| /*********************************************************** | 
 | Copyright 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, | 
 | The Netherlands. | 
 |  | 
 |                         All Rights Reserved | 
 |  | 
 | Permission to use, copy, modify, and distribute this software and its  | 
 | documentation for any purpose and without fee is hereby granted,  | 
 | provided that the above copyright notice appear in all copies and that | 
 | both that copyright notice and this permission notice appear in  | 
 | supporting documentation, and that the names of Stichting Mathematisch | 
 | Centrum or CWI not be used in advertising or publicity pertaining to | 
 | distribution of the software without specific, written prior permission. | 
 |  | 
 | STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO | 
 | THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND | 
 | FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE | 
 | FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
 | WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | 
 | ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT | 
 | OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | 
 |  | 
 | ******************************************************************/ | 
 |  | 
 | /* Integer object implementation */ | 
 |  | 
 | #include "allobjects.h" | 
 | #include "modsupport.h" | 
 |  | 
 | #ifdef HAVE_LIMITS_H | 
 | #include <limits.h> | 
 | #endif | 
 |  | 
 | #ifndef LONG_MAX | 
 | #define LONG_MAX 0X7FFFFFFFL | 
 | #endif | 
 |  | 
 | #ifndef LONG_MIN | 
 | #define LONG_MIN (-LONG_MAX-1) | 
 | #endif | 
 |  | 
 | #ifndef CHAR_BIT | 
 | #define CHAR_BIT 8 | 
 | #endif | 
 |  | 
 | #ifndef LONG_BIT | 
 | #define LONG_BIT (CHAR_BIT * sizeof(long)) | 
 | #endif | 
 |  | 
 | long | 
 | getmaxint() | 
 | { | 
 | 	return LONG_MAX;	/* To initialize sys.maxint */ | 
 | } | 
 |  | 
 | /* Standard Booleans */ | 
 |  | 
 | intobject FalseObject = { | 
 | 	OB_HEAD_INIT(&Inttype) | 
 | 	0 | 
 | }; | 
 |  | 
 | intobject TrueObject = { | 
 | 	OB_HEAD_INIT(&Inttype) | 
 | 	1 | 
 | }; | 
 |  | 
 | static object * | 
 | err_ovf(msg) | 
 | 	char *msg; | 
 | { | 
 | 	err_setstr(OverflowError, msg); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* Integers are quite normal objects, to make object handling uniform. | 
 |    (Using odd pointers to represent integers would save much space | 
 |    but require extra checks for this special case throughout the code.) | 
 |    Since, a typical Python program spends much of its time allocating | 
 |    and deallocating integers, these operations should be very fast. | 
 |    Therefore we use a dedicated allocation scheme with a much lower | 
 |    overhead (in space and time) than straight malloc(): a simple | 
 |    dedicated free list, filled when necessary with memory from malloc(). | 
 | */ | 
 |  | 
 | #define BLOCK_SIZE	1000	/* 1K less typical malloc overhead */ | 
 | #define N_INTOBJECTS	(BLOCK_SIZE / sizeof(intobject)) | 
 |  | 
 | static intobject * | 
 | fill_free_list() | 
 | { | 
 | 	intobject *p, *q; | 
 | 	p = NEW(intobject, N_INTOBJECTS); | 
 | 	if (p == NULL) | 
 | 		return (intobject *)err_nomem(); | 
 | 	q = p + N_INTOBJECTS; | 
 | 	while (--q > p) | 
 | 		*(intobject **)q = q-1; | 
 | 	*(intobject **)q = NULL; | 
 | 	return p + N_INTOBJECTS - 1; | 
 | } | 
 |  | 
 | static intobject *free_list = NULL; | 
 | #ifndef NSMALLPOSINTS | 
 | #define NSMALLPOSINTS		100 | 
 | #endif | 
 | #ifndef NSMALLNEGINTS | 
 | #define NSMALLNEGINTS		1 | 
 | #endif | 
 | #if NSMALLNEGINTS + NSMALLPOSINTS > 0 | 
 | /* References to small integers are saved in this array so that they | 
 |    can be shared. | 
 |    The integers that are saved are those in the range | 
 |    -NSMALLNEGINTS (inclusive) to NSMALLPOSINTS (not inclusive). | 
 | */ | 
 | static intobject *small_ints[NSMALLNEGINTS + NSMALLPOSINTS]; | 
 | #endif | 
 | #ifdef COUNT_ALLOCS | 
 | int quick_int_allocs, quick_neg_int_allocs; | 
 | #endif | 
 |  | 
 | object * | 
 | newintobject(ival) | 
 | 	long ival; | 
 | { | 
 | 	register intobject *v; | 
 | #if NSMALLNEGINTS + NSMALLPOSINTS > 0 | 
 | 	if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS && | 
 | 	    (v = small_ints[ival + NSMALLNEGINTS]) != NULL) { | 
 | 		INCREF(v); | 
 | #ifdef COUNT_ALLOCS | 
 | 		if (ival >= 0) | 
 | 			quick_int_allocs++; | 
 | 		else | 
 | 			quick_neg_int_allocs++; | 
 | #endif | 
 | 		return (object *) v; | 
 | 	} | 
 | #endif | 
 | 	if (free_list == NULL) { | 
 | 		if ((free_list = fill_free_list()) == NULL) | 
 | 			return NULL; | 
 | 	} | 
 | 	v = free_list; | 
 | 	free_list = *(intobject **)free_list; | 
 | 	v->ob_type = &Inttype; | 
 | 	v->ob_ival = ival; | 
 | 	NEWREF(v); | 
 | #if NSMALLNEGINTS + NSMALLPOSINTS > 0 | 
 | 	if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) { | 
 | 		/* save this one for a following allocation */ | 
 | 		INCREF(v); | 
 | 		small_ints[ival + NSMALLNEGINTS] = v; | 
 | 	} | 
 | #endif | 
 | 	return (object *) v; | 
 | } | 
 |  | 
 | static void | 
 | int_dealloc(v) | 
 | 	intobject *v; | 
 | { | 
 | 	*(intobject **)v = free_list; | 
 | 	free_list = v; | 
 | } | 
 |  | 
 | long | 
 | getintvalue(op) | 
 | 	register object *op; | 
 | { | 
 | 	number_methods *nb; | 
 | 	intobject *io; | 
 | 	long val; | 
 | 	 | 
 | 	if (op && is_intobject(op)) | 
 | 		return GETINTVALUE((intobject*) op); | 
 | 	 | 
 | 	if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL || | 
 | 	    nb->nb_int == NULL) { | 
 | 		err_badarg(); | 
 | 		return -1; | 
 | 	} | 
 | 	 | 
 | 	io = (intobject*) (*nb->nb_int) (op); | 
 | 	if (io == NULL) | 
 | 		return -1; | 
 | 	if (!is_intobject(io)) { | 
 | 		err_setstr(TypeError, "nb_int should return int object"); | 
 | 		return -1; | 
 | 	} | 
 | 	 | 
 | 	val = GETINTVALUE(io); | 
 | 	DECREF(io); | 
 | 	 | 
 | 	return val; | 
 | } | 
 |  | 
 | /* Methods */ | 
 |  | 
 | /* ARGSUSED */ | 
 | static int | 
 | int_print(v, fp, flags) | 
 | 	intobject *v; | 
 | 	FILE *fp; | 
 | 	int flags; /* Not used but required by interface */ | 
 | { | 
 | 	fprintf(fp, "%ld", v->ob_ival); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static object * | 
 | int_repr(v) | 
 | 	intobject *v; | 
 | { | 
 | 	char buf[20]; | 
 | 	sprintf(buf, "%ld", v->ob_ival); | 
 | 	return newstringobject(buf); | 
 | } | 
 |  | 
 | static int | 
 | int_compare(v, w) | 
 | 	intobject *v, *w; | 
 | { | 
 | 	register long i = v->ob_ival; | 
 | 	register long j = w->ob_ival; | 
 | 	return (i < j) ? -1 : (i > j) ? 1 : 0; | 
 | } | 
 |  | 
 | static long | 
 | int_hash(v) | 
 | 	intobject *v; | 
 | { | 
 | 	long x = v -> ob_ival; | 
 | 	if (x == -1) | 
 | 		x = -2; | 
 | 	return x; | 
 | } | 
 |  | 
 | static object * | 
 | int_add(v, w) | 
 | 	intobject *v; | 
 | 	intobject *w; | 
 | { | 
 | 	register long a, b, x; | 
 | 	a = v->ob_ival; | 
 | 	b = w->ob_ival; | 
 | 	x = a + b; | 
 | 	if ((x^a) < 0 && (x^b) < 0) | 
 | 		return err_ovf("integer addition"); | 
 | 	return newintobject(x); | 
 | } | 
 |  | 
 | static object * | 
 | int_sub(v, w) | 
 | 	intobject *v; | 
 | 	intobject *w; | 
 | { | 
 | 	register long a, b, x; | 
 | 	a = v->ob_ival; | 
 | 	b = w->ob_ival; | 
 | 	x = a - b; | 
 | 	if ((x^a) < 0 && (x^~b) < 0) | 
 | 		return err_ovf("integer subtraction"); | 
 | 	return newintobject(x); | 
 | } | 
 |  | 
 | /* | 
 | Integer overflow checking used to be done using a double, but on 64 | 
 | bit machines (where both long and double are 64 bit) this fails | 
 | because the double doesn't have enouvg precision.  John Tromp suggests | 
 | the following algorithm: | 
 |  | 
 | Suppose again we normalize a and b to be nonnegative. | 
 | Let ah and al (bh and bl) be the high and low 32 bits of a (b, resp.). | 
 | Now we test ah and bh against zero and get essentially 3 possible outcomes. | 
 |  | 
 | 1) both ah and bh > 0 : then report overflow | 
 |  | 
 | 2) both ah and bh = 0 : then compute a*b and report overflow if it comes out | 
 |                         negative | 
 |  | 
 | 3) ah > 0 and bh = 0  : compute ah*bl and report overflow if it's >= 2^31 | 
 |                         compute al*bl and report overflow if it's negative | 
 |                         add (ah*bl)<<32 to al*bl and report overflow if | 
 |                         it's negative | 
 |  | 
 | In case of no overflow the result is then negated if necessary. | 
 |  | 
 | The majority of cases will be 2), in which case this method is the same as | 
 | what I suggested before. If multiplication is expensive enough, then the | 
 | other method is faster on case 3), but also more work to program, so I | 
 | guess the above is the preferred solution. | 
 |  | 
 | */ | 
 |  | 
 | static object * | 
 | int_mul(v, w) | 
 | 	intobject *v; | 
 | 	intobject *w; | 
 | { | 
 | 	long a, b, ah, bh, x, y; | 
 | 	int s = 1; | 
 |  | 
 | 	a = v->ob_ival; | 
 | 	b = w->ob_ival; | 
 | 	ah = a >> (LONG_BIT/2); | 
 | 	bh = b >> (LONG_BIT/2); | 
 |  | 
 | 	/* Quick test for common case: two small positive ints */ | 
 |  | 
 | 	if (ah == 0 && bh == 0) { | 
 | 		x = a*b; | 
 | 		if (x < 0) | 
 | 			goto bad; | 
 | 		return newintobject(x); | 
 | 	} | 
 |  | 
 | 	/* Arrange that a >= b >= 0 */ | 
 |  | 
 | 	if (a < 0) { | 
 | 		a = -a; | 
 | 		if (a < 0) { | 
 | 			/* Largest negative */ | 
 | 			if (b == 0 || b == 1) { | 
 | 				x = a*b; | 
 | 				goto ok; | 
 | 			} | 
 | 			else | 
 | 				goto bad; | 
 | 		} | 
 | 		s = -s; | 
 | 		ah = a >> (LONG_BIT/2); | 
 | 	} | 
 | 	if (b < 0) { | 
 | 		b = -b; | 
 | 		if (b < 0) { | 
 | 			/* Largest negative */ | 
 | 			if (a == 0 || a == 1 && s == 1) { | 
 | 				x = a*b; | 
 | 				goto ok; | 
 | 			} | 
 | 			else | 
 | 				goto bad; | 
 | 		} | 
 | 		s = -s; | 
 | 		bh = b >> (LONG_BIT/2); | 
 | 	} | 
 |  | 
 | 	/* 1) both ah and bh > 0 : then report overflow */ | 
 |  | 
 | 	if (ah != 0 && bh != 0) | 
 | 		goto bad; | 
 |  | 
 | 	/* 2) both ah and bh = 0 : then compute a*b and report | 
 | 				   overflow if it comes out negative */ | 
 |  | 
 | 	if (ah == 0 && bh == 0) { | 
 | 		x = a*b; | 
 | 		if (x < 0) | 
 | 			goto bad; | 
 | 		return newintobject(x*s); | 
 | 	} | 
 |  | 
 | 	if (a < b) { | 
 | 		/* Swap */ | 
 | 		x = a; | 
 | 		a = b; | 
 | 		b = x; | 
 | 		ah = bh; | 
 | 		/* bh not used beyond this point */ | 
 | 	} | 
 |  | 
 | 	/* 3) ah > 0 and bh = 0  : compute ah*bl and report overflow if | 
 | 				   it's >= 2^31 | 
 |                         compute al*bl and report overflow if it's negative | 
 |                         add (ah*bl)<<32 to al*bl and report overflow if | 
 |                         it's negative | 
 | 			(NB b == bl in this case, and we make a = al) */ | 
 |  | 
 | 	y = ah*b; | 
 | 	if (y >= (1L << (LONG_BIT/2))) | 
 | 		goto bad; | 
 | 	a &= (1L << (LONG_BIT/2)) - 1; | 
 | 	x = a*b; | 
 | 	if (x < 0) | 
 | 		goto bad; | 
 | 	x += y << LONG_BIT/2; | 
 | 	if (x < 0) | 
 | 		goto bad; | 
 |  ok: | 
 | 	return newintobject(x * s); | 
 |  | 
 |  bad: | 
 | 	return err_ovf("integer multiplication"); | 
 | } | 
 |  | 
 | static int | 
 | i_divmod(x, y, p_xdivy, p_xmody) | 
 | 	register intobject *x, *y; | 
 | 	long *p_xdivy, *p_xmody; | 
 | { | 
 | 	long xi = x->ob_ival; | 
 | 	long yi = y->ob_ival; | 
 | 	long xdivy, xmody; | 
 | 	 | 
 | 	if (yi == 0) { | 
 | 		err_setstr(ZeroDivisionError, "integer division or modulo"); | 
 | 		return -1; | 
 | 	} | 
 | 	if (yi < 0) { | 
 | 		if (xi < 0) | 
 | 			xdivy = -xi / -yi; | 
 | 		else | 
 | 			xdivy = - (xi / -yi); | 
 | 	} | 
 | 	else { | 
 | 		if (xi < 0) | 
 | 			xdivy = - (-xi / yi); | 
 | 		else | 
 | 			xdivy = xi / yi; | 
 | 	} | 
 | 	xmody = xi - xdivy*yi; | 
 | 	if (xmody < 0 && yi > 0 || xmody > 0 && yi < 0) { | 
 | 		xmody += yi; | 
 | 		xdivy -= 1; | 
 | 	} | 
 | 	*p_xdivy = xdivy; | 
 | 	*p_xmody = xmody; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static object * | 
 | int_div(x, y) | 
 | 	intobject *x; | 
 | 	intobject *y; | 
 | { | 
 | 	long d, m; | 
 | 	if (i_divmod(x, y, &d, &m) < 0) | 
 | 		return NULL; | 
 | 	return newintobject(d); | 
 | } | 
 |  | 
 | static object * | 
 | int_mod(x, y) | 
 | 	intobject *x; | 
 | 	intobject *y; | 
 | { | 
 | 	long d, m; | 
 | 	if (i_divmod(x, y, &d, &m) < 0) | 
 | 		return NULL; | 
 | 	return newintobject(m); | 
 | } | 
 |  | 
 | static object * | 
 | int_divmod(x, y) | 
 | 	intobject *x; | 
 | 	intobject *y; | 
 | { | 
 | 	long d, m; | 
 | 	if (i_divmod(x, y, &d, &m) < 0) | 
 | 		return NULL; | 
 | 	return mkvalue("(ll)", d, m); | 
 | } | 
 |  | 
 | static object * | 
 | int_pow(v, w, z) | 
 | 	intobject *v; | 
 | 	intobject *w; | 
 | 	intobject *z; | 
 | { | 
 | #if 1 | 
 | 	register long iv, iw, iz, ix, temp, prev; | 
 |  	int zset = 0; | 
 | 	iv = v->ob_ival; | 
 | 	iw = w->ob_ival; | 
 | 	if (iw < 0) { | 
 | 		err_setstr(ValueError, "integer to the negative power"); | 
 | 		return NULL; | 
 | 	} | 
 |  	if ((object *)z != None) { | 
 | 		iz = z->ob_ival; | 
 | 	 	zset = 1; | 
 | 	} | 
 | 	/* | 
 | 	 * XXX: The original exponentiation code stopped looping | 
 | 	 * when temp hit zero; this code will continue onwards | 
 | 	 * unnecessarily, but at least it won't cause any errors. | 
 | 	 * Hopefully the speed improvement from the fast exponentiation | 
 | 	 * will compensate for the slight inefficiency. | 
 | 	 * XXX: Better handling of overflows is desperately needed. | 
 | 	 */ | 
 |  	temp = iv; | 
 | 	ix = 1; | 
 | 	while (iw > 0) { | 
 | 	 	prev = ix;	/* Save value for overflow check */ | 
 | 	 	if (iw & 1) {	 | 
 | 		 	ix = ix*temp; | 
 | 			if (temp == 0) | 
 | 				break; /* Avoid ix / 0 */ | 
 | 			if (ix / temp != prev) | 
 | 				return err_ovf("integer pow()"); | 
 | 		} | 
 | 	 	iw >>= 1;	/* Shift exponent down by 1 bit */ | 
 | 	        if (iw==0) break; | 
 | 	 	prev = temp; | 
 | 	 	temp *= temp;	/* Square the value of temp */ | 
 | 	 	if (prev!=0 && temp/prev!=prev) | 
 | 			return err_ovf("integer pow()"); | 
 | 	 	if (zset) { | 
 | 			/* If we did a multiplication, perform a modulo */ | 
 | 		 	ix = ix % iz; | 
 | 		 	temp = temp % iz; | 
 | 		} | 
 | 	} | 
 | 	if (zset) { | 
 | 	 	object *t1, *t2; | 
 | 	 	long int div, mod; | 
 | 	 	t1=newintobject(ix);  | 
 | 		t2=newintobject(iz); | 
 | 	 	if (t1==NULL || t2==NULL || | 
 | 	 		i_divmod((intobject *)t1, (intobject *)t2, &div, &mod)<0) { | 
 | 		 	XDECREF(t1); | 
 | 		 	XDECREF(t2); | 
 | 			return(NULL); | 
 | 		} | 
 | 		DECREF(t1); | 
 | 		DECREF(t2); | 
 | 	 	ix=mod; | 
 | 	} | 
 | 	return newintobject(ix); | 
 | #else | 
 | 	register long iv, iw, ix; | 
 | 	iv = v->ob_ival; | 
 | 	iw = w->ob_ival; | 
 | 	if (iw < 0) { | 
 | 		err_setstr(ValueError, "integer to the negative power"); | 
 | 		return NULL; | 
 | 	} | 
 | 	if ((object *)z != None) { | 
 | 		err_setstr(TypeError, "pow(int, int, int) not yet supported"); | 
 | 		return NULL; | 
 | 	} | 
 | 	ix = 1; | 
 | 	while (--iw >= 0) { | 
 | 		long prev = ix; | 
 | 		ix = ix * iv; | 
 | 		if (iv == 0) | 
 | 			break; /* 0 to some power -- avoid ix / 0 */ | 
 | 		if (ix / iv != prev) | 
 | 			return err_ovf("integer pow()"); | 
 | 	} | 
 | 	return newintobject(ix); | 
 | #endif | 
 | }				 | 
 |  | 
 | static object * | 
 | int_neg(v) | 
 | 	intobject *v; | 
 | { | 
 | 	register long a, x; | 
 | 	a = v->ob_ival; | 
 | 	x = -a; | 
 | 	if (a < 0 && x < 0) | 
 | 		return err_ovf("integer negation"); | 
 | 	return newintobject(x); | 
 | } | 
 |  | 
 | static object * | 
 | int_pos(v) | 
 | 	intobject *v; | 
 | { | 
 | 	INCREF(v); | 
 | 	return (object *)v; | 
 | } | 
 |  | 
 | static object * | 
 | int_abs(v) | 
 | 	intobject *v; | 
 | { | 
 | 	if (v->ob_ival >= 0) | 
 | 		return int_pos(v); | 
 | 	else | 
 | 		return int_neg(v); | 
 | } | 
 |  | 
 | static int | 
 | int_nonzero(v) | 
 | 	intobject *v; | 
 | { | 
 | 	return v->ob_ival != 0; | 
 | } | 
 |  | 
 | static object * | 
 | int_invert(v) | 
 | 	intobject *v; | 
 | { | 
 | 	return newintobject(~v->ob_ival); | 
 | } | 
 |  | 
 | static object * | 
 | int_lshift(v, w) | 
 | 	intobject *v; | 
 | 	intobject *w; | 
 | { | 
 | 	register long a, b; | 
 | 	a = v->ob_ival; | 
 | 	b = w->ob_ival; | 
 | 	if (b < 0) { | 
 | 		err_setstr(ValueError, "negative shift count"); | 
 | 		return NULL; | 
 | 	} | 
 | 	if (a == 0 || b == 0) { | 
 | 		INCREF(v); | 
 | 		return (object *) v; | 
 | 	} | 
 | 	if (b >= LONG_BIT) { | 
 | 		return newintobject(0L); | 
 | 	} | 
 | 	a = (unsigned long)a << b; | 
 | 	return newintobject(a); | 
 | } | 
 |  | 
 | static object * | 
 | int_rshift(v, w) | 
 | 	intobject *v; | 
 | 	intobject *w; | 
 | { | 
 | 	register long a, b; | 
 | 	a = v->ob_ival; | 
 | 	b = w->ob_ival; | 
 | 	if (b < 0) { | 
 | 		err_setstr(ValueError, "negative shift count"); | 
 | 		return NULL; | 
 | 	} | 
 | 	if (a == 0 || b == 0) { | 
 | 		INCREF(v); | 
 | 		return (object *) v; | 
 | 	} | 
 | 	if (b >= LONG_BIT) { | 
 | 		if (a < 0) | 
 | 			a = -1; | 
 | 		else | 
 | 			a = 0; | 
 | 	} | 
 | 	else { | 
 | 		if (a < 0) | 
 | 			a = ~( ~(unsigned long)a >> b ); | 
 | 		else | 
 | 			a = (unsigned long)a >> b; | 
 | 	} | 
 | 	return newintobject(a); | 
 | } | 
 |  | 
 | static object * | 
 | int_and(v, w) | 
 | 	intobject *v; | 
 | 	intobject *w; | 
 | { | 
 | 	register long a, b; | 
 | 	a = v->ob_ival; | 
 | 	b = w->ob_ival; | 
 | 	return newintobject(a & b); | 
 | } | 
 |  | 
 | static object * | 
 | int_xor(v, w) | 
 | 	intobject *v; | 
 | 	intobject *w; | 
 | { | 
 | 	register long a, b; | 
 | 	a = v->ob_ival; | 
 | 	b = w->ob_ival; | 
 | 	return newintobject(a ^ b); | 
 | } | 
 |  | 
 | static object * | 
 | int_or(v, w) | 
 | 	intobject *v; | 
 | 	intobject *w; | 
 | { | 
 | 	register long a, b; | 
 | 	a = v->ob_ival; | 
 | 	b = w->ob_ival; | 
 | 	return newintobject(a | b); | 
 | } | 
 |  | 
 | static object * | 
 | int_int(v) | 
 | 	intobject *v; | 
 | { | 
 | 	INCREF(v); | 
 | 	return (object *)v; | 
 | } | 
 |  | 
 | static object * | 
 | int_long(v) | 
 | 	intobject *v; | 
 | { | 
 | 	return newlongobject((v -> ob_ival)); | 
 | } | 
 |  | 
 | static object * | 
 | int_float(v) | 
 | 	intobject *v; | 
 | { | 
 | 	return newfloatobject((double)(v -> ob_ival)); | 
 | } | 
 |  | 
 | static object * | 
 | int_oct(v) | 
 | 	intobject *v; | 
 | { | 
 | 	char buf[20]; | 
 | 	long x = v -> ob_ival; | 
 | 	if (x == 0) | 
 | 		strcpy(buf, "0"); | 
 | 	else if (x > 0) | 
 | 		sprintf(buf, "0%lo", x); | 
 | 	else | 
 | 		sprintf(buf, "-0%lo", -x); | 
 | 	return newstringobject(buf); | 
 | } | 
 |  | 
 | static object * | 
 | int_hex(v) | 
 | 	intobject *v; | 
 | { | 
 | 	char buf[20]; | 
 | 	long x = v -> ob_ival; | 
 | 	if (x >= 0) | 
 | 		sprintf(buf, "0x%lx", x); | 
 | 	else | 
 | 		sprintf(buf, "-0x%lx", -x); | 
 | 	return newstringobject(buf); | 
 | } | 
 |  | 
 | static number_methods int_as_number = { | 
 | 	(binaryfunc)int_add, /*nb_add*/ | 
 | 	(binaryfunc)int_sub, /*nb_subtract*/ | 
 | 	(binaryfunc)int_mul, /*nb_multiply*/ | 
 | 	(binaryfunc)int_div, /*nb_divide*/ | 
 | 	(binaryfunc)int_mod, /*nb_remainder*/ | 
 | 	(binaryfunc)int_divmod, /*nb_divmod*/ | 
 | 	(ternaryfunc)int_pow, /*nb_power*/ | 
 | 	(unaryfunc)int_neg, /*nb_negative*/ | 
 | 	(unaryfunc)int_pos, /*nb_positive*/ | 
 | 	(unaryfunc)int_abs, /*nb_absolute*/ | 
 | 	(inquiry)int_nonzero, /*nb_nonzero*/ | 
 | 	(unaryfunc)int_invert, /*nb_invert*/ | 
 | 	(binaryfunc)int_lshift, /*nb_lshift*/ | 
 | 	(binaryfunc)int_rshift, /*nb_rshift*/ | 
 | 	(binaryfunc)int_and, /*nb_and*/ | 
 | 	(binaryfunc)int_xor, /*nb_xor*/ | 
 | 	(binaryfunc)int_or, /*nb_or*/ | 
 | 	0,		/*nb_coerce*/ | 
 | 	(unaryfunc)int_int, /*nb_int*/ | 
 | 	(unaryfunc)int_long, /*nb_long*/ | 
 | 	(unaryfunc)int_float, /*nb_float*/ | 
 | 	(unaryfunc)int_oct, /*nb_oct*/ | 
 | 	(unaryfunc)int_hex, /*nb_hex*/ | 
 | }; | 
 |  | 
 | typeobject Inttype = { | 
 | 	OB_HEAD_INIT(&Typetype) | 
 | 	0, | 
 | 	"int", | 
 | 	sizeof(intobject), | 
 | 	0, | 
 | 	(destructor)int_dealloc, /*tp_dealloc*/ | 
 | 	(printfunc)int_print, /*tp_print*/ | 
 | 	0,		/*tp_getattr*/ | 
 | 	0,		/*tp_setattr*/ | 
 | 	(cmpfunc)int_compare, /*tp_compare*/ | 
 | 	(reprfunc)int_repr, /*tp_repr*/ | 
 | 	&int_as_number,	/*tp_as_number*/ | 
 | 	0,		/*tp_as_sequence*/ | 
 | 	0,		/*tp_as_mapping*/ | 
 | 	(hashfunc)int_hash, /*tp_hash*/ | 
 | }; |