|  | 
 | /* This code implemented by Dag.Gruneau@elsa.preseco.comm.se */ | 
 | /* Fast NonRecursiveMutex support by Yakov Markovitch, markovitch@iso.ru */ | 
 | /* Eliminated some memory leaks, gsw@agere.com */ | 
 |  | 
 | #include <windows.h> | 
 | #include <limits.h> | 
 | #ifdef HAVE_PROCESS_H | 
 | #include <process.h> | 
 | #endif | 
 |  | 
 | /* options */ | 
 | #ifndef _PY_USE_CV_LOCKS | 
 | #define _PY_USE_CV_LOCKS 1     /* use locks based on cond vars */ | 
 | #endif | 
 |  | 
 | /* Now, define a non-recursive mutex using either condition variables | 
 |  * and critical sections (fast) or using operating system mutexes | 
 |  * (slow) | 
 |  */ | 
 |  | 
 | #if _PY_USE_CV_LOCKS | 
 |  | 
 | #include "condvar.h" | 
 |  | 
 | typedef struct _NRMUTEX | 
 | { | 
 |     PyMUTEX_T cs; | 
 |     PyCOND_T cv; | 
 |     int locked; | 
 | } NRMUTEX; | 
 | typedef NRMUTEX *PNRMUTEX; | 
 |  | 
 | PNRMUTEX | 
 | AllocNonRecursiveMutex() | 
 | { | 
 |     PNRMUTEX m = (PNRMUTEX)PyMem_RawMalloc(sizeof(NRMUTEX)); | 
 |     if (!m) | 
 |         return NULL; | 
 |     if (PyCOND_INIT(&m->cv)) | 
 |         goto fail; | 
 |     if (PyMUTEX_INIT(&m->cs)) { | 
 |         PyCOND_FINI(&m->cv); | 
 |         goto fail; | 
 |     } | 
 |     m->locked = 0; | 
 |     return m; | 
 | fail: | 
 |     PyMem_RawFree(m); | 
 |     return NULL; | 
 | } | 
 |  | 
 | VOID | 
 | FreeNonRecursiveMutex(PNRMUTEX mutex) | 
 | { | 
 |     if (mutex) { | 
 |         PyCOND_FINI(&mutex->cv); | 
 |         PyMUTEX_FINI(&mutex->cs); | 
 |         PyMem_RawFree(mutex); | 
 |     } | 
 | } | 
 |  | 
 | DWORD | 
 | EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds) | 
 | { | 
 |     DWORD result = WAIT_OBJECT_0; | 
 |     if (PyMUTEX_LOCK(&mutex->cs)) | 
 |         return WAIT_FAILED; | 
 |     if (milliseconds == INFINITE) { | 
 |         while (mutex->locked) { | 
 |             if (PyCOND_WAIT(&mutex->cv, &mutex->cs)) { | 
 |                 result = WAIT_FAILED; | 
 |                 break; | 
 |             } | 
 |         } | 
 |     } else if (milliseconds != 0) { | 
 |         /* wait at least until the target */ | 
 |         DWORD now, target = GetTickCount() + milliseconds; | 
 |         while (mutex->locked) { | 
 |             if (PyCOND_TIMEDWAIT(&mutex->cv, &mutex->cs, (long long)milliseconds*1000) < 0) { | 
 |                 result = WAIT_FAILED; | 
 |                 break; | 
 |             } | 
 |             now = GetTickCount(); | 
 |             if (target <= now) | 
 |                 break; | 
 |             milliseconds = target-now; | 
 |         } | 
 |     } | 
 |     if (!mutex->locked) { | 
 |         mutex->locked = 1; | 
 |         result = WAIT_OBJECT_0; | 
 |     } else if (result == WAIT_OBJECT_0) | 
 |         result = WAIT_TIMEOUT; | 
 |     /* else, it is WAIT_FAILED */ | 
 |     PyMUTEX_UNLOCK(&mutex->cs); /* must ignore result here */ | 
 |     return result; | 
 | } | 
 |  | 
 | BOOL | 
 | LeaveNonRecursiveMutex(PNRMUTEX mutex) | 
 | { | 
 |     BOOL result; | 
 |     if (PyMUTEX_LOCK(&mutex->cs)) | 
 |         return FALSE; | 
 |     mutex->locked = 0; | 
 |     /* condvar APIs return 0 on success. We need to return TRUE on success. */ | 
 |     result = !PyCOND_SIGNAL(&mutex->cv); | 
 |     PyMUTEX_UNLOCK(&mutex->cs); | 
 |     return result; | 
 | } | 
 |  | 
 | #else /* if ! _PY_USE_CV_LOCKS */ | 
 |  | 
 | /* NR-locks based on a kernel mutex */ | 
 | #define PNRMUTEX HANDLE | 
 |  | 
 | PNRMUTEX | 
 | AllocNonRecursiveMutex() | 
 | { | 
 |     return CreateSemaphore(NULL, 1, 1, NULL); | 
 | } | 
 |  | 
 | VOID | 
 | FreeNonRecursiveMutex(PNRMUTEX mutex) | 
 | { | 
 |     /* No in-use check */ | 
 |     CloseHandle(mutex); | 
 | } | 
 |  | 
 | DWORD | 
 | EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds) | 
 | { | 
 |     return WaitForSingleObjectEx(mutex, milliseconds, FALSE); | 
 | } | 
 |  | 
 | BOOL | 
 | LeaveNonRecursiveMutex(PNRMUTEX mutex) | 
 | { | 
 |     return ReleaseSemaphore(mutex, 1, NULL); | 
 | } | 
 | #endif /* _PY_USE_CV_LOCKS */ | 
 |  | 
 | unsigned long PyThread_get_thread_ident(void); | 
 |  | 
 | unsigned long PyThread_get_thread_native_id(void); | 
 |  | 
 | /* | 
 |  * Initialization of the C package, should not be needed. | 
 |  */ | 
 | static void | 
 | PyThread__init_thread(void) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  * Thread support. | 
 |  */ | 
 |  | 
 | typedef struct { | 
 |     void (*func)(void*); | 
 |     void *arg; | 
 | } callobj; | 
 |  | 
 | /* thunker to call adapt between the function type used by the system's | 
 | thread start function and the internally used one. */ | 
 | static unsigned __stdcall | 
 | bootstrap(void *call) | 
 | { | 
 |     callobj *obj = (callobj*)call; | 
 |     void (*func)(void*) = obj->func; | 
 |     void *arg = obj->arg; | 
 |     HeapFree(GetProcessHeap(), 0, obj); | 
 |     func(arg); | 
 |     return 0; | 
 | } | 
 |  | 
 | unsigned long | 
 | PyThread_start_new_thread(void (*func)(void *), void *arg) | 
 | { | 
 |     HANDLE hThread; | 
 |     unsigned threadID; | 
 |     callobj *obj; | 
 |  | 
 |     dprintf(("%lu: PyThread_start_new_thread called\n", | 
 |              PyThread_get_thread_ident())); | 
 |     if (!initialized) | 
 |         PyThread_init_thread(); | 
 |  | 
 |     obj = (callobj*)HeapAlloc(GetProcessHeap(), 0, sizeof(*obj)); | 
 |     if (!obj) | 
 |         return PYTHREAD_INVALID_THREAD_ID; | 
 |     obj->func = func; | 
 |     obj->arg = arg; | 
 |     PyThreadState *tstate = _PyThreadState_GET(); | 
 |     size_t stacksize = tstate ? tstate->interp->pythread_stacksize : 0; | 
 |     hThread = (HANDLE)_beginthreadex(0, | 
 |                       Py_SAFE_DOWNCAST(stacksize, Py_ssize_t, unsigned int), | 
 |                       bootstrap, obj, | 
 |                       0, &threadID); | 
 |     if (hThread == 0) { | 
 |         /* I've seen errno == EAGAIN here, which means "there are | 
 |          * too many threads". | 
 |          */ | 
 |         int e = errno; | 
 |         dprintf(("%lu: PyThread_start_new_thread failed, errno %d\n", | 
 |                  PyThread_get_thread_ident(), e)); | 
 |         threadID = (unsigned)-1; | 
 |         HeapFree(GetProcessHeap(), 0, obj); | 
 |     } | 
 |     else { | 
 |         dprintf(("%lu: PyThread_start_new_thread succeeded: %p\n", | 
 |                  PyThread_get_thread_ident(), (void*)hThread)); | 
 |         CloseHandle(hThread); | 
 |     } | 
 |     return threadID; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the thread Id instead of a handle. The Id is said to uniquely identify the | 
 |  * thread in the system | 
 |  */ | 
 | unsigned long | 
 | PyThread_get_thread_ident(void) | 
 | { | 
 |     if (!initialized) | 
 |         PyThread_init_thread(); | 
 |  | 
 |     return GetCurrentThreadId(); | 
 | } | 
 |  | 
 | /* | 
 |  * Return the native Thread ID (TID) of the calling thread. | 
 |  * The native ID of a thread is valid and guaranteed to be unique system-wide | 
 |  * from the time the thread is created until the thread has been terminated. | 
 |  */ | 
 | unsigned long | 
 | PyThread_get_thread_native_id(void) | 
 | { | 
 |     if (!initialized) | 
 |         PyThread_init_thread(); | 
 |  | 
 |     return GetCurrentThreadId(); | 
 | } | 
 |  | 
 | void _Py_NO_RETURN | 
 | PyThread_exit_thread(void) | 
 | { | 
 |     dprintf(("%lu: PyThread_exit_thread called\n", PyThread_get_thread_ident())); | 
 |     if (!initialized) | 
 |         exit(0); | 
 |     _endthreadex(0); | 
 | } | 
 |  | 
 | /* | 
 |  * Lock support. It has to be implemented as semaphores. | 
 |  * I [Dag] tried to implement it with mutex but I could find a way to | 
 |  * tell whether a thread already own the lock or not. | 
 |  */ | 
 | PyThread_type_lock | 
 | PyThread_allocate_lock(void) | 
 | { | 
 |     PNRMUTEX aLock; | 
 |  | 
 |     dprintf(("PyThread_allocate_lock called\n")); | 
 |     if (!initialized) | 
 |         PyThread_init_thread(); | 
 |  | 
 |     aLock = AllocNonRecursiveMutex() ; | 
 |  | 
 |     dprintf(("%lu: PyThread_allocate_lock() -> %p\n", PyThread_get_thread_ident(), aLock)); | 
 |  | 
 |     return (PyThread_type_lock) aLock; | 
 | } | 
 |  | 
 | void | 
 | PyThread_free_lock(PyThread_type_lock aLock) | 
 | { | 
 |     dprintf(("%lu: PyThread_free_lock(%p) called\n", PyThread_get_thread_ident(),aLock)); | 
 |  | 
 |     FreeNonRecursiveMutex(aLock) ; | 
 | } | 
 |  | 
 | /* | 
 |  * Return 1 on success if the lock was acquired | 
 |  * | 
 |  * and 0 if the lock was not acquired. This means a 0 is returned | 
 |  * if the lock has already been acquired by this thread! | 
 |  */ | 
 | PyLockStatus | 
 | PyThread_acquire_lock_timed(PyThread_type_lock aLock, | 
 |                             PY_TIMEOUT_T microseconds, int intr_flag) | 
 | { | 
 |     /* Fow now, intr_flag does nothing on Windows, and lock acquires are | 
 |      * uninterruptible.  */ | 
 |     PyLockStatus success; | 
 |     PY_TIMEOUT_T milliseconds; | 
 |  | 
 |     if (microseconds >= 0) { | 
 |         milliseconds = microseconds / 1000; | 
 |         if (microseconds % 1000 > 0) | 
 |             ++milliseconds; | 
 |         if (milliseconds > PY_DWORD_MAX) { | 
 |             Py_FatalError("Timeout larger than PY_TIMEOUT_MAX"); | 
 |         } | 
 |     } | 
 |     else { | 
 |         milliseconds = INFINITE; | 
 |     } | 
 |  | 
 |     dprintf(("%lu: PyThread_acquire_lock_timed(%p, %lld) called\n", | 
 |              PyThread_get_thread_ident(), aLock, microseconds)); | 
 |  | 
 |     if (aLock && EnterNonRecursiveMutex((PNRMUTEX)aLock, | 
 |                                         (DWORD)milliseconds) == WAIT_OBJECT_0) { | 
 |         success = PY_LOCK_ACQUIRED; | 
 |     } | 
 |     else { | 
 |         success = PY_LOCK_FAILURE; | 
 |     } | 
 |  | 
 |     dprintf(("%lu: PyThread_acquire_lock(%p, %lld) -> %d\n", | 
 |              PyThread_get_thread_ident(), aLock, microseconds, success)); | 
 |  | 
 |     return success; | 
 | } | 
 | int | 
 | PyThread_acquire_lock(PyThread_type_lock aLock, int waitflag) | 
 | { | 
 |     return PyThread_acquire_lock_timed(aLock, waitflag ? -1 : 0, 0); | 
 | } | 
 |  | 
 | void | 
 | PyThread_release_lock(PyThread_type_lock aLock) | 
 | { | 
 |     dprintf(("%lu: PyThread_release_lock(%p) called\n", PyThread_get_thread_ident(),aLock)); | 
 |  | 
 |     if (!(aLock && LeaveNonRecursiveMutex((PNRMUTEX) aLock))) | 
 |         dprintf(("%lu: Could not PyThread_release_lock(%p) error: %ld\n", PyThread_get_thread_ident(), aLock, GetLastError())); | 
 | } | 
 |  | 
 | /* minimum/maximum thread stack sizes supported */ | 
 | #define THREAD_MIN_STACKSIZE    0x8000          /* 32 KiB */ | 
 | #define THREAD_MAX_STACKSIZE    0x10000000      /* 256 MiB */ | 
 |  | 
 | /* set the thread stack size. | 
 |  * Return 0 if size is valid, -1 otherwise. | 
 |  */ | 
 | static int | 
 | _pythread_nt_set_stacksize(size_t size) | 
 | { | 
 |     /* set to default */ | 
 |     if (size == 0) { | 
 |         _PyInterpreterState_GET_UNSAFE()->pythread_stacksize = 0; | 
 |         return 0; | 
 |     } | 
 |  | 
 |     /* valid range? */ | 
 |     if (size >= THREAD_MIN_STACKSIZE && size < THREAD_MAX_STACKSIZE) { | 
 |         _PyInterpreterState_GET_UNSAFE()->pythread_stacksize = size; | 
 |         return 0; | 
 |     } | 
 |  | 
 |     return -1; | 
 | } | 
 |  | 
 | #define THREAD_SET_STACKSIZE(x) _pythread_nt_set_stacksize(x) | 
 |  | 
 |  | 
 | /* Thread Local Storage (TLS) API | 
 |  | 
 |    This API is DEPRECATED since Python 3.7.  See PEP 539 for details. | 
 | */ | 
 |  | 
 | int | 
 | PyThread_create_key(void) | 
 | { | 
 |     DWORD result = TlsAlloc(); | 
 |     if (result == TLS_OUT_OF_INDEXES) | 
 |         return -1; | 
 |     return (int)result; | 
 | } | 
 |  | 
 | void | 
 | PyThread_delete_key(int key) | 
 | { | 
 |     TlsFree(key); | 
 | } | 
 |  | 
 | int | 
 | PyThread_set_key_value(int key, void *value) | 
 | { | 
 |     BOOL ok = TlsSetValue(key, value); | 
 |     return ok ? 0 : -1; | 
 | } | 
 |  | 
 | void * | 
 | PyThread_get_key_value(int key) | 
 | { | 
 |     /* because TLS is used in the Py_END_ALLOW_THREAD macro, | 
 |      * it is necessary to preserve the windows error state, because | 
 |      * it is assumed to be preserved across the call to the macro. | 
 |      * Ideally, the macro should be fixed, but it is simpler to | 
 |      * do it here. | 
 |      */ | 
 |     DWORD error = GetLastError(); | 
 |     void *result = TlsGetValue(key); | 
 |     SetLastError(error); | 
 |     return result; | 
 | } | 
 |  | 
 | void | 
 | PyThread_delete_key_value(int key) | 
 | { | 
 |     /* NULL is used as "key missing", and it is also the default | 
 |      * given by TlsGetValue() if nothing has been set yet. | 
 |      */ | 
 |     TlsSetValue(key, NULL); | 
 | } | 
 |  | 
 |  | 
 | /* reinitialization of TLS is not necessary after fork when using | 
 |  * the native TLS functions.  And forking isn't supported on Windows either. | 
 |  */ | 
 | void | 
 | PyThread_ReInitTLS(void) | 
 | { | 
 | } | 
 |  | 
 |  | 
 | /* Thread Specific Storage (TSS) API | 
 |  | 
 |    Platform-specific components of TSS API implementation. | 
 | */ | 
 |  | 
 | int | 
 | PyThread_tss_create(Py_tss_t *key) | 
 | { | 
 |     assert(key != NULL); | 
 |     /* If the key has been created, function is silently skipped. */ | 
 |     if (key->_is_initialized) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     DWORD result = TlsAlloc(); | 
 |     if (result == TLS_OUT_OF_INDEXES) { | 
 |         return -1; | 
 |     } | 
 |     /* In Windows, platform-specific key type is DWORD. */ | 
 |     key->_key = result; | 
 |     key->_is_initialized = 1; | 
 |     return 0; | 
 | } | 
 |  | 
 | void | 
 | PyThread_tss_delete(Py_tss_t *key) | 
 | { | 
 |     assert(key != NULL); | 
 |     /* If the key has not been created, function is silently skipped. */ | 
 |     if (!key->_is_initialized) { | 
 |         return; | 
 |     } | 
 |  | 
 |     TlsFree(key->_key); | 
 |     key->_key = TLS_OUT_OF_INDEXES; | 
 |     key->_is_initialized = 0; | 
 | } | 
 |  | 
 | int | 
 | PyThread_tss_set(Py_tss_t *key, void *value) | 
 | { | 
 |     assert(key != NULL); | 
 |     BOOL ok = TlsSetValue(key->_key, value); | 
 |     return ok ? 0 : -1; | 
 | } | 
 |  | 
 | void * | 
 | PyThread_tss_get(Py_tss_t *key) | 
 | { | 
 |     assert(key != NULL); | 
 |     /* because TSS is used in the Py_END_ALLOW_THREAD macro, | 
 |      * it is necessary to preserve the windows error state, because | 
 |      * it is assumed to be preserved across the call to the macro. | 
 |      * Ideally, the macro should be fixed, but it is simpler to | 
 |      * do it here. | 
 |      */ | 
 |     DWORD error = GetLastError(); | 
 |     void *result = TlsGetValue(key->_key); | 
 |     SetLastError(error); | 
 |     return result; | 
 | } |