| /* Complex object implementation */ | 
 |  | 
 | /* Borrows heavily from floatobject.c */ | 
 |  | 
 | #ifndef WITHOUT_COMPLEX | 
 |  | 
 | #include "allobjects.h" | 
 | #include "modsupport.h" | 
 |  | 
 | #include <errno.h> | 
 | #include "mymath.h" | 
 |  | 
 | #ifdef i860 | 
 | /* Cray APP has bogus definition of HUGE_VAL in <math.h> */ | 
 | #undef HUGE_VAL | 
 | #endif | 
 |  | 
 | #ifdef HUGE_VAL | 
 | #define CHECK(x) if (errno != 0) ; \ | 
 | 	else if (-HUGE_VAL <= (x) && (x) <= HUGE_VAL) ; \ | 
 | 	else errno = ERANGE | 
 | #else | 
 | #define CHECK(x) /* Don't know how to check */ | 
 | #endif | 
 |  | 
 | #ifdef HAVE_LIMITS_H | 
 | #include <limits.h> | 
 | #endif | 
 |  | 
 | #ifndef LONG_MAX | 
 | #define LONG_MAX 0X7FFFFFFFL | 
 | #endif | 
 |  | 
 | #ifndef LONG_MIN | 
 | #define LONG_MIN (-LONG_MAX-1) | 
 | #endif | 
 |  | 
 | #ifdef __NeXT__ | 
 | #ifdef __sparc__ | 
 | /* | 
 |  * This works around a bug in the NS/Sparc 3.3 pre-release | 
 |  * limits.h header file. | 
 |  * 10-Feb-1995 bwarsaw@cnri.reston.va.us | 
 |  */ | 
 | #undef LONG_MIN | 
 | #define LONG_MIN (-LONG_MAX-1) | 
 | #endif | 
 | #endif | 
 |  | 
 | #if !defined(__STDC__) && !defined(macintosh) | 
 | extern double fmod PROTO((double, double)); | 
 | extern double pow PROTO((double, double)); | 
 | #endif | 
 |  | 
 |  | 
 | /* elementary operations on complex numbers */ | 
 |  | 
 | static int c_error; | 
 | static complex c_1 = {1., 0.}; | 
 |  | 
 | complex c_sum(a,b) | 
 | 	complex a,b; | 
 | { | 
 | 	complex r; | 
 | 	r.real = a.real + b.real; | 
 | 	r.imag = a.imag + b.imag; | 
 | 	return r; | 
 | } | 
 |  | 
 | complex c_diff(a,b) | 
 | 	complex a,b; | 
 | { | 
 | 	complex r; | 
 | 	r.real = a.real - b.real; | 
 | 	r.imag = a.imag - b.imag; | 
 | 	return r; | 
 | } | 
 |  | 
 | complex c_neg(a) | 
 | 	complex a; | 
 | { | 
 | 	complex r; | 
 | 	r.real = -a.real; | 
 | 	r.imag = -a.imag; | 
 | 	return r; | 
 | } | 
 |  | 
 | complex c_prod(a,b) | 
 | 	complex a,b; | 
 | { | 
 | 	complex r; | 
 | 	r.real = a.real*b.real - a.imag*b.imag; | 
 | 	r.imag = a.real*b.imag + a.imag*b.real; | 
 | 	return r; | 
 | } | 
 |  | 
 | complex c_quot(a,b) | 
 | 	complex a,b; | 
 | { | 
 | 	complex r; | 
 | 	double d = b.real*b.real + b.imag*b.imag; | 
 | 	if (d == 0.) | 
 | 		c_error = 1; | 
 | 	r.real = (a.real*b.real + a.imag*b.imag)/d; | 
 | 	r.imag = (a.imag*b.real - a.real*b.imag)/d; | 
 | 	return r; | 
 | } | 
 |  | 
 | complex c_pow(a,b) | 
 | 	complex a,b; | 
 | { | 
 | 	complex r; | 
 | 	double vabs,len,at,phase; | 
 | 	if (b.real == 0. && b.imag == 0.) { | 
 | 		r.real = 1.; | 
 | 		r.imag = 0.; | 
 | 	} | 
 | 	else if (a.real == 0. && a.imag == 0.) { | 
 | 		if (b.imag != 0. || b.real < 0.) | 
 | 			c_error = 2; | 
 | 		r.real = 0.; | 
 | 		r.imag = 0.; | 
 | 	} | 
 | 	else { | 
 | 		vabs = hypot(a.real,a.imag); | 
 | 		len = pow(vabs,b.real); | 
 | 		at = atan2(a.imag, a.real); | 
 | 		phase = at*b.real; | 
 | 		if (b.imag != 0.0) { | 
 | 			len /= exp(at*b.imag); | 
 | 			phase += b.imag*log(vabs); | 
 | 		} | 
 | 		r.real = len*cos(phase); | 
 | 		r.imag = len*sin(phase); | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | static complex c_powu(x, n) | 
 | 	complex x; | 
 | 	long n; | 
 | { | 
 | 	complex r = c_1; | 
 | 	complex p = x; | 
 | 	long mask = 1; | 
 | 	while (mask > 0 && n >= mask) { | 
 | 		if (n & mask) | 
 | 			r = c_prod(r,p); | 
 | 		mask <<= 1; | 
 | 		p = c_prod(p,p); | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | static complex c_powi(x, n) | 
 | 	complex x; | 
 | 	long n; | 
 | { | 
 | 	complex cn; | 
 |  | 
 | 	if (n > 100 || n < -100) { | 
 | 		cn.real = (double) n; | 
 | 		cn.imag = 0.; | 
 | 		return c_pow(x,cn); | 
 | 	} | 
 | 	else if (n > 0) | 
 | 		return c_powu(x,n); | 
 | 	else | 
 | 		return c_quot(c_1,c_powu(x,-n)); | 
 |  | 
 | } | 
 |  | 
 | PyObject * | 
 | PyComplex_FromCComplex(complex cval) | 
 | { | 
 | 	register complexobject *op = (complexobject *) malloc(sizeof(complexobject)); | 
 | 	if (op == NULL) | 
 | 		return err_nomem(); | 
 | 	op->ob_type = &Complextype; | 
 | 	op->cval = cval; | 
 | 	NEWREF(op); | 
 | 	return (object *) op; | 
 | } | 
 |  | 
 | PyObject * | 
 | PyComplex_FromDoubles(double real, double imag) { | 
 |   complex c; | 
 |   c.real = real; | 
 |   c.imag = imag; | 
 |   return PyComplex_FromCComplex(c); | 
 | } | 
 |  | 
 | double | 
 | PyComplex_RealAsDouble(PyObject *op) { | 
 |   if (PyComplex_Check(op)) { | 
 |     return ((PyComplexObject *)op)->cval.real; | 
 |   } else { | 
 |     return PyFloat_AsDouble(op); | 
 |   } | 
 | } | 
 |  | 
 | double | 
 | PyComplex_ImagAsDouble(PyObject *op) { | 
 |   if (PyComplex_Check(op)) { | 
 |     return ((PyComplexObject *)op)->cval.imag; | 
 |   } else { | 
 |     return 0.0; | 
 |   } | 
 | } | 
 |  | 
 | complex | 
 | PyComplex_AsCComplex(PyObject *op) { | 
 | 	complex cv; | 
 | 	if (PyComplex_Check(op)) { | 
 | 		return ((PyComplexObject *)op)->cval; | 
 | 	} else { | 
 | 		cv.real = PyFloat_AsDouble(op); | 
 | 		cv.imag = 0.; | 
 | 		return cv; | 
 | 	}    | 
 | } | 
 |  | 
 | static void | 
 | complex_dealloc(op) | 
 | 	object *op; | 
 | { | 
 | 	DEL(op); | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | complex_buf_repr(buf, v) | 
 | 	char *buf; | 
 | 	complexobject *v; | 
 | { | 
 | 	if (v->cval.real == 0.) | 
 | 		sprintf(buf, "%.12gj", v->cval.imag); | 
 | 	else | 
 | 		sprintf(buf, "(%.12g%+.12gj)", v->cval.real, v->cval.imag); | 
 | } | 
 |  | 
 | static int | 
 | complex_print(v, fp, flags) | 
 | 	complexobject *v; | 
 | 	FILE *fp; | 
 | 	int flags; /* Not used but required by interface */ | 
 | { | 
 | 	char buf[100]; | 
 | 	complex_buf_repr(buf, v); | 
 | 	fputs(buf, fp); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static object * | 
 | complex_repr(v) | 
 | 	complexobject *v; | 
 | { | 
 | 	char buf[100]; | 
 | 	complex_buf_repr(buf, v); | 
 | 	return newstringobject(buf); | 
 | } | 
 |  | 
 | static int | 
 | complex_compare(v, w) | 
 | 	complexobject *v, *w; | 
 | { | 
 | /* Note: "greater" and "smaller" have no meaning for complex numbers, | 
 |    but Python requires that they be defined nevertheless. */ | 
 | 	complex i = v->cval; | 
 | 	complex j = w->cval; | 
 | 	if (i.real == j.real && i.imag == j.imag) | 
 | 	   return 0; | 
 | 	else if (i.real != j.real) | 
 | 	   return (i.real < j.real) ? -1 : 1; | 
 | 	else | 
 | 	   return (i.imag < j.imag) ? -1 : 1; | 
 | } | 
 |  | 
 | static long | 
 | complex_hash(v) | 
 | 	complexobject *v; | 
 | { | 
 | 	double intpart, fractpart; | 
 | 	int expo; | 
 | 	long x; | 
 | 	/* This is designed so that Python numbers with the same | 
 | 	   value hash to the same value, otherwise comparisons | 
 | 	   of mapping keys will turn out weird */ | 
 |  | 
 | #ifdef MPW /* MPW C modf expects pointer to extended as second argument */ | 
 | { | 
 | 	extended e; | 
 | 	fractpart = modf(v->cval.real, &e); | 
 | 	intpart = e; | 
 | } | 
 | #else | 
 | 	fractpart = modf(v->cval.real, &intpart); | 
 | #endif | 
 |  | 
 | 	if (fractpart == 0.0) { | 
 | 		if (intpart > 0x7fffffffL || -intpart > 0x7fffffffL) { | 
 | 			/* Convert to long int and use its hash... */ | 
 | 			object *w = dnewlongobject(v->cval.real); | 
 | 			if (w == NULL) | 
 | 				return -1; | 
 | 			x = hashobject(w); | 
 | 			DECREF(w); | 
 | 			return x; | 
 | 		} | 
 | 		x = (long)intpart; | 
 | 	} | 
 | 	else { | 
 | 		fractpart = frexp(fractpart, &expo); | 
 | 		fractpart = fractpart*2147483648.0; /* 2**31 */ | 
 | 		x = (long) (intpart + fractpart) ^ expo; /* Rather arbitrary */ | 
 | 	} | 
 | 	if (x == -1) | 
 | 		x = -2; | 
 | 	return x; | 
 | } | 
 |  | 
 | static object * | 
 | complex_add(v, w) | 
 | 	complexobject *v; | 
 | 	complexobject *w; | 
 | { | 
 | 	return newcomplexobject(c_sum(v->cval,w->cval)); | 
 | } | 
 |  | 
 | static object * | 
 | complex_sub(v, w) | 
 | 	complexobject *v; | 
 | 	complexobject *w; | 
 | { | 
 | 	return newcomplexobject(c_diff(v->cval,w->cval)); | 
 | } | 
 |  | 
 | static object * | 
 | complex_mul(v, w) | 
 | 	complexobject *v; | 
 | 	complexobject *w; | 
 | { | 
 | 	return newcomplexobject(c_prod(v->cval,w->cval)); | 
 | } | 
 |  | 
 | static object * | 
 | complex_div(v, w) | 
 | 	complexobject *v; | 
 | 	complexobject *w; | 
 | { | 
 | 	complex quot; | 
 | 	c_error = 0; | 
 | 	quot = c_quot(v->cval,w->cval); | 
 | 	if (c_error == 1) { | 
 | 		err_setstr(ZeroDivisionError, "float division"); | 
 | 		return NULL; | 
 | 	} | 
 | 	return newcomplexobject(quot); | 
 | } | 
 |  | 
 |  | 
 | static object * | 
 | complex_pow(v, w, z) | 
 | 	complexobject *v; | 
 | 	object *w; | 
 | 	complexobject *z; | 
 | { | 
 | 	complex p; | 
 | 	complex exponent; | 
 | 	long int_exponent; | 
 |  | 
 |  	if ((object *)z!=None) { | 
 | 		err_setstr(ValueError, "complex modulo"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	c_error = 0; | 
 | 	exponent = ((complexobject*)w)->cval; | 
 | 	int_exponent = (long)exponent.real; | 
 | 	if (exponent.imag == 0. && exponent.real == int_exponent) | 
 | 		p = c_powi(v->cval,int_exponent); | 
 | 	else | 
 | 		p = c_pow(v->cval,exponent); | 
 |  | 
 | 	if (c_error == 2) { | 
 | 		err_setstr(ValueError, "0.0 to a negative or complex power"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return newcomplexobject(p); | 
 | } | 
 |  | 
 | static object * | 
 | complex_neg(v) | 
 | 	complexobject *v; | 
 | { | 
 | 	complex neg; | 
 | 	neg.real = -v->cval.real; | 
 | 	neg.imag = -v->cval.imag; | 
 | 	return newcomplexobject(neg); | 
 | } | 
 |  | 
 | static object * | 
 | complex_pos(v) | 
 | 	complexobject *v; | 
 | { | 
 | 	INCREF(v); | 
 | 	return (object *)v; | 
 | } | 
 |  | 
 | static object * | 
 | complex_abs(v) | 
 | 	complexobject *v; | 
 | { | 
 | 	return newfloatobject(hypot(v->cval.real,v->cval.imag)); | 
 | } | 
 |  | 
 | static int | 
 | complex_nonzero(v) | 
 | 	complexobject *v; | 
 | { | 
 | 	return v->cval.real != 0.0 && v->cval.imag != 0.0; | 
 | } | 
 |  | 
 | static int | 
 | complex_coerce(pv, pw) | 
 | 	object **pv; | 
 | 	object **pw; | 
 | { | 
 | 	complex cval; | 
 | 	cval.imag = 0.; | 
 | 	if (is_intobject(*pw)) { | 
 | 		cval.real = (double)getintvalue(*pw); | 
 | 		*pw = newcomplexobject(cval); | 
 | 		INCREF(*pv); | 
 | 		return 0; | 
 | 	} | 
 | 	else if (is_longobject(*pw)) { | 
 | 		cval.real = dgetlongvalue(*pw); | 
 | 		*pw = newcomplexobject(cval); | 
 | 		INCREF(*pv); | 
 | 		return 0; | 
 | 	} | 
 | 	else if (is_floatobject(*pw)) { | 
 | 		cval.real = getfloatvalue(*pw); | 
 | 		*pw = newcomplexobject(cval); | 
 | 		INCREF(*pv); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; /* Can't do it */ | 
 | } | 
 |  | 
 | static object * | 
 | complex_int(v) | 
 | 	object *v; | 
 | { | 
 | 	double x = ((complexobject *)v)->cval.real; | 
 | 	if (x < 0 ? (x = ceil(x)) < (double)LONG_MIN | 
 | 	          : (x = floor(x)) > (double)LONG_MAX) { | 
 | 		err_setstr(OverflowError, "float too large to convert"); | 
 | 		return NULL; | 
 | 	} | 
 | 	return newintobject((long)x); | 
 | } | 
 |  | 
 | static object * | 
 | complex_long(v) | 
 | 	object *v; | 
 | { | 
 | 	double x = ((complexobject *)v)->cval.real; | 
 | 	return dnewlongobject(x); | 
 | } | 
 |  | 
 | static object * | 
 | complex_float(v) | 
 | 	object *v; | 
 | { | 
 | 	double x = ((complexobject *)v)->cval.real; | 
 | 	return newfloatobject(x); | 
 | } | 
 |  | 
 |  | 
 | static object * | 
 | complex_new(self, args) | 
 | 	object *self; | 
 | 	object *args; | 
 | { | 
 | 	complex cval; | 
 |  | 
 | 	cval.imag = 0.; | 
 | 	if (!PyArg_ParseTuple(args, "d|d", &cval.real, &cval.imag)) | 
 | 		return NULL; | 
 | 	return newcomplexobject(cval); | 
 | } | 
 |  | 
 | static object * | 
 | complex_conjugate(self) | 
 | 	object *self; | 
 | { | 
 | 	complex c = ((complexobject *)self)->cval; | 
 | 	c.imag = -c.imag; | 
 | 	return newcomplexobject(c); | 
 | } | 
 |  | 
 | static PyMethodDef complex_methods[] = { | 
 | 	{"conjugate",	(PyCFunction)complex_conjugate,	1}, | 
 | 	{NULL,		NULL}		/* sentinel */ | 
 | }; | 
 |  | 
 |  | 
 | static object * | 
 | complex_getattr(self, name) | 
 | 	complexobject *self; | 
 | 	char *name; | 
 | { | 
 | 	complex cval; | 
 | 	if (strcmp(name, "real") == 0) | 
 | 		return (object *)newfloatobject(self->cval.real); | 
 | 	else if (strcmp(name, "imag") == 0) | 
 | 		return (object *)newfloatobject(self->cval.imag); | 
 | 	else if (strcmp(name, "conj") == 0) { | 
 | 		cval.real = self->cval.real; | 
 | 		cval.imag = -self->cval.imag; | 
 | 		return (object *)newcomplexobject(cval); | 
 | 	} | 
 | 	return findmethod(complex_methods, (object *)self, name); | 
 | } | 
 |  | 
 | static number_methods complex_as_number = { | 
 | 	(binaryfunc)complex_add, /*nb_add*/ | 
 | 	(binaryfunc)complex_sub, /*nb_subtract*/ | 
 | 	(binaryfunc)complex_mul, /*nb_multiply*/ | 
 | 	(binaryfunc)complex_div, /*nb_divide*/ | 
 | 	0,		/*nb_remainder*/ | 
 | 	0,		/*nb_divmod*/ | 
 | 	(ternaryfunc)complex_pow, /*nb_power*/ | 
 | 	(unaryfunc)complex_neg, /*nb_negative*/ | 
 | 	(unaryfunc)complex_pos, /*nb_positive*/ | 
 | 	(unaryfunc)complex_abs, /*nb_absolute*/ | 
 | 	(inquiry)complex_nonzero, /*nb_nonzero*/ | 
 | 	0,		/*nb_invert*/ | 
 | 	0,		/*nb_lshift*/ | 
 | 	0,		/*nb_rshift*/ | 
 | 	0,		/*nb_and*/ | 
 | 	0,		/*nb_xor*/ | 
 | 	0,		/*nb_or*/ | 
 | 	(coercion)complex_coerce, /*nb_coerce*/ | 
 | 	(unaryfunc)complex_int, /*nb_int*/ | 
 | 	(unaryfunc)complex_long, /*nb_long*/ | 
 | 	(unaryfunc)complex_float, /*nb_float*/ | 
 | 	0,		/*nb_oct*/ | 
 | 	0,		/*nb_hex*/ | 
 | }; | 
 |  | 
 | typeobject Complextype = { | 
 | 	OB_HEAD_INIT(&Typetype) | 
 | 	0, | 
 | 	"complex", | 
 | 	sizeof(complexobject), | 
 | 	0, | 
 | 	(destructor)complex_dealloc,	/*tp_dealloc*/ | 
 | 	(printfunc)complex_print,	/*tp_print*/ | 
 | 	(getattrfunc)complex_getattr,	/*tp_getattr*/ | 
 | 	0,				/*tp_setattr*/ | 
 | 	(cmpfunc)complex_compare,	/*tp_compare*/ | 
 | 	(reprfunc)complex_repr,		/*tp_repr*/ | 
 | 	&complex_as_number,    		/*tp_as_number*/ | 
 | 	0,				/*tp_as_sequence*/ | 
 | 	0,				/*tp_as_mapping*/ | 
 | 	(hashfunc)complex_hash, 	/*tp_hash*/ | 
 | }; | 
 |  | 
 | #endif |