
| * making this match the hash of some other type. |
| * Use frexp to get at the bits in the double. |
| * Since the VAX D double format has 56 mantissa bits, which is the |
| * most of any double format in use, each of these parts may have as |
| * many as (but no more than) 56 significant bits. |
| * So, assuming sizeof(long) >= 4, each part can be broken into two |
| * longs; frexp and multiplication are used to do that. |
| * Also, since the Cray double format has 15 exponent bits, which is |
| * the most of any double format in use, shifting the exponent field |
| * left by 15 won't overflow a long (again assuming sizeof(long) >= 4). |
| */ |
| v = frexp(v, &expo); |
| v *= 2147483648.0; /* 2**31 */ |
| hipart = (long)v; /* take the top 32 bits */ |
| v = (v - (double)hipart) * 2147483648.0; /* get the next 32 bits */ |
| x = hipart + (long)v + (expo << 15); |
| if (x == -1) |
| x = -2; |
| return x; |
| } |
| |
| long |
| _Py_HashPointer(void *p) |
| { |
| #if SIZEOF_LONG >= SIZEOF_VOID_P |
| return (long)p; |
| #else |
| /* convert to a Python long and hash that */ |
| PyObject* longobj; |
| long x; |
| |
| if ((longobj = PyLong_FromVoidPtr(p)) == NULL) { |
| x = -1; |
| goto finally; |
| } |
| x = PyObject_Hash(longobj); |
| |
| finally: |
| Py_XDECREF(longobj); |
| return x; |
| #endif |
| } |
| |
| |
| long |
| PyObject_Hash(PyObject *v) |
| { |
| PyTypeObject *tp = v->ob_type; |
| if (tp->tp_hash != NULL) |
| return (*tp->tp_hash)(v); |
| if (tp->tp_compare == NULL && RICHCOMPARE(tp) == NULL) { |
| return _Py_HashPointer(v); /* Use address as hash value */ |
| } |
| /* If there's a cmp but no hash defined, the object can't be hashed */ |
| PyErr_SetString(PyExc_TypeError, "unhashable type"); |
| return -1; |
| } |
| |
| PyObject * |
| PyObject_GetAttrString(PyObject *v, const char *name) |
| { |
| PyObject *w, *res; |
| |
| if (v->ob_type->tp_getattr != NULL) |
| return (*v->ob_type->tp_getattr)(v, name); |
| w = PyString_InternFromString(name); |
| if (w == NULL) |
| return NULL; |
| res = PyObject_GetAttr(v, w); |
| Py_XDECREF(w); |
| return res; |
| } |
| |
| int |
| PyObject_HasAttrString(PyObject *v, const char *name) |
| { |
| PyObject *res = PyObject_GetAttrString(v, name); |
| if (res != NULL) { |
| Py_DECREF(res); |
| return 1; |
| } |
| PyErr_Clear(); |
| return 0; |
| } |
| |
| int |
| PyObject_SetAttrString(PyObject *v, const char *name, PyObject *w) |
| { |
| PyObject *s; |
| int res; |
| |
| if (v->ob_type->tp_setattr != NULL) |
| return (*v->ob_type->tp_setattr)(v, name, w); |
| s = PyString_InternFromString(name); |
| if (s == NULL) |
| return -1; |
| res = PyObject_SetAttr(v, s, w); |
| Py_XDECREF(s); |
| return res; |
| } |
| |
| PyObject * |
| PyObject_GetAttr(PyObject *v, PyObject *name) |
| { |
| PyTypeObject *tp = v->ob_type; |
| |
| if (!PyString_Check(name)) { |
| #ifdef Py_USING_UNICODE |
| /* The Unicode to string conversion is done here because the |
| existing tp_getattro slots expect a string object as name |
| and we wouldn't want to break those. */ |
| if (PyUnicode_Check(name)) { |
| name = _PyUnicode_AsDefaultEncodedString(name, NULL); |
| if (name == NULL) |
| return NULL; |
| } |
| else |
| #endif |
| { |
| PyErr_SetString(PyExc_TypeError, |
| "attribute name must be string"); |
| return NULL; |
| } |
| } |
| if (tp->tp_getattro != NULL) |
| return (*tp->tp_getattro)(v, name); |
| if (tp->tp_getattr != NULL) |
| return (*tp->tp_getattr)(v, PyString_AS_STRING(name)); |
| PyErr_Format(PyExc_AttributeError, |
| "'%.50s' object has no attribute '%.400s'", |
| tp->tp_name, PyString_AS_STRING(name)); |
| return NULL; |
| } |
| |
| int |
| PyObject_HasAttr(PyObject *v, PyObject *name) |
| { |
| PyObject *res = PyObject_GetAttr(v, name); |
| if (res != NULL) { |
| Py_DECREF(res); |
| return 1; |
| } |
| PyErr_Clear(); |
| return 0; |
| } |
| |
| int |
| PyObject_SetAttr(PyObject *v, PyObject *name, PyObject *value) |
| { |
| PyTypeObject *tp = v->ob_type; |
| int err; |
| |
| if (!PyString_Check(name)){ |
| #ifdef Py_USING_UNICODE |
| /* The Unicode to string conversion is done here because the |
| existing tp_setattro slots expect a string object as name |
| and we wouldn't want to break those. */ |
| if (PyUnicode_Check(name)) { |
| name = PyUnicode_AsEncodedString(name, NULL, NULL); |
| if (name == NULL) |
| return -1; |
| } |
| else |
| #endif |
| { |
| PyErr_SetString(PyExc_TypeError, |
| "attribute name must be string"); |
| return -1; |
| } |
| } |
| else |
| Py_INCREF(name); |
| |
| PyString_InternInPlace(&name); |
| if (tp->tp_setattro != NULL) { |
| err = (*tp->tp_setattro)(v, name, value); |
| Py_DECREF(name); |
| return err; |
| } |
| if (tp->tp_setattr != NULL) { |
| err = (*tp->tp_setattr)(v, PyString_AS_STRING(name), value); |
| Py_DECREF(name); |
| return err; |
| } |
| Py_DECREF(name); |
| if (tp->tp_getattr == NULL && tp->tp_getattro == NULL) |
| PyErr_Format(PyExc_TypeError, |
| "'%.100s' object has no attributes " |
| "(%s .%.100s)", |
| tp->tp_name, |
| value==NULL ? "del" : "assign to", |
| PyString_AS_STRING(name)); |
| else |
| PyErr_Format(PyExc_TypeError, |
| "'%.100s' object has only read-only attributes " |
| "(%s .%.100s)", |
| tp->tp_name, |
| value==NULL ? "del" : "assign to", |
| PyString_AS_STRING(name)); |
| return -1; |
| } |
| |
| /* Helper to get a pointer to an object's __dict__ slot, if any */ |
| |
| PyObject ** |
| _PyObject_GetDictPtr(PyObject *obj) |
| { |
| long dictoffset; |
| PyTypeObject *tp = obj->ob_type; |
| |
| if (!(tp->tp_flags & Py_TPFLAGS_HAVE_CLASS)) |
| return NULL; |
| dictoffset = tp->tp_dictoffset; |
| if (dictoffset == 0) |
| return NULL; |
| if (dictoffset < 0) { |
| int tsize; |
| size_t size; |
| |
| tsize = ((PyVarObject *)obj)->ob_size; |
| if (tsize < 0) |
| tsize = -tsize; |
| size = _PyObject_VAR_SIZE(tp, tsize); |
| |
| dictoffset += (long)size; |
| assert(dictoffset > 0); |
| assert(dictoffset % SIZEOF_VOID_P == 0); |
| } |
| return (PyObject **) ((char *)obj + dictoffset); |
| } |
| |
| PyObject * |
| PyObject_SelfIter(PyObject *obj) |
| { |
| Py_INCREF(obj); |
| return obj; |
| } |
| |
| /* Generic GetAttr functions - put these in your tp_[gs]etattro slot */ |
| |
| PyObject * |
| PyObject_GenericGetAttr(PyObject *obj, PyObject *name) |
| { |
| PyTypeObject *tp = obj->ob_type; |
| PyObject *descr = NULL; |
| PyObject *res = NULL; |
| descrgetfunc f; |
| long dictoffset; |
| PyObject **dictptr; |
| |
| if (!PyString_Check(name)){ |
| #ifdef Py_USING_UNICODE |
| /* The Unicode to string conversion is done here because the |
| existing tp_setattro slots expect a string object as name |
| and we wouldn't want to break those. */ |
| if (PyUnicode_Check(name)) { |
| name = PyUnicode_AsEncodedString(name, NULL, NULL); |
| if (name == NULL) |
| return NULL; |
| } |
| else |
| #endif |
| { |
| PyErr_SetString(PyExc_TypeError, |
| "attribute name must be string"); |
| return NULL; |
| } |
| } |
| else |
| Py_INCREF(name); |
| |
| if (tp->tp_dict == NULL) { |
| if (PyType_Ready(tp) < 0) |
| goto done; |
| } |
| |
| /* Inline _PyType_Lookup */ |
| { |
| int i, n; |
| PyObject *mro, *base, *dict; |
| |
| /* Look in tp_dict of types in MRO */ |
| mro = tp->tp_mro; |
| assert(mro != NULL); |
| assert(PyTuple_Check(mro)); |
| n = PyTuple_GET_SIZE(mro); |
| for (i = 0; i < n; i++) { |
| base = PyTuple_GET_ITEM(mro, i); |
| if (PyClass_Check(base)) |
| dict = ((PyClassObject *)base)->cl_dict; |
| else { |
| assert(PyType_Check(base)); |
| dict = ((PyTypeObject *)base)->tp_dict; |
| } |
| assert(dict && PyDict_Check(dict)); |
| descr = PyDict_GetItem(dict, name); |
| if (descr != NULL) |
| break; |
| } |
| } |
| |
| Py_XINCREF(descr); |
| |
| f = NULL; |
| if (descr != NULL && |
| PyType_HasFeature(descr->ob_type, Py_TPFLAGS_HAVE_CLASS)) { |
| f = descr->ob_type->tp_descr_get; |
| if (f != NULL && PyDescr_IsData(descr)) { |
| res = f(descr, obj, (PyObject *)obj->ob_type); |
| Py_DECREF(descr); |
| goto done; |
| } |
| } |
| |
| /* Inline _PyObject_GetDictPtr */ |
| dictoffset = tp->tp_dictoffset; |
| if (dictoffset != 0) { |
| PyObject *dict; |
| if (dictoffset < 0) { |
| int tsize; |
| size_t size; |
| |
| tsize = ((PyVarObject *)obj)->ob_size; |
| if (tsize < 0) |
| tsize = -tsize; |
| size = _PyObject_VAR_SIZE(tp, tsize); |
| |
| dictoffset += (long)size; |
| assert(dictoffset > 0); |
| assert(dictoffset % SIZEOF_VOID_P == 0); |
| } |
| dictptr = (PyObject **) ((char *)obj + dictoffset); |
| dict = *dictptr; |
| if (dict != NULL) { |
| res = PyDict_GetItem(dict, name); |
| if (res != NULL) { |
| Py_INCREF(res); |
| Py_XDECREF(descr); |
| goto done; |
| } |
| } |
| } |
| |
| if (f != NULL) { |
| res = f(descr, obj, (PyObject *)obj->ob_type); |
| Py_DECREF(descr); |
| goto done; |
| } |
| |
| if (descr != NULL) { |
| res = descr; |
| /* descr was already increfed above */ |
| goto done; |
| } |
| |
| PyErr_Format(PyExc_AttributeError, |
| "'%.50s' object has no attribute '%.400s'", |
| tp->tp_name, PyString_AS_STRING(name)); |
| done: |
| Py_DECREF(name); |
| return res; |
| } |
| |
| int |
| PyObject_GenericSetAttr(PyObject *obj, PyObject *name, PyObject *value) |
| { |
| PyTypeObject *tp = obj->ob_type; |
| PyObject *descr; |
| descrsetfunc f; |
| PyObject **dictptr; |
| int res = -1; |
| |
| if (!PyString_Check(name)){ |
| #ifdef Py_USING_UNICODE |
| /* The Unicode to string conversion is done here because the |
| existing tp_setattro slots expect a string object as name |
| and we wouldn't want to break those. */ |
| if (PyUnicode_Check(name)) { |
| name = PyUnicode_AsEncodedString(name, NULL, NULL); |
| if (name == NULL) |
| return -1; |
| } |
| else |
| #endif |
| { |
| PyErr_SetString(PyExc_TypeError, |
| "attribute name must be string"); |
| return -1; |
| } |
| } |
| else |
| Py_INCREF(name); |
| |
| if (tp->tp_dict == NULL) { |
| if (PyType_Ready(tp) < 0) |
| goto done; |
| } |
| |
| descr = _PyType_Lookup(tp, name); |
| f = NULL; |
| if (descr != NULL && |
| PyType_HasFeature(descr->ob_type, Py_TPFLAGS_HAVE_CLASS)) { |
| f = descr->ob_type->tp_descr_set; |
| if (f != NULL && PyDescr_IsData(descr)) { |
| res = f(descr, obj, value); |
| goto done; |
| } |
| } |
| |
| dictptr = _PyObject_GetDictPtr(obj); |
| if (dictptr != NULL) { |
| PyObject *dict = *dictptr; |
| if (dict == NULL && value != NULL) { |
| dict = PyDict_New(); |
| if (dict == NULL) |
| goto done; |
| *dictptr = dict; |
| } |
| if (dict != NULL) { |
| if (value == NULL) |
| res = PyDict_DelItem(dict, name); |
| else |
| res = PyDict_SetItem(dict, name, value); |
| if (res < 0 && PyErr_ExceptionMatches(PyExc_KeyError)) |
| PyErr_SetObject(PyExc_AttributeError, name); |
| goto done; |
| } |
| } |
| |
| if (f != NULL) { |
| res = f(descr, obj, value); |
| goto done; |
| } |
| |
| if (descr == NULL) { |
| PyErr_Format(PyExc_AttributeError, |
| "'%.50s' object has no attribute '%.400s'", |
| tp->tp_name, PyString_AS_STRING(name)); |
| goto done; |
| } |
| |
| PyErr_Format(PyExc_AttributeError, |
| "'%.50s' object attribute '%.400s' is read-only", |
| tp->tp_name, PyString_AS_STRING(name)); |
| done: |
| Py_DECREF(name); |
| return res; |
| } |
| |
| /* Test a value used as condition, e.g., in a for or if statement. |
| Return -1 if an error occurred */ |
| |
| int |
| PyObject_IsTrue(PyObject *v) |
| { |
| int res; |
| if (v == Py_True) |
| return 1; |
| if (v == Py_False) |
| return 0; |
| if (v == Py_None) |
| return 0; |
| else if (v->ob_type->tp_as_number != NULL && |
| v->ob_type->tp_as_number->nb_nonzero != NULL) |
| res = (*v->ob_type->tp_as_number->nb_nonzero)(v); |
| else if (v->ob_type->tp_as_mapping != NULL && |
| v->ob_type->tp_as_mapping->mp_length != NULL) |
| res = (*v->ob_type->tp_as_mapping->mp_length)(v); |
| else if (v->ob_type->tp_as_sequence != NULL && |
| v->ob_type->tp_as_sequence->sq_length != NULL) |
| res = (*v->ob_type->tp_as_sequence->sq_length)(v); |
| else |
| return 1; |
| return (res > 0) ? 1 : res; |
| } |
| |
| /* equivalent of 'not v' |
| Return -1 if an error occurred */ |
| |
| int |
| PyObject_Not(PyObject *v) |
| { |
| int res; |
| res = PyObject_IsTrue(v); |
| if (res < 0) |
| return res; |
| return res == 0; |
| } |
| |
| /* Coerce two numeric types to the "larger" one. |
| Increment the reference count on each argument. |
| Return value: |
| -1 if an error occurred; |
| 0 if the coercion succeeded (and then the reference counts are increased); |
| 1 if no coercion is possible (and no error is raised). |
| */ |
| int |
| PyNumber_CoerceEx(PyObject **pv, PyObject **pw) |
| { |
| register PyObject *v = *pv; |
| register PyObject *w = *pw; |
| int res; |
| |
| /* Shortcut only for old-style types */ |
| if (v->ob_type == w->ob_type && |
| !PyType_HasFeature(v->ob_type, Py_TPFLAGS_CHECKTYPES)) |
| { |
| Py_INCREF(v); |
| Py_INCREF(w); |
| return 0; |
| } |
| if (v->ob_type->tp_as_number && v->ob_type->tp_as_number->nb_coerce) { |
| res = (*v->ob_type->tp_as_number->nb_coerce)(pv, pw); |
| if (res <= 0) |
| return res; |
| } |
| if (w->ob_type->tp_as_number && w->ob_type->tp_as_number->nb_coerce) { |
| res = (*w->ob_type->tp_as_number->nb_coerce)(pw, pv); |
| if (res <= 0) |
| return res; |
| } |
| return 1; |
| } |
| |
| /* Coerce two numeric types to the "larger" one. |
| Increment the reference count on each argument. |
| Return -1 and raise an exception if no coercion is possible |
| (and then no reference count is incremented). |
| */ |
| int |
| PyNumber_Coerce(PyObject **pv, PyObject **pw) |
| { |
| int err = PyNumber_CoerceEx(pv, pw); |
| if (err <= 0) |
| return err; |
| PyErr_SetString(PyExc_TypeError, "number coercion failed"); |
| return -1; |
| } |
| |
| |
| /* Test whether an object can be called */ |
| |
| int |
| PyCallable_Check(PyObject *x) |
| { |
| if (x == NULL) |
| return 0; |
| if (PyInstance_Check(x)) { |
| PyObject *call = PyObject_GetAttrString(x, "__call__"); |
| if (call == NULL) { |
| PyErr_Clear(); |
| return 0; |
| } |
| /* Could test recursively but don't, for fear of endless |
| recursion if some joker sets self.__call__ = self */ |
| Py_DECREF(call); |
| return 1; |
| } |
| else { |
| return x->ob_type->tp_call != NULL; |
| } |
| } |
| |
| /* Helper for PyObject_Dir. |
| Merge the __dict__ of aclass into dict, and recursively also all |
| the __dict__s of aclass's base classes. The order of merging isn't |
| defined, as it's expected that only the final set of dict keys is |
| interesting. |
| Return 0 on success, -1 on error. |
| */ |
| |
| static int |
| merge_class_dict(PyObject* dict, PyObject* aclass) |
| { |
| PyObject *classdict; |
| PyObject *bases; |
| |
| assert(PyDict_Check(dict)); |
| assert(aclass); |
| |
| /* Merge in the type's dict (if any). */ |
| classdict = PyObject_GetAttrString(aclass, "__dict__"); |
| if (classdict == NULL) |
| PyErr_Clear(); |
| else { |
| int status = PyDict_Update(dict, classdict); |
| Py_DECREF(classdict); |
| if (status < 0) |
| return -1; |
| } |
| |
| /* Recursively merge in the base types' (if any) dicts. */ |
| bases = PyObject_GetAttrString(aclass, "__bases__"); |
| if (bases == NULL) |
| PyErr_Clear(); |
| else { |
| /* We have no guarantee that bases is a real tuple */ |
| int i, n; |
| n = PySequence_Size(bases); /* This better be right */ |
| if (n < 0) |
| PyErr_Clear(); |
| else { |
| for (i = 0; i < n; i++) { |
| int status; |
| PyObject *base = PySequence_GetItem(bases, i); |
| if (base == NULL) { |
| Py_DECREF(bases); |
| return -1; |
| } |
| status = merge_class_dict(dict, base); |
| Py_DECREF(base); |
| if (status < 0) { |
| Py_DECREF(bases); |
| return -1; |
| } |
| } |
| } |
| Py_DECREF(bases); |
| } |
| return 0; |
| } |
| |
| /* Helper for PyObject_Dir. |
| If obj has an attr named attrname that's a list, merge its string |
| elements into keys of dict. |
| Return 0 on success, -1 on error. Errors due to not finding the attr, |
| or the attr not being a list, are suppressed. |
| */ |
| |
| static int |
| merge_list_attr(PyObject* dict, PyObject* obj, const char *attrname) |
| { |
| PyObject *list; |
| int result = 0; |
| |
| assert(PyDict_Check(dict)); |
| assert(obj); |
| assert(attrname); |
| |
| list = PyObject_GetAttrString(obj, attrname); |
| if (list == NULL) |
| PyErr_Clear(); |
| |
| else if (PyList_Check(list)) { |
| int i; |
| for (i = 0; i < PyList_GET_SIZE(list); ++i) { |
| PyObject *item = PyList_GET_ITEM(list, i); |
| if (PyString_Check(item)) { |
| result = PyDict_SetItem(dict, item, Py_None); |
| if (result < 0) |
| break; |
| } |
| } |
| } |
| |
| Py_XDECREF(list); |
| return result; |
| } |
| |
| /* Like __builtin__.dir(arg). See bltinmodule.c's builtin_dir for the |
| docstring, which should be kept in synch with this implementation. */ |
| |
| PyObject * |
| PyObject_Dir(PyObject *arg) |
| { |
| /* Set exactly one of these non-NULL before the end. */ |
| PyObject *result = NULL; /* result list */ |
| PyObject *masterdict = NULL; /* result is masterdict.keys() */ |
| |
| /* If NULL arg, return the locals. */ |
| if (arg == NULL) { |
| PyObject *locals = PyEval_GetLocals(); |
| if (locals == NULL) |
| goto error; |
| result = PyMapping_Keys(locals); |
| if (result == NULL) |
| goto error; |
| } |
| |
| /* Elif this is some form of module, we only want its dict. */ |
| else if (PyModule_Check(arg)) { |
| masterdict = PyObject_GetAttrString(arg, "__dict__"); |
| if (masterdict == NULL) |
| goto error; |
| if (!PyDict_Check(masterdict)) { |
| PyErr_SetString(PyExc_TypeError, |
| "module.__dict__ is not a dictionary"); |
| goto error; |
| } |
| } |
| |
| /* Elif some form of type or class, grab its dict and its bases. |
| We deliberately don't suck up its __class__, as methods belonging |
| to the metaclass would probably be more confusing than helpful. */ |
| else if (PyType_Check(arg) || PyClass_Check(arg)) { |
| masterdict = PyDict_New(); |
| if (masterdict == NULL) |
| goto error; |
| if (merge_class_dict(masterdict, arg) < 0) |
| goto error; |
| } |
| |
| /* Else look at its dict, and the attrs reachable from its class. */ |
| else { |
| PyObject *itsclass; |
| /* Create a dict to start with. CAUTION: Not everything |
| responding to __dict__ returns a dict! */ |
| masterdict = PyObject_GetAttrString(arg, "__dict__"); |
| if (masterdict == NULL) { |
| PyErr_Clear(); |
| masterdict = PyDict_New(); |
| } |
| else if (!PyDict_Check(masterdict)) { |
| Py_DECREF(masterdict); |
| masterdict = PyDict_New(); |
| } |
| else { |
| /* The object may have returned a reference to its |
| dict, so copy it to avoid mutating it. */ |
| PyObject *temp = PyDict_Copy(masterdict); |
| Py_DECREF(masterdict); |
| masterdict = temp; |
| } |
| if (masterdict == NULL) |
| goto error; |
| |
| /* Merge in __members__ and __methods__ (if any). |
| XXX Would like this to go away someday; for now, it's |
| XXX needed to get at im_self etc of method objects. */ |
| if (merge_list_attr(masterdict, arg, "__members__") < 0) |
| goto error; |
| if (merge_list_attr(masterdict, arg, "__methods__") < 0) |
| goto error; |
| |
| /* Merge in attrs reachable from its class. |
| CAUTION: Not all objects have a __class__ attr. */ |
| itsclass = PyObject_GetAttrString(arg, "__class__"); |
| if (itsclass == NULL) |
| PyErr_Clear(); |
| else { |
| int status = merge_class_dict(masterdict, itsclass); |
| Py_DECREF(itsclass); |
| if (status < 0) |
| goto error; |
| } |
| } |
| |
| assert((result == NULL) ^ (masterdict == NULL)); |
| if (masterdict != NULL) { |
| /* The result comes from its keys. */ |
| assert(result == NULL); |
| result = PyDict_Keys(masterdict); |
| if (result == NULL) |
| goto error; |
| } |
| |
| assert(result); |
| if (!PyList_Check(result)) { |
| PyErr_SetString(PyExc_TypeError, |
| "Expected keys() to be a list."); |
| goto error; |
| } |
| if (PyList_Sort(result) != 0) |
| goto error; |
| else |
| goto normal_return; |
| |
| error: |
| Py_XDECREF(result); |
| result = NULL; |
| /* fall through */ |
| normal_return: |
| Py_XDECREF(masterdict); |
| return result; |
| } |
| |
| /* |
| NoObject is usable as a non-NULL undefined value, used by the macro None. |
| There is (and should be!) no way to create other objects of this type, |
| so there is exactly one (which is indestructible, by the way). |
| (XXX This type and the type of NotImplemented below should be unified.) |
| */ |
| |
| /* ARGSUSED */ |
| static PyObject * |
| none_repr(PyObject *op) |
| { |
| return PyString_FromString("None"); |
| } |
| |
| /* ARGUSED */ |
| static void |
| none_dealloc(PyObject* ignore) |
| { |
| /* This should never get called, but we also don't want to SEGV if |
| * we accidently decref None out of existance. |
| */ |
| Py_FatalError("deallocating None"); |
| } |
| |
| |
| static PyTypeObject PyNone_Type = { |
| PyObject_HEAD_INIT(&PyType_Type) |
| 0, |
| "NoneType", |
| 0, |
| 0, |
| (destructor)none_dealloc, /*tp_dealloc*/ /*never called*/ |
| 0, /*tp_print*/ |
| 0, /*tp_getattr*/ |
| 0, /*tp_setattr*/ |
| 0, /*tp_compare*/ |
| (reprfunc)none_repr, /*tp_repr*/ |
| 0, /*tp_as_number*/ |
| 0, /*tp_as_sequence*/ |
| 0, /*tp_as_mapping*/ |
| 0, /*tp_hash */ |
| }; |
| |
| PyObject _Py_NoneStruct = { |
| PyObject_HEAD_INIT(&PyNone_Type) |
| }; |
| |
| /* NotImplemented is an object that can be used to signal that an |
| operation is not implemented for the given type combination. */ |
| |
| static PyObject * |
| NotImplemented_repr(PyObject *op) |
| { |
| return PyString_FromString("NotImplemented"); |
| } |
| |
| static PyTypeObject PyNotImplemented_Type = { |
| PyObject_HEAD_INIT(&PyType_Type) |
| 0, |
| "NotImplementedType", |
| 0, |
| 0, |
| (destructor)none_dealloc, /*tp_dealloc*/ /*never called*/ |
| 0, /*tp_print*/ |
| 0, /*tp_getattr*/ |
| 0, /*tp_setattr*/ |
| 0, /*tp_compare*/ |
| (reprfunc)NotImplemented_repr, /*tp_repr*/ |
| 0, /*tp_as_number*/ |
| 0, /*tp_as_sequence*/ |
| 0, /*tp_as_mapping*/ |
| 0, /*tp_hash */ |
| }; |
| |
| PyObject _Py_NotImplementedStruct = { |
| PyObject_HEAD_INIT(&PyNotImplemented_Type) |
| }; |
| |
| void |
| _Py_ReadyTypes(void) |
| { |
| if (PyType_Ready(&PyType_Type) < 0) |
| Py_FatalError("Can't initialize 'type'"); |
| |
| if (PyType_Ready(&_PyWeakref_RefType) < 0) |
| Py_FatalError("Can't initialize 'weakref'"); |
| |
| if (PyType_Ready(&PyBool_Type) < 0) |
| Py_FatalError("Can't initialize 'bool'"); |
| |
| if (PyType_Ready(&PyString_Type) < 0) |
| Py_FatalError("Can't initialize 'str'"); |
| |
| if (PyType_Ready(&PyList_Type) < 0) |
| Py_FatalError("Can't initialize 'list'"); |
| |
| if (PyType_Ready(&PyNone_Type) < 0) |
| Py_FatalError("Can't initialize type(None)"); |
| |
| if (PyType_Ready(&PyNotImplemented_Type) < 0) |
| Py_FatalError("Can't initialize type(NotImplemented)"); |
| } |
| |
| |
| #ifdef Py_TRACE_REFS |
| |
| void |
| _Py_NewReference(PyObject *op) |
| { |
| _Py_INC_REFTOTAL; |
| op->ob_refcnt = 1; |
| _Py_AddToAllObjects(op, 1); |
| _Py_INC_TPALLOCS(op); |
| } |
| |
| void |
| _Py_ForgetReference(register PyObject *op) |
| { |
| #ifdef SLOW_UNREF_CHECK |
| register PyObject *p; |
| #endif |
| if (op->ob_refcnt < 0) |
| Py_FatalError("UNREF negative refcnt"); |
| if (op == &refchain || |
| op->_ob_prev->_ob_next != op || op->_ob_next->_ob_prev != op) |
| Py_FatalError("UNREF invalid object"); |
| #ifdef SLOW_UNREF_CHECK |
| for (p = refchain._ob_next; p != &refchain; p = p->_ob_next) { |
| if (p == op) |
| break; |
| } |
| if (p == &refchain) /* Not found */ |
| Py_FatalError("UNREF unknown object"); |
| #endif |
| op->_ob_next->_ob_prev = op->_ob_prev; |
| op->_ob_prev->_ob_next = op->_ob_next; |
| op->_ob_next = op->_ob_prev = NULL; |
| _Py_INC_TPFREES(op); |
| } |
| |
| void |
| _Py_Dealloc(PyObject *op) |
| { |
| destructor dealloc = op->ob_type->tp_dealloc; |
| _Py_ForgetReference(op); |
| (*dealloc)(op); |
| } |
| |
| /* Print all live objects. Because PyObject_Print is called, the |
| * interpreter must be in a healthy state. |
| */ |
| void |
| _Py_PrintReferences(FILE *fp) |
| { |
| PyObject *op; |
| fprintf(fp, "Remaining objects:\n"); |
| for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) { |
| fprintf(fp, "%p [%d] ", op, op->ob_refcnt); |
| if (PyObject_Print(op, fp, 0) != 0) |
| PyErr_Clear(); |
| putc('\n', fp); |
| } |
| } |
| |
| /* Print the addresses of all live objects. Unlike _Py_PrintReferences, this |
| * doesn't make any calls to the Python C API, so is always safe to call. |
| */ |
| void |
| _Py_PrintReferenceAddresses(FILE *fp) |
| { |
| PyObject *op; |
| fprintf(fp, "Remaining object addresses:\n"); |
| for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) |
| fprintf(fp, "%p [%d] %s\n", op, op->ob_refcnt, |
| op->ob_type->tp_name); |
| } |
| |
| PyObject * |
| _Py_GetObjects(PyObject *self, PyObject *args) |
| { |
| int i, n; |
| PyObject *t = NULL; |
| PyObject *res, *op; |
| |
| if (!PyArg_ParseTuple(args, "i|O", &n, &t)) |
| return NULL; |
| op = refchain._ob_next; |
| res = PyList_New(0); |
| if (res == NULL) |
| return NULL; |
| for (i = 0; (n == 0 || i < n) && op != &refchain; i++) { |
| while (op == self || op == args || op == res || op == t || |
| (t != NULL && op->ob_type != (PyTypeObject *) t)) { |
| op = op->_ob_next; |
| if (op == &refchain) |
| return res; |
| } |
| if (PyList_Append(res, op) < 0) { |
| Py_DECREF(res); |
| return NULL; |
| } |
| op = op->_ob_next; |
| } |
| return res; |
| } |
| |
| #endif |
| |
| |
| /* Hack to force loading of cobject.o */ |
| PyTypeObject *_Py_cobject_hack = &PyCObject_Type; |
| |
| |
| /* Hack to force loading of abstract.o */ |
| int (*_Py_abstract_hack)(PyObject *) = PyObject_Size; |
| |
| |
| /* Python's malloc wrappers (see pymem.h) */ |
| |
| void * |
| PyMem_Malloc(size_t nbytes) |
| { |
| return PyMem_MALLOC(nbytes); |
| } |
| |
| void * |
| PyMem_Realloc(void *p, size_t nbytes) |
| { |
| return PyMem_REALLOC(p, nbytes); |
| } |
| |
| void |
| PyMem_Free(void *p) |
| { |
| PyMem_FREE(p); |
| } |
| |
| |
| /* These methods are used to control infinite recursion in repr, str, print, |
| etc. Container objects that may recursively contain themselves, |
| e.g. builtin dictionaries and lists, should used Py_ReprEnter() and |
| Py_ReprLeave() to avoid infinite recursion. |
| |
| Py_ReprEnter() returns 0 the first time it is called for a particular |
| object and 1 every time thereafter. It returns -1 if an exception |
| occurred. Py_ReprLeave() has no return value. |
| |
| See dictobject.c and listobject.c for examples of use. |
| */ |
| |
| #define KEY "Py_Repr" |
| |
| int |
| Py_ReprEnter(PyObject *obj) |
| { |
| PyObject *dict; |
| PyObject *list; |
| int i; |
| |
| dict = PyThreadState_GetDict(); |
| if (dict == NULL) |
| return 0; |
| list = PyDict_GetItemString(dict, KEY); |
| if (list == NULL) { |
| list = PyList_New(0); |
| if (list == NULL) |
| return -1; |
| if (PyDict_SetItemString(dict, KEY, list) < 0) |
| return -1; |
| Py_DECREF(list); |
| } |
| i = PyList_GET_SIZE(list); |
| while (--i >= 0) { |
| if (PyList_GET_ITEM(list, i) == obj) |
| return 1; |
| } |
| PyList_Append(list, obj); |
| return 0; |
| } |
| |
| void |
| Py_ReprLeave(PyObject *obj) |
| { |
| PyObject *dict; |
| PyObject *list; |
| int i; |
| |
| dict = PyThreadState_GetDict(); |
| if (dict == NULL) |
| return; |
| list = PyDict_GetItemString(dict, KEY); |
| if (list == NULL || !PyList_Check(list)) |
| return; |
| i = PyList_GET_SIZE(list); |
| /* Count backwards because we always expect obj to be list[-1] */ |
| while (--i >= 0) { |
| if (PyList_GET_ITEM(list, i) == obj) { |
| PyList_SetSlice(list, i, i + 1, NULL); |
| break; |
| } |
| } |
| } |
| |
| /* Trashcan support. */ |
| |
| /* Current call-stack depth of tp_dealloc calls. */ |
| int _PyTrash_delete_nesting = 0; |
| |
| /* List of objects that still need to be cleaned up, singly linked via their |
| * gc headers' gc_prev pointers. |
| */ |
| PyObject *_PyTrash_delete_later = NULL; |
| |
| /* Add op to the _PyTrash_delete_later list. Called when the current |
| * call-stack depth gets large. op must be a currently untracked gc'ed |
| * object, with refcount 0. Py_DECREF must already have been called on it. |
| */ |
| void |
| _PyTrash_deposit_object(PyObject *op) |
| { |
| assert(PyObject_IS_GC(op)); |
| assert(_Py_AS_GC(op)->gc.gc_refs == _PyGC_REFS_UNTRACKED); |
| assert(op->ob_refcnt == 0); |
| _Py_AS_GC(op)->gc.gc_prev = (PyGC_Head *)_PyTrash_delete_later; |
| _PyTrash_delete_later = op; |
| } |
| |
| /* Dealloccate all the objects in the _PyTrash_delete_later list. Called when |
| * the call-stack unwinds again. |
| */ |
| void |
| _PyTrash_destroy_chain(void) |
| { |
| while (_PyTrash_delete_later) { |
| PyObject *op = _PyTrash_delete_later; |
| destructor dealloc = op->ob_type->tp_dealloc; |
| |
| _PyTrash_delete_later = |
| (PyObject*) _Py_AS_GC(op)->gc.gc_prev; |
| |
| /* Call the deallocator directly. This used to try to |
| * fool Py_DECREF into calling it indirectly, but |
| * Py_DECREF was already called on this object, and in |
| * assorted non-release builds calling Py_DECREF again ends |
| * up distorting allocation statistics. |
| */ |
| assert(op->ob_refcnt == 0); |
| ++_PyTrash_delete_nesting; |
| (*dealloc)(op); |
| --_PyTrash_delete_nesting; |
| } |
| } |