| /* |
| * Implementation of the Global Interpreter Lock (GIL). |
| */ |
| |
| #include <stdlib.h> |
| #include <errno.h> |
| |
| |
| /* First some general settings */ |
| |
| /* microseconds (the Python API uses seconds, though) */ |
| #define DEFAULT_INTERVAL 5000 |
| static unsigned long gil_interval = DEFAULT_INTERVAL; |
| #define INTERVAL (gil_interval >= 1 ? gil_interval : 1) |
| |
| /* Enable if you want to force the switching of threads at least every `gil_interval` */ |
| #undef FORCE_SWITCHING |
| #define FORCE_SWITCHING |
| |
| |
| /* |
| Notes about the implementation: |
| |
| - The GIL is just a boolean variable (gil_locked) whose access is protected |
| by a mutex (gil_mutex), and whose changes are signalled by a condition |
| variable (gil_cond). gil_mutex is taken for short periods of time, |
| and therefore mostly uncontended. |
| |
| - In the GIL-holding thread, the main loop (PyEval_EvalFrameEx) must be |
| able to release the GIL on demand by another thread. A volatile boolean |
| variable (gil_drop_request) is used for that purpose, which is checked |
| at every turn of the eval loop. That variable is set after a wait of |
| `interval` microseconds on `gil_cond` has timed out. |
| |
| [Actually, another volatile boolean variable (eval_breaker) is used |
| which ORs several conditions into one. Volatile booleans are |
| sufficient as inter-thread signalling means since Python is run |
| on cache-coherent architectures only.] |
| |
| - A thread wanting to take the GIL will first let pass a given amount of |
| time (`interval` microseconds) before setting gil_drop_request. This |
| encourages a defined switching period, but doesn't enforce it since |
| opcodes can take an arbitrary time to execute. |
| |
| The `interval` value is available for the user to read and modify |
| using the Python API `sys.{get,set}switchinterval()`. |
| |
| - When a thread releases the GIL and gil_drop_request is set, that thread |
| ensures that another GIL-awaiting thread gets scheduled. |
| It does so by waiting on a condition variable (switch_cond) until |
| the value of gil_last_holder is changed to something else than its |
| own thread state pointer, indicating that another thread was able to |
| take the GIL. |
| |
| This is meant to prohibit the latency-adverse behaviour on multi-core |
| machines where one thread would speculatively release the GIL, but still |
| run and end up being the first to re-acquire it, making the "timeslices" |
| much longer than expected. |
| (Note: this mechanism is enabled with FORCE_SWITCHING above) |
| */ |
| |
| #include "condvar.h" |
| #ifndef Py_HAVE_CONDVAR |
| #error You need either a POSIX-compatible or a Windows system! |
| #endif |
| |
| #define MUTEX_T PyMUTEX_T |
| #define MUTEX_INIT(mut) \ |
| if (PyMUTEX_INIT(&(mut))) { \ |
| Py_FatalError("PyMUTEX_INIT(" #mut ") failed"); }; |
| #define MUTEX_FINI(mut) \ |
| if (PyMUTEX_FINI(&(mut))) { \ |
| Py_FatalError("PyMUTEX_FINI(" #mut ") failed"); }; |
| #define MUTEX_LOCK(mut) \ |
| if (PyMUTEX_LOCK(&(mut))) { \ |
| Py_FatalError("PyMUTEX_LOCK(" #mut ") failed"); }; |
| #define MUTEX_UNLOCK(mut) \ |
| if (PyMUTEX_UNLOCK(&(mut))) { \ |
| Py_FatalError("PyMUTEX_UNLOCK(" #mut ") failed"); }; |
| |
| #define COND_T PyCOND_T |
| #define COND_INIT(cond) \ |
| if (PyCOND_INIT(&(cond))) { \ |
| Py_FatalError("PyCOND_INIT(" #cond ") failed"); }; |
| #define COND_FINI(cond) \ |
| if (PyCOND_FINI(&(cond))) { \ |
| Py_FatalError("PyCOND_FINI(" #cond ") failed"); }; |
| #define COND_SIGNAL(cond) \ |
| if (PyCOND_SIGNAL(&(cond))) { \ |
| Py_FatalError("PyCOND_SIGNAL(" #cond ") failed"); }; |
| #define COND_WAIT(cond, mut) \ |
| if (PyCOND_WAIT(&(cond), &(mut))) { \ |
| Py_FatalError("PyCOND_WAIT(" #cond ") failed"); }; |
| #define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \ |
| { \ |
| int r = PyCOND_TIMEDWAIT(&(cond), &(mut), (microseconds)); \ |
| if (r < 0) \ |
| Py_FatalError("PyCOND_WAIT(" #cond ") failed"); \ |
| if (r) /* 1 == timeout, 2 == impl. can't say, so assume timeout */ \ |
| timeout_result = 1; \ |
| else \ |
| timeout_result = 0; \ |
| } \ |
| |
| |
| |
| /* Whether the GIL is already taken (-1 if uninitialized). This is atomic |
| because it can be read without any lock taken in ceval.c. */ |
| static _Py_atomic_int gil_locked = {-1}; |
| /* Number of GIL switches since the beginning. */ |
| static unsigned long gil_switch_number = 0; |
| /* Last PyThreadState holding / having held the GIL. This helps us know |
| whether anyone else was scheduled after we dropped the GIL. */ |
| static _Py_atomic_address gil_last_holder = {0}; |
| |
| /* This condition variable allows one or several threads to wait until |
| the GIL is released. In addition, the mutex also protects the above |
| variables. */ |
| static COND_T gil_cond; |
| static MUTEX_T gil_mutex; |
| |
| #ifdef FORCE_SWITCHING |
| /* This condition variable helps the GIL-releasing thread wait for |
| a GIL-awaiting thread to be scheduled and take the GIL. */ |
| static COND_T switch_cond; |
| static MUTEX_T switch_mutex; |
| #endif |
| |
| |
| static int gil_created(void) |
| { |
| return _Py_atomic_load_explicit(&gil_locked, _Py_memory_order_acquire) >= 0; |
| } |
| |
| static void create_gil(void) |
| { |
| MUTEX_INIT(gil_mutex); |
| #ifdef FORCE_SWITCHING |
| MUTEX_INIT(switch_mutex); |
| #endif |
| COND_INIT(gil_cond); |
| #ifdef FORCE_SWITCHING |
| COND_INIT(switch_cond); |
| #endif |
| _Py_atomic_store_relaxed(&gil_last_holder, 0); |
| _Py_ANNOTATE_RWLOCK_CREATE(&gil_locked); |
| _Py_atomic_store_explicit(&gil_locked, 0, _Py_memory_order_release); |
| } |
| |
| static void destroy_gil(void) |
| { |
| /* some pthread-like implementations tie the mutex to the cond |
| * and must have the cond destroyed first. |
| */ |
| COND_FINI(gil_cond); |
| MUTEX_FINI(gil_mutex); |
| #ifdef FORCE_SWITCHING |
| COND_FINI(switch_cond); |
| MUTEX_FINI(switch_mutex); |
| #endif |
| _Py_atomic_store_explicit(&gil_locked, -1, _Py_memory_order_release); |
| _Py_ANNOTATE_RWLOCK_DESTROY(&gil_locked); |
| } |
| |
| static void recreate_gil(void) |
| { |
| _Py_ANNOTATE_RWLOCK_DESTROY(&gil_locked); |
| /* XXX should we destroy the old OS resources here? */ |
| create_gil(); |
| } |
| |
| static void drop_gil(PyThreadState *tstate) |
| { |
| if (!_Py_atomic_load_relaxed(&gil_locked)) |
| Py_FatalError("drop_gil: GIL is not locked"); |
| /* tstate is allowed to be NULL (early interpreter init) */ |
| if (tstate != NULL) { |
| /* Sub-interpreter support: threads might have been switched |
| under our feet using PyThreadState_Swap(). Fix the GIL last |
| holder variable so that our heuristics work. */ |
| _Py_atomic_store_relaxed(&gil_last_holder, (uintptr_t)tstate); |
| } |
| |
| MUTEX_LOCK(gil_mutex); |
| _Py_ANNOTATE_RWLOCK_RELEASED(&gil_locked, /*is_write=*/1); |
| _Py_atomic_store_relaxed(&gil_locked, 0); |
| COND_SIGNAL(gil_cond); |
| MUTEX_UNLOCK(gil_mutex); |
| |
| #ifdef FORCE_SWITCHING |
| if (_Py_atomic_load_relaxed(&gil_drop_request) && tstate != NULL) { |
| MUTEX_LOCK(switch_mutex); |
| /* Not switched yet => wait */ |
| if ((PyThreadState*)_Py_atomic_load_relaxed(&gil_last_holder) == tstate) { |
| RESET_GIL_DROP_REQUEST(); |
| /* NOTE: if COND_WAIT does not atomically start waiting when |
| releasing the mutex, another thread can run through, take |
| the GIL and drop it again, and reset the condition |
| before we even had a chance to wait for it. */ |
| COND_WAIT(switch_cond, switch_mutex); |
| } |
| MUTEX_UNLOCK(switch_mutex); |
| } |
| #endif |
| } |
| |
| static void take_gil(PyThreadState *tstate) |
| { |
| int err; |
| if (tstate == NULL) |
| Py_FatalError("take_gil: NULL tstate"); |
| |
| err = errno; |
| MUTEX_LOCK(gil_mutex); |
| |
| if (!_Py_atomic_load_relaxed(&gil_locked)) |
| goto _ready; |
| |
| while (_Py_atomic_load_relaxed(&gil_locked)) { |
| int timed_out = 0; |
| unsigned long saved_switchnum; |
| |
| saved_switchnum = gil_switch_number; |
| COND_TIMED_WAIT(gil_cond, gil_mutex, INTERVAL, timed_out); |
| /* If we timed out and no switch occurred in the meantime, it is time |
| to ask the GIL-holding thread to drop it. */ |
| if (timed_out && |
| _Py_atomic_load_relaxed(&gil_locked) && |
| gil_switch_number == saved_switchnum) { |
| SET_GIL_DROP_REQUEST(); |
| } |
| } |
| _ready: |
| #ifdef FORCE_SWITCHING |
| /* This mutex must be taken before modifying gil_last_holder (see drop_gil()). */ |
| MUTEX_LOCK(switch_mutex); |
| #endif |
| /* We now hold the GIL */ |
| _Py_atomic_store_relaxed(&gil_locked, 1); |
| _Py_ANNOTATE_RWLOCK_ACQUIRED(&gil_locked, /*is_write=*/1); |
| |
| if (tstate != (PyThreadState*)_Py_atomic_load_relaxed(&gil_last_holder)) { |
| _Py_atomic_store_relaxed(&gil_last_holder, (uintptr_t)tstate); |
| ++gil_switch_number; |
| } |
| |
| #ifdef FORCE_SWITCHING |
| COND_SIGNAL(switch_cond); |
| MUTEX_UNLOCK(switch_mutex); |
| #endif |
| if (_Py_atomic_load_relaxed(&gil_drop_request)) { |
| RESET_GIL_DROP_REQUEST(); |
| } |
| if (tstate->async_exc != NULL) { |
| _PyEval_SignalAsyncExc(); |
| } |
| |
| MUTEX_UNLOCK(gil_mutex); |
| errno = err; |
| } |
| |
| void _PyEval_SetSwitchInterval(unsigned long microseconds) |
| { |
| gil_interval = microseconds; |
| } |
| |
| unsigned long _PyEval_GetSwitchInterval() |
| { |
| return gil_interval; |
| } |