| |
| /* Execute compiled code */ |
| |
| /* XXX TO DO: |
| XXX speed up searching for keywords by using a dictionary |
| XXX document it! |
| */ |
| |
| /* enable more aggressive intra-module optimizations, where available */ |
| #define PY_LOCAL_AGGRESSIVE |
| |
| #include "Python.h" |
| |
| #include "code.h" |
| #include "frameobject.h" |
| #include "eval.h" |
| #include "opcode.h" |
| #include "structmember.h" |
| |
| #include <ctype.h> |
| |
| #ifndef WITH_TSC |
| |
| #define READ_TIMESTAMP(var) |
| |
| #else |
| |
| typedef unsigned long long uint64; |
| |
| #if defined(__ppc__) /* <- Don't know if this is the correct symbol; this |
| section should work for GCC on any PowerPC |
| platform, irrespective of OS. |
| POWER? Who knows :-) */ |
| |
| #define READ_TIMESTAMP(var) ppc_getcounter(&var) |
| |
| static void |
| ppc_getcounter(uint64 *v) |
| { |
| register unsigned long tbu, tb, tbu2; |
| |
| loop: |
| asm volatile ("mftbu %0" : "=r" (tbu) ); |
| asm volatile ("mftb %0" : "=r" (tb) ); |
| asm volatile ("mftbu %0" : "=r" (tbu2)); |
| if (__builtin_expect(tbu != tbu2, 0)) goto loop; |
| |
| /* The slightly peculiar way of writing the next lines is |
| compiled better by GCC than any other way I tried. */ |
| ((long*)(v))[0] = tbu; |
| ((long*)(v))[1] = tb; |
| } |
| |
| #elif defined(__i386__) |
| |
| /* this is for linux/x86 (and probably any other GCC/x86 combo) */ |
| |
| #define READ_TIMESTAMP(val) \ |
| __asm__ __volatile__("rdtsc" : "=A" (val)) |
| |
| #elif defined(__x86_64__) |
| |
| /* for gcc/x86_64, the "A" constraint in DI mode means *either* rax *or* rdx; |
| not edx:eax as it does for i386. Since rdtsc puts its result in edx:eax |
| even in 64-bit mode, we need to use "a" and "d" for the lower and upper |
| 32-bit pieces of the result. */ |
| |
| #define READ_TIMESTAMP(val) \ |
| __asm__ __volatile__("rdtsc" : \ |
| "=a" (((int*)&(val))[0]), "=d" (((int*)&(val))[1])); |
| |
| |
| #else |
| |
| #error "Don't know how to implement timestamp counter for this architecture" |
| |
| #endif |
| |
| void dump_tsc(int opcode, int ticked, uint64 inst0, uint64 inst1, |
| uint64 loop0, uint64 loop1, uint64 intr0, uint64 intr1) |
| { |
| uint64 intr, inst, loop; |
| PyThreadState *tstate = PyThreadState_Get(); |
| if (!tstate->interp->tscdump) |
| return; |
| intr = intr1 - intr0; |
| inst = inst1 - inst0 - intr; |
| loop = loop1 - loop0 - intr; |
| fprintf(stderr, "opcode=%03d t=%d inst=%06lld loop=%06lld\n", |
| opcode, ticked, inst, loop); |
| } |
| |
| #endif |
| |
| /* Turn this on if your compiler chokes on the big switch: */ |
| /* #define CASE_TOO_BIG 1 */ |
| |
| #ifdef Py_DEBUG |
| /* For debugging the interpreter: */ |
| #define LLTRACE 1 /* Low-level trace feature */ |
| #define CHECKEXC 1 /* Double-check exception checking */ |
| #endif |
| |
| typedef PyObject *(*callproc)(PyObject *, PyObject *, PyObject *); |
| |
| /* Forward declarations */ |
| #ifdef WITH_TSC |
| static PyObject * call_function(PyObject ***, int, uint64*, uint64*); |
| #else |
| static PyObject * call_function(PyObject ***, int); |
| #endif |
| static PyObject * fast_function(PyObject *, PyObject ***, int, int, int); |
| static PyObject * do_call(PyObject *, PyObject ***, int, int); |
| static PyObject * ext_do_call(PyObject *, PyObject ***, int, int, int); |
| static PyObject * update_keyword_args(PyObject *, int, PyObject ***, |
| PyObject *); |
| static PyObject * update_star_args(int, int, PyObject *, PyObject ***); |
| static PyObject * load_args(PyObject ***, int); |
| #define CALL_FLAG_VAR 1 |
| #define CALL_FLAG_KW 2 |
| |
| #ifdef LLTRACE |
| static int lltrace; |
| static int prtrace(PyObject *, char *); |
| #endif |
| static int call_trace(Py_tracefunc, PyObject *, PyFrameObject *, |
| int, PyObject *); |
| static int call_trace_protected(Py_tracefunc, PyObject *, |
| PyFrameObject *, int, PyObject *); |
| static void call_exc_trace(Py_tracefunc, PyObject *, PyFrameObject *); |
| static int maybe_call_line_trace(Py_tracefunc, PyObject *, |
| PyFrameObject *, int *, int *, int *); |
| |
| static PyObject * cmp_outcome(int, PyObject *, PyObject *); |
| static PyObject * import_from(PyObject *, PyObject *); |
| static int import_all_from(PyObject *, PyObject *); |
| static void format_exc_check_arg(PyObject *, const char *, PyObject *); |
| static void format_exc_unbound(PyCodeObject *co, int oparg); |
| static PyObject * unicode_concatenate(PyObject *, PyObject *, |
| PyFrameObject *, unsigned char *); |
| static PyObject * special_lookup(PyObject *, char *, PyObject **); |
| |
| #define NAME_ERROR_MSG \ |
| "name '%.200s' is not defined" |
| #define GLOBAL_NAME_ERROR_MSG \ |
| "global name '%.200s' is not defined" |
| #define UNBOUNDLOCAL_ERROR_MSG \ |
| "local variable '%.200s' referenced before assignment" |
| #define UNBOUNDFREE_ERROR_MSG \ |
| "free variable '%.200s' referenced before assignment" \ |
| " in enclosing scope" |
| |
| /* Dynamic execution profile */ |
| #ifdef DYNAMIC_EXECUTION_PROFILE |
| #ifdef DXPAIRS |
| static long dxpairs[257][256]; |
| #define dxp dxpairs[256] |
| #else |
| static long dxp[256]; |
| #endif |
| #endif |
| |
| /* Function call profile */ |
| #ifdef CALL_PROFILE |
| #define PCALL_NUM 11 |
| static int pcall[PCALL_NUM]; |
| |
| #define PCALL_ALL 0 |
| #define PCALL_FUNCTION 1 |
| #define PCALL_FAST_FUNCTION 2 |
| #define PCALL_FASTER_FUNCTION 3 |
| #define PCALL_METHOD 4 |
| #define PCALL_BOUND_METHOD 5 |
| #define PCALL_CFUNCTION 6 |
| #define PCALL_TYPE 7 |
| #define PCALL_GENERATOR 8 |
| #define PCALL_OTHER 9 |
| #define PCALL_POP 10 |
| |
| /* Notes about the statistics |
| |
| PCALL_FAST stats |
| |
| FAST_FUNCTION means no argument tuple needs to be created. |
| FASTER_FUNCTION means that the fast-path frame setup code is used. |
| |
| If there is a method call where the call can be optimized by changing |
| the argument tuple and calling the function directly, it gets recorded |
| twice. |
| |
| As a result, the relationship among the statistics appears to be |
| PCALL_ALL == PCALL_FUNCTION + PCALL_METHOD - PCALL_BOUND_METHOD + |
| PCALL_CFUNCTION + PCALL_TYPE + PCALL_GENERATOR + PCALL_OTHER |
| PCALL_FUNCTION > PCALL_FAST_FUNCTION > PCALL_FASTER_FUNCTION |
| PCALL_METHOD > PCALL_BOUND_METHOD |
| */ |
| |
| #define PCALL(POS) pcall[POS]++ |
| |
| PyObject * |
| PyEval_GetCallStats(PyObject *self) |
| { |
| return Py_BuildValue("iiiiiiiiiii", |
| pcall[0], pcall[1], pcall[2], pcall[3], |
| pcall[4], pcall[5], pcall[6], pcall[7], |
| pcall[8], pcall[9], pcall[10]); |
| } |
| #else |
| #define PCALL(O) |
| |
| PyObject * |
| PyEval_GetCallStats(PyObject *self) |
| { |
| Py_INCREF(Py_None); |
| return Py_None; |
| } |
| #endif |
| |
| |
| #ifdef WITH_THREAD |
| #define GIL_REQUEST _Py_atomic_load_relaxed(&gil_drop_request) |
| #else |
| #define GIL_REQUEST 0 |
| #endif |
| |
| /* This can set eval_breaker to 0 even though gil_drop_request became |
| 1. We believe this is all right because the eval loop will release |
| the GIL eventually anyway. */ |
| #define COMPUTE_EVAL_BREAKER() \ |
| _Py_atomic_store_relaxed( \ |
| &eval_breaker, \ |
| GIL_REQUEST | \ |
| _Py_atomic_load_relaxed(&pendingcalls_to_do) | \ |
| pending_async_exc) |
| |
| #ifdef WITH_THREAD |
| |
| #define SET_GIL_DROP_REQUEST() \ |
| do { \ |
| _Py_atomic_store_relaxed(&gil_drop_request, 1); \ |
| _Py_atomic_store_relaxed(&eval_breaker, 1); \ |
| } while (0) |
| |
| #define RESET_GIL_DROP_REQUEST() \ |
| do { \ |
| _Py_atomic_store_relaxed(&gil_drop_request, 0); \ |
| COMPUTE_EVAL_BREAKER(); \ |
| } while (0) |
| |
| #endif |
| |
| /* Pending calls are only modified under pending_lock */ |
| #define SIGNAL_PENDING_CALLS() \ |
| do { \ |
| _Py_atomic_store_relaxed(&pendingcalls_to_do, 1); \ |
| _Py_atomic_store_relaxed(&eval_breaker, 1); \ |
| } while (0) |
| |
| #define UNSIGNAL_PENDING_CALLS() \ |
| do { \ |
| _Py_atomic_store_relaxed(&pendingcalls_to_do, 0); \ |
| COMPUTE_EVAL_BREAKER(); \ |
| } while (0) |
| |
| #define SIGNAL_ASYNC_EXC() \ |
| do { \ |
| pending_async_exc = 1; \ |
| _Py_atomic_store_relaxed(&eval_breaker, 1); \ |
| } while (0) |
| |
| #define UNSIGNAL_ASYNC_EXC() \ |
| do { pending_async_exc = 0; COMPUTE_EVAL_BREAKER(); } while (0) |
| |
| |
| #ifdef WITH_THREAD |
| |
| #ifdef HAVE_ERRNO_H |
| #include <errno.h> |
| #endif |
| #include "pythread.h" |
| |
| static PyThread_type_lock pending_lock = 0; /* for pending calls */ |
| static long main_thread = 0; |
| /* This single variable consolidates all requests to break out of the fast path |
| in the eval loop. */ |
| static _Py_atomic_int eval_breaker = {0}; |
| /* Request for dropping the GIL */ |
| static _Py_atomic_int gil_drop_request = {0}; |
| /* Request for running pending calls. */ |
| static _Py_atomic_int pendingcalls_to_do = {0}; |
| /* Request for looking at the `async_exc` field of the current thread state. |
| Guarded by the GIL. */ |
| static int pending_async_exc = 0; |
| |
| #include "ceval_gil.h" |
| |
| int |
| PyEval_ThreadsInitialized(void) |
| { |
| return gil_created(); |
| } |
| |
| void |
| PyEval_InitThreads(void) |
| { |
| if (gil_created()) |
| return; |
| create_gil(); |
| take_gil(PyThreadState_GET()); |
| main_thread = PyThread_get_thread_ident(); |
| if (!pending_lock) |
| pending_lock = PyThread_allocate_lock(); |
| } |
| |
| void |
| _PyEval_FiniThreads(void) |
| { |
| if (!gil_created()) |
| return; |
| destroy_gil(); |
| assert(!gil_created()); |
| } |
| |
| void |
| PyEval_AcquireLock(void) |
| { |
| PyThreadState *tstate = PyThreadState_GET(); |
| if (tstate == NULL) |
| Py_FatalError("PyEval_AcquireLock: current thread state is NULL"); |
| take_gil(tstate); |
| } |
| |
| void |
| PyEval_ReleaseLock(void) |
| { |
| /* This function must succeed when the current thread state is NULL. |
| We therefore avoid PyThreadState_GET() which dumps a fatal error |
| in debug mode. |
| */ |
| drop_gil((PyThreadState*)_Py_atomic_load_relaxed( |
| &_PyThreadState_Current)); |
| } |
| |
| void |
| PyEval_AcquireThread(PyThreadState *tstate) |
| { |
| if (tstate == NULL) |
| Py_FatalError("PyEval_AcquireThread: NULL new thread state"); |
| /* Check someone has called PyEval_InitThreads() to create the lock */ |
| assert(gil_created()); |
| take_gil(tstate); |
| if (PyThreadState_Swap(tstate) != NULL) |
| Py_FatalError( |
| "PyEval_AcquireThread: non-NULL old thread state"); |
| } |
| |
| void |
| PyEval_ReleaseThread(PyThreadState *tstate) |
| { |
| if (tstate == NULL) |
| Py_FatalError("PyEval_ReleaseThread: NULL thread state"); |
| if (PyThreadState_Swap(NULL) != tstate) |
| Py_FatalError("PyEval_ReleaseThread: wrong thread state"); |
| drop_gil(tstate); |
| } |
| |
| /* This function is called from PyOS_AfterFork to ensure that newly |
| created child processes don't hold locks referring to threads which |
| are not running in the child process. (This could also be done using |
| pthread_atfork mechanism, at least for the pthreads implementation.) */ |
| |
| void |
| PyEval_ReInitThreads(void) |
| { |
| PyObject *threading, *result; |
| PyThreadState *tstate = PyThreadState_GET(); |
| |
| if (!gil_created()) |
| return; |
| recreate_gil(); |
| pending_lock = PyThread_allocate_lock(); |
| take_gil(tstate); |
| main_thread = PyThread_get_thread_ident(); |
| |
| /* Update the threading module with the new state. |
| */ |
| tstate = PyThreadState_GET(); |
| threading = PyMapping_GetItemString(tstate->interp->modules, |
| "threading"); |
| if (threading == NULL) { |
| /* threading not imported */ |
| PyErr_Clear(); |
| return; |
| } |
| result = PyObject_CallMethod(threading, "_after_fork", NULL); |
| if (result == NULL) |
| PyErr_WriteUnraisable(threading); |
| else |
| Py_DECREF(result); |
| Py_DECREF(threading); |
| } |
| |
| #else |
| static _Py_atomic_int eval_breaker = {0}; |
| static int pending_async_exc = 0; |
| #endif /* WITH_THREAD */ |
| |
| /* This function is used to signal that async exceptions are waiting to be |
| raised, therefore it is also useful in non-threaded builds. */ |
| |
| void |
| _PyEval_SignalAsyncExc(void) |
| { |
| SIGNAL_ASYNC_EXC(); |
| } |
| |
| /* Functions save_thread and restore_thread are always defined so |
| dynamically loaded modules needn't be compiled separately for use |
| with and without threads: */ |
| |
| PyThreadState * |
| PyEval_SaveThread(void) |
| { |
| PyThreadState *tstate = PyThreadState_Swap(NULL); |
| if (tstate == NULL) |
| Py_FatalError("PyEval_SaveThread: NULL tstate"); |
| #ifdef WITH_THREAD |
| if (gil_created()) |
| drop_gil(tstate); |
| #endif |
| return tstate; |
| } |
| |
| void |
| PyEval_RestoreThread(PyThreadState *tstate) |
| { |
| if (tstate == NULL) |
| Py_FatalError("PyEval_RestoreThread: NULL tstate"); |
| #ifdef WITH_THREAD |
| if (gil_created()) { |
| int err = errno; |
| take_gil(tstate); |
| errno = err; |
| } |
| #endif |
| PyThreadState_Swap(tstate); |
| } |
| |
| |
| /* Mechanism whereby asynchronously executing callbacks (e.g. UNIX |
| signal handlers or Mac I/O completion routines) can schedule calls |
| to a function to be called synchronously. |
| The synchronous function is called with one void* argument. |
| It should return 0 for success or -1 for failure -- failure should |
| be accompanied by an exception. |
| |
| If registry succeeds, the registry function returns 0; if it fails |
| (e.g. due to too many pending calls) it returns -1 (without setting |
| an exception condition). |
| |
| Note that because registry may occur from within signal handlers, |
| or other asynchronous events, calling malloc() is unsafe! |
| |
| #ifdef WITH_THREAD |
| Any thread can schedule pending calls, but only the main thread |
| will execute them. |
| There is no facility to schedule calls to a particular thread, but |
| that should be easy to change, should that ever be required. In |
| that case, the static variables here should go into the python |
| threadstate. |
| #endif |
| */ |
| |
| #ifdef WITH_THREAD |
| |
| /* The WITH_THREAD implementation is thread-safe. It allows |
| scheduling to be made from any thread, and even from an executing |
| callback. |
| */ |
| |
| #define NPENDINGCALLS 32 |
| static struct { |
| int (*func)(void *); |
| void *arg; |
| } pendingcalls[NPENDINGCALLS]; |
| static int pendingfirst = 0; |
| static int pendinglast = 0; |
| static char pendingbusy = 0; |
| |
| int |
| Py_AddPendingCall(int (*func)(void *), void *arg) |
| { |
| int i, j, result=0; |
| PyThread_type_lock lock = pending_lock; |
| |
| /* try a few times for the lock. Since this mechanism is used |
| * for signal handling (on the main thread), there is a (slim) |
| * chance that a signal is delivered on the same thread while we |
| * hold the lock during the Py_MakePendingCalls() function. |
| * This avoids a deadlock in that case. |
| * Note that signals can be delivered on any thread. In particular, |
| * on Windows, a SIGINT is delivered on a system-created worker |
| * thread. |
| * We also check for lock being NULL, in the unlikely case that |
| * this function is called before any bytecode evaluation takes place. |
| */ |
| if (lock != NULL) { |
| for (i = 0; i<100; i++) { |
| if (PyThread_acquire_lock(lock, NOWAIT_LOCK)) |
| break; |
| } |
| if (i == 100) |
| return -1; |
| } |
| |
| i = pendinglast; |
| j = (i + 1) % NPENDINGCALLS; |
| if (j == pendingfirst) { |
| result = -1; /* Queue full */ |
| } else { |
| pendingcalls[i].func = func; |
| pendingcalls[i].arg = arg; |
| pendinglast = j; |
| } |
| /* signal main loop */ |
| SIGNAL_PENDING_CALLS(); |
| if (lock != NULL) |
| PyThread_release_lock(lock); |
| return result; |
| } |
| |
| int |
| Py_MakePendingCalls(void) |
| { |
| int i; |
| int r = 0; |
| |
| if (!pending_lock) { |
| /* initial allocation of the lock */ |
| pending_lock = PyThread_allocate_lock(); |
| if (pending_lock == NULL) |
| return -1; |
| } |
| |
| /* only service pending calls on main thread */ |
| if (main_thread && PyThread_get_thread_ident() != main_thread) |
| return 0; |
| /* don't perform recursive pending calls */ |
| if (pendingbusy) |
| return 0; |
| pendingbusy = 1; |
| /* perform a bounded number of calls, in case of recursion */ |
| for (i=0; i<NPENDINGCALLS; i++) { |
| int j; |
| int (*func)(void *); |
| void *arg = NULL; |
| |
| /* pop one item off the queue while holding the lock */ |
| PyThread_acquire_lock(pending_lock, WAIT_LOCK); |
| j = pendingfirst; |
| if (j == pendinglast) { |
| func = NULL; /* Queue empty */ |
| } else { |
| func = pendingcalls[j].func; |
| arg = pendingcalls[j].arg; |
| pendingfirst = (j + 1) % NPENDINGCALLS; |
| } |
| if (pendingfirst != pendinglast) |
| SIGNAL_PENDING_CALLS(); |
| else |
| UNSIGNAL_PENDING_CALLS(); |
| PyThread_release_lock(pending_lock); |
| /* having released the lock, perform the callback */ |
| if (func == NULL) |
| break; |
| r = func(arg); |
| if (r) |
| break; |
| } |
| pendingbusy = 0; |
| return r; |
| } |
| |
| #else /* if ! defined WITH_THREAD */ |
| |
| /* |
| WARNING! ASYNCHRONOUSLY EXECUTING CODE! |
| This code is used for signal handling in python that isn't built |
| with WITH_THREAD. |
| Don't use this implementation when Py_AddPendingCalls() can happen |
| on a different thread! |
| |
| There are two possible race conditions: |
| (1) nested asynchronous calls to Py_AddPendingCall() |
| (2) AddPendingCall() calls made while pending calls are being processed. |
| |
| (1) is very unlikely because typically signal delivery |
| is blocked during signal handling. So it should be impossible. |
| (2) is a real possibility. |
| The current code is safe against (2), but not against (1). |
| The safety against (2) is derived from the fact that only one |
| thread is present, interrupted by signals, and that the critical |
| section is protected with the "busy" variable. On Windows, which |
| delivers SIGINT on a system thread, this does not hold and therefore |
| Windows really shouldn't use this version. |
| The two threads could theoretically wiggle around the "busy" variable. |
| */ |
| |
| #define NPENDINGCALLS 32 |
| static struct { |
| int (*func)(void *); |
| void *arg; |
| } pendingcalls[NPENDINGCALLS]; |
| static volatile int pendingfirst = 0; |
| static volatile int pendinglast = 0; |
| static _Py_atomic_int pendingcalls_to_do = {0}; |
| |
| int |
| Py_AddPendingCall(int (*func)(void *), void *arg) |
| { |
| static volatile int busy = 0; |
| int i, j; |
| /* XXX Begin critical section */ |
| if (busy) |
| return -1; |
| busy = 1; |
| i = pendinglast; |
| j = (i + 1) % NPENDINGCALLS; |
| if (j == pendingfirst) { |
| busy = 0; |
| return -1; /* Queue full */ |
| } |
| pendingcalls[i].func = func; |
| pendingcalls[i].arg = arg; |
| pendinglast = j; |
| |
| SIGNAL_PENDING_CALLS(); |
| busy = 0; |
| /* XXX End critical section */ |
| return 0; |
| } |
| |
| int |
| Py_MakePendingCalls(void) |
| { |
| static int busy = 0; |
| if (busy) |
| return 0; |
| busy = 1; |
| UNSIGNAL_PENDING_CALLS(); |
| for (;;) { |
| int i; |
| int (*func)(void *); |
| void *arg; |
| i = pendingfirst; |
| if (i == pendinglast) |
| break; /* Queue empty */ |
| func = pendingcalls[i].func; |
| arg = pendingcalls[i].arg; |
| pendingfirst = (i + 1) % NPENDINGCALLS; |
| if (func(arg) < 0) { |
| busy = 0; |
| SIGNAL_PENDING_CALLS(); /* We're not done yet */ |
| return -1; |
| } |
| } |
| busy = 0; |
| return 0; |
| } |
| |
| #endif /* WITH_THREAD */ |
| |
| |
| /* The interpreter's recursion limit */ |
| |
| #ifndef Py_DEFAULT_RECURSION_LIMIT |
| #define Py_DEFAULT_RECURSION_LIMIT 1000 |
| #endif |
| static int recursion_limit = Py_DEFAULT_RECURSION_LIMIT; |
| int _Py_CheckRecursionLimit = Py_DEFAULT_RECURSION_LIMIT; |
| |
| int |
| Py_GetRecursionLimit(void) |
| { |
| return recursion_limit; |
| } |
| |
| void |
| Py_SetRecursionLimit(int new_limit) |
| { |
| recursion_limit = new_limit; |
| _Py_CheckRecursionLimit = recursion_limit; |
| } |
| |
| /* the macro Py_EnterRecursiveCall() only calls _Py_CheckRecursiveCall() |
| if the recursion_depth reaches _Py_CheckRecursionLimit. |
| If USE_STACKCHECK, the macro decrements _Py_CheckRecursionLimit |
| to guarantee that _Py_CheckRecursiveCall() is regularly called. |
| Without USE_STACKCHECK, there is no need for this. */ |
| int |
| _Py_CheckRecursiveCall(char *where) |
| { |
| PyThreadState *tstate = PyThreadState_GET(); |
| |
| #ifdef USE_STACKCHECK |
| if (PyOS_CheckStack()) { |
| --tstate->recursion_depth; |
| PyErr_SetString(PyExc_MemoryError, "Stack overflow"); |
| return -1; |
| } |
| #endif |
| _Py_CheckRecursionLimit = recursion_limit; |
| if (tstate->recursion_critical) |
| /* Somebody asked that we don't check for recursion. */ |
| return 0; |
| if (tstate->overflowed) { |
| if (tstate->recursion_depth > recursion_limit + 50) { |
| /* Overflowing while handling an overflow. Give up. */ |
| Py_FatalError("Cannot recover from stack overflow."); |
| } |
| return 0; |
| } |
| if (tstate->recursion_depth > recursion_limit) { |
| --tstate->recursion_depth; |
| tstate->overflowed = 1; |
| PyErr_Format(PyExc_RuntimeError, |
| "maximum recursion depth exceeded%s", |
| where); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* Status code for main loop (reason for stack unwind) */ |
| enum why_code { |
| WHY_NOT = 0x0001, /* No error */ |
| WHY_EXCEPTION = 0x0002, /* Exception occurred */ |
| WHY_RERAISE = 0x0004, /* Exception re-raised by 'finally' */ |
| WHY_RETURN = 0x0008, /* 'return' statement */ |
| WHY_BREAK = 0x0010, /* 'break' statement */ |
| WHY_CONTINUE = 0x0020, /* 'continue' statement */ |
| WHY_YIELD = 0x0040, /* 'yield' operator */ |
| WHY_SILENCED = 0x0080 /* Exception silenced by 'with' */ |
| }; |
| |
| static enum why_code do_raise(PyObject *, PyObject *); |
| static int unpack_iterable(PyObject *, int, int, PyObject **); |
| |
| /* Records whether tracing is on for any thread. Counts the number of |
| threads for which tstate->c_tracefunc is non-NULL, so if the value |
| is 0, we know we don't have to check this thread's c_tracefunc. |
| This speeds up the if statement in PyEval_EvalFrameEx() after |
| fast_next_opcode*/ |
| static int _Py_TracingPossible = 0; |
| |
| |
| |
| PyObject * |
| PyEval_EvalCode(PyCodeObject *co, PyObject *globals, PyObject *locals) |
| { |
| return PyEval_EvalCodeEx(co, |
| globals, locals, |
| (PyObject **)NULL, 0, |
| (PyObject **)NULL, 0, |
| (PyObject **)NULL, 0, |
| NULL, NULL); |
| } |
| |
| |
| /* Interpreter main loop */ |
| |
| PyObject * |
| PyEval_EvalFrame(PyFrameObject *f) { |
| /* This is for backward compatibility with extension modules that |
| used this API; core interpreter code should call |
| PyEval_EvalFrameEx() */ |
| return PyEval_EvalFrameEx(f, 0); |
| } |
| |
| PyObject * |
| PyEval_EvalFrameEx(PyFrameObject *f, int throwflag) |
| { |
| #ifdef DXPAIRS |
| int lastopcode = 0; |
| #endif |
| register PyObject **stack_pointer; /* Next free slot in value stack */ |
| register unsigned char *next_instr; |
| register int opcode; /* Current opcode */ |
| register int oparg; /* Current opcode argument, if any */ |
| register enum why_code why; /* Reason for block stack unwind */ |
| register int err; /* Error status -- nonzero if error */ |
| register PyObject *x; /* Result object -- NULL if error */ |
| register PyObject *v; /* Temporary objects popped off stack */ |
| register PyObject *w; |
| register PyObject *u; |
| register PyObject *t; |
| register PyObject **fastlocals, **freevars; |
| PyObject *retval = NULL; /* Return value */ |
| PyThreadState *tstate = PyThreadState_GET(); |
| PyCodeObject *co; |
| |
| /* when tracing we set things up so that |
| |
| not (instr_lb <= current_bytecode_offset < instr_ub) |
| |
| is true when the line being executed has changed. The |
| initial values are such as to make this false the first |
| time it is tested. */ |
| int instr_ub = -1, instr_lb = 0, instr_prev = -1; |
| |
| unsigned char *first_instr; |
| PyObject *names; |
| PyObject *consts; |
| #if defined(Py_DEBUG) || defined(LLTRACE) |
| /* Make it easier to find out where we are with a debugger */ |
| char *filename; |
| #endif |
| |
| /* Computed GOTOs, or |
| the-optimization-commonly-but-improperly-known-as-"threaded code" |
| using gcc's labels-as-values extension |
| (http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html). |
| |
| The traditional bytecode evaluation loop uses a "switch" statement, which |
| decent compilers will optimize as a single indirect branch instruction |
| combined with a lookup table of jump addresses. However, since the |
| indirect jump instruction is shared by all opcodes, the CPU will have a |
| hard time making the right prediction for where to jump next (actually, |
| it will be always wrong except in the uncommon case of a sequence of |
| several identical opcodes). |
| |
| "Threaded code" in contrast, uses an explicit jump table and an explicit |
| indirect jump instruction at the end of each opcode. Since the jump |
| instruction is at a different address for each opcode, the CPU will make a |
| separate prediction for each of these instructions, which is equivalent to |
| predicting the second opcode of each opcode pair. These predictions have |
| a much better chance to turn out valid, especially in small bytecode loops. |
| |
| A mispredicted branch on a modern CPU flushes the whole pipeline and |
| can cost several CPU cycles (depending on the pipeline depth), |
| and potentially many more instructions (depending on the pipeline width). |
| A correctly predicted branch, however, is nearly free. |
| |
| At the time of this writing, the "threaded code" version is up to 15-20% |
| faster than the normal "switch" version, depending on the compiler and the |
| CPU architecture. |
| |
| We disable the optimization if DYNAMIC_EXECUTION_PROFILE is defined, |
| because it would render the measurements invalid. |
| |
| |
| NOTE: care must be taken that the compiler doesn't try to "optimize" the |
| indirect jumps by sharing them between all opcodes. Such optimizations |
| can be disabled on gcc by using the -fno-gcse flag (or possibly |
| -fno-crossjumping). |
| */ |
| |
| #ifdef DYNAMIC_EXECUTION_PROFILE |
| #undef USE_COMPUTED_GOTOS |
| #define USE_COMPUTED_GOTOS 0 |
| #endif |
| |
| #ifdef HAVE_COMPUTED_GOTOS |
| #ifndef USE_COMPUTED_GOTOS |
| #define USE_COMPUTED_GOTOS 1 |
| #endif |
| #else |
| #if defined(USE_COMPUTED_GOTOS) && USE_COMPUTED_GOTOS |
| #error "Computed gotos are not supported on this compiler." |
| #endif |
| #undef USE_COMPUTED_GOTOS |
| #define USE_COMPUTED_GOTOS 0 |
| #endif |
| |
| #if USE_COMPUTED_GOTOS |
| /* Import the static jump table */ |
| #include "opcode_targets.h" |
| |
| /* This macro is used when several opcodes defer to the same implementation |
| (e.g. SETUP_LOOP, SETUP_FINALLY) */ |
| #define TARGET_WITH_IMPL(op, impl) \ |
| TARGET_##op: \ |
| opcode = op; \ |
| if (HAS_ARG(op)) \ |
| oparg = NEXTARG(); \ |
| case op: \ |
| goto impl; \ |
| |
| #define TARGET(op) \ |
| TARGET_##op: \ |
| opcode = op; \ |
| if (HAS_ARG(op)) \ |
| oparg = NEXTARG(); \ |
| case op: |
| |
| |
| #define DISPATCH() \ |
| { \ |
| if (!_Py_atomic_load_relaxed(&eval_breaker)) { \ |
| FAST_DISPATCH(); \ |
| } \ |
| continue; \ |
| } |
| |
| #ifdef LLTRACE |
| #define FAST_DISPATCH() \ |
| { \ |
| if (!lltrace && !_Py_TracingPossible) { \ |
| f->f_lasti = INSTR_OFFSET(); \ |
| goto *opcode_targets[*next_instr++]; \ |
| } \ |
| goto fast_next_opcode; \ |
| } |
| #else |
| #define FAST_DISPATCH() \ |
| { \ |
| if (!_Py_TracingPossible) { \ |
| f->f_lasti = INSTR_OFFSET(); \ |
| goto *opcode_targets[*next_instr++]; \ |
| } \ |
| goto fast_next_opcode; \ |
| } |
| #endif |
| |
| #else |
| #define TARGET(op) \ |
| case op: |
| #define TARGET_WITH_IMPL(op, impl) \ |
| /* silence compiler warnings about `impl` unused */ \ |
| if (0) goto impl; \ |
| case op: |
| #define DISPATCH() continue |
| #define FAST_DISPATCH() goto fast_next_opcode |
| #endif |
| |
| |
| /* Tuple access macros */ |
| |
| #ifndef Py_DEBUG |
| #define GETITEM(v, i) PyTuple_GET_ITEM((PyTupleObject *)(v), (i)) |
| #else |
| #define GETITEM(v, i) PyTuple_GetItem((v), (i)) |
| #endif |
| |
| #ifdef WITH_TSC |
| /* Use Pentium timestamp counter to mark certain events: |
| inst0 -- beginning of switch statement for opcode dispatch |
| inst1 -- end of switch statement (may be skipped) |
| loop0 -- the top of the mainloop |
| loop1 -- place where control returns again to top of mainloop |
| (may be skipped) |
| intr1 -- beginning of long interruption |
| intr2 -- end of long interruption |
| |
| Many opcodes call out to helper C functions. In some cases, the |
| time in those functions should be counted towards the time for the |
| opcode, but not in all cases. For example, a CALL_FUNCTION opcode |
| calls another Python function; there's no point in charge all the |
| bytecode executed by the called function to the caller. |
| |
| It's hard to make a useful judgement statically. In the presence |
| of operator overloading, it's impossible to tell if a call will |
| execute new Python code or not. |
| |
| It's a case-by-case judgement. I'll use intr1 for the following |
| cases: |
| |
| IMPORT_STAR |
| IMPORT_FROM |
| CALL_FUNCTION (and friends) |
| |
| */ |
| uint64 inst0, inst1, loop0, loop1, intr0 = 0, intr1 = 0; |
| int ticked = 0; |
| |
| READ_TIMESTAMP(inst0); |
| READ_TIMESTAMP(inst1); |
| READ_TIMESTAMP(loop0); |
| READ_TIMESTAMP(loop1); |
| |
| /* shut up the compiler */ |
| opcode = 0; |
| #endif |
| |
| /* Code access macros */ |
| |
| #define INSTR_OFFSET() ((int)(next_instr - first_instr)) |
| #define NEXTOP() (*next_instr++) |
| #define NEXTARG() (next_instr += 2, (next_instr[-1]<<8) + next_instr[-2]) |
| #define PEEKARG() ((next_instr[2]<<8) + next_instr[1]) |
| #define JUMPTO(x) (next_instr = first_instr + (x)) |
| #define JUMPBY(x) (next_instr += (x)) |
| |
| /* OpCode prediction macros |
| Some opcodes tend to come in pairs thus making it possible to |
| predict the second code when the first is run. For example, |
| COMPARE_OP is often followed by JUMP_IF_FALSE or JUMP_IF_TRUE. And, |
| those opcodes are often followed by a POP_TOP. |
| |
| Verifying the prediction costs a single high-speed test of a register |
| variable against a constant. If the pairing was good, then the |
| processor's own internal branch predication has a high likelihood of |
| success, resulting in a nearly zero-overhead transition to the |
| next opcode. A successful prediction saves a trip through the eval-loop |
| including its two unpredictable branches, the HAS_ARG test and the |
| switch-case. Combined with the processor's internal branch prediction, |
| a successful PREDICT has the effect of making the two opcodes run as if |
| they were a single new opcode with the bodies combined. |
| |
| If collecting opcode statistics, your choices are to either keep the |
| predictions turned-on and interpret the results as if some opcodes |
| had been combined or turn-off predictions so that the opcode frequency |
| counter updates for both opcodes. |
| |
| Opcode prediction is disabled with threaded code, since the latter allows |
| the CPU to record separate branch prediction information for each |
| opcode. |
| |
| */ |
| |
| #if defined(DYNAMIC_EXECUTION_PROFILE) || USE_COMPUTED_GOTOS |
| #define PREDICT(op) if (0) goto PRED_##op |
| #define PREDICTED(op) PRED_##op: |
| #define PREDICTED_WITH_ARG(op) PRED_##op: |
| #else |
| #define PREDICT(op) if (*next_instr == op) goto PRED_##op |
| #define PREDICTED(op) PRED_##op: next_instr++ |
| #define PREDICTED_WITH_ARG(op) PRED_##op: oparg = PEEKARG(); next_instr += 3 |
| #endif |
| |
| |
| /* Stack manipulation macros */ |
| |
| /* The stack can grow at most MAXINT deep, as co_nlocals and |
| co_stacksize are ints. */ |
| #define STACK_LEVEL() ((int)(stack_pointer - f->f_valuestack)) |
| #define EMPTY() (STACK_LEVEL() == 0) |
| #define TOP() (stack_pointer[-1]) |
| #define SECOND() (stack_pointer[-2]) |
| #define THIRD() (stack_pointer[-3]) |
| #define FOURTH() (stack_pointer[-4]) |
| #define PEEK(n) (stack_pointer[-(n)]) |
| #define SET_TOP(v) (stack_pointer[-1] = (v)) |
| #define SET_SECOND(v) (stack_pointer[-2] = (v)) |
| #define SET_THIRD(v) (stack_pointer[-3] = (v)) |
| #define SET_FOURTH(v) (stack_pointer[-4] = (v)) |
| #define SET_VALUE(n, v) (stack_pointer[-(n)] = (v)) |
| #define BASIC_STACKADJ(n) (stack_pointer += n) |
| #define BASIC_PUSH(v) (*stack_pointer++ = (v)) |
| #define BASIC_POP() (*--stack_pointer) |
| |
| #ifdef LLTRACE |
| #define PUSH(v) { (void)(BASIC_PUSH(v), \ |
| lltrace && prtrace(TOP(), "push")); \ |
| assert(STACK_LEVEL() <= co->co_stacksize); } |
| #define POP() ((void)(lltrace && prtrace(TOP(), "pop")), \ |
| BASIC_POP()) |
| #define STACKADJ(n) { (void)(BASIC_STACKADJ(n), \ |
| lltrace && prtrace(TOP(), "stackadj")); \ |
| assert(STACK_LEVEL() <= co->co_stacksize); } |
| #define EXT_POP(STACK_POINTER) ((void)(lltrace && \ |
| prtrace((STACK_POINTER)[-1], "ext_pop")), \ |
| *--(STACK_POINTER)) |
| #else |
| #define PUSH(v) BASIC_PUSH(v) |
| #define POP() BASIC_POP() |
| #define STACKADJ(n) BASIC_STACKADJ(n) |
| #define EXT_POP(STACK_POINTER) (*--(STACK_POINTER)) |
| #endif |
| |
| /* Local variable macros */ |
| |
| #define GETLOCAL(i) (fastlocals[i]) |
| |
| /* The SETLOCAL() macro must not DECREF the local variable in-place and |
| then store the new value; it must copy the old value to a temporary |
| value, then store the new value, and then DECREF the temporary value. |
| This is because it is possible that during the DECREF the frame is |
| accessed by other code (e.g. a __del__ method or gc.collect()) and the |
| variable would be pointing to already-freed memory. */ |
| #define SETLOCAL(i, value) do { PyObject *tmp = GETLOCAL(i); \ |
| GETLOCAL(i) = value; \ |
| Py_XDECREF(tmp); } while (0) |
| |
| |
| #define UNWIND_BLOCK(b) \ |
| while (STACK_LEVEL() > (b)->b_level) { \ |
| PyObject *v = POP(); \ |
| Py_XDECREF(v); \ |
| } |
| |
| #define UNWIND_EXCEPT_HANDLER(b) \ |
| { \ |
| PyObject *type, *value, *traceback; \ |
| assert(STACK_LEVEL() >= (b)->b_level + 3); \ |
| while (STACK_LEVEL() > (b)->b_level + 3) { \ |
| value = POP(); \ |
| Py_XDECREF(value); \ |
| } \ |
| type = tstate->exc_type; \ |
| value = tstate->exc_value; \ |
| traceback = tstate->exc_traceback; \ |
| tstate->exc_type = POP(); \ |
| tstate->exc_value = POP(); \ |
| tstate->exc_traceback = POP(); \ |
| Py_XDECREF(type); \ |
| Py_XDECREF(value); \ |
| Py_XDECREF(traceback); \ |
| } |
| |
| #define SAVE_EXC_STATE() \ |
| { \ |
| PyObject *type, *value, *traceback; \ |
| Py_XINCREF(tstate->exc_type); \ |
| Py_XINCREF(tstate->exc_value); \ |
| Py_XINCREF(tstate->exc_traceback); \ |
| type = f->f_exc_type; \ |
| value = f->f_exc_value; \ |
| traceback = f->f_exc_traceback; \ |
| f->f_exc_type = tstate->exc_type; \ |
| f->f_exc_value = tstate->exc_value; \ |
| f->f_exc_traceback = tstate->exc_traceback; \ |
| Py_XDECREF(type); \ |
| Py_XDECREF(value); \ |
| Py_XDECREF(traceback); \ |
| } |
| |
| #define SWAP_EXC_STATE() \ |
| { \ |
| PyObject *tmp; \ |
| tmp = tstate->exc_type; \ |
| tstate->exc_type = f->f_exc_type; \ |
| f->f_exc_type = tmp; \ |
| tmp = tstate->exc_value; \ |
| tstate->exc_value = f->f_exc_value; \ |
| f->f_exc_value = tmp; \ |
| tmp = tstate->exc_traceback; \ |
| tstate->exc_traceback = f->f_exc_traceback; \ |
| f->f_exc_traceback = tmp; \ |
| } |
| |
| /* Start of code */ |
| |
| if (f == NULL) |
| return NULL; |
| |
| /* push frame */ |
| if (Py_EnterRecursiveCall("")) |
| return NULL; |
| |
| tstate->frame = f; |
| |
| if (tstate->use_tracing) { |
| if (tstate->c_tracefunc != NULL) { |
| /* tstate->c_tracefunc, if defined, is a |
| function that will be called on *every* entry |
| to a code block. Its return value, if not |
| None, is a function that will be called at |
| the start of each executed line of code. |
| (Actually, the function must return itself |
| in order to continue tracing.) The trace |
| functions are called with three arguments: |
| a pointer to the current frame, a string |
| indicating why the function is called, and |
| an argument which depends on the situation. |
| The global trace function is also called |
| whenever an exception is detected. */ |
| if (call_trace_protected(tstate->c_tracefunc, |
| tstate->c_traceobj, |
| f, PyTrace_CALL, Py_None)) { |
| /* Trace function raised an error */ |
| goto exit_eval_frame; |
| } |
| } |
| if (tstate->c_profilefunc != NULL) { |
| /* Similar for c_profilefunc, except it needn't |
| return itself and isn't called for "line" events */ |
| if (call_trace_protected(tstate->c_profilefunc, |
| tstate->c_profileobj, |
| f, PyTrace_CALL, Py_None)) { |
| /* Profile function raised an error */ |
| goto exit_eval_frame; |
| } |
| } |
| } |
| |
| co = f->f_code; |
| names = co->co_names; |
| consts = co->co_consts; |
| fastlocals = f->f_localsplus; |
| freevars = f->f_localsplus + co->co_nlocals; |
| first_instr = (unsigned char*) PyBytes_AS_STRING(co->co_code); |
| /* An explanation is in order for the next line. |
| |
| f->f_lasti now refers to the index of the last instruction |
| executed. You might think this was obvious from the name, but |
| this wasn't always true before 2.3! PyFrame_New now sets |
| f->f_lasti to -1 (i.e. the index *before* the first instruction) |
| and YIELD_VALUE doesn't fiddle with f_lasti any more. So this |
| does work. Promise. |
| |
| When the PREDICT() macros are enabled, some opcode pairs follow in |
| direct succession without updating f->f_lasti. A successful |
| prediction effectively links the two codes together as if they |
| were a single new opcode; accordingly,f->f_lasti will point to |
| the first code in the pair (for instance, GET_ITER followed by |
| FOR_ITER is effectively a single opcode and f->f_lasti will point |
| at to the beginning of the combined pair.) |
| */ |
| next_instr = first_instr + f->f_lasti + 1; |
| stack_pointer = f->f_stacktop; |
| assert(stack_pointer != NULL); |
| f->f_stacktop = NULL; /* remains NULL unless yield suspends frame */ |
| |
| if (co->co_flags & CO_GENERATOR && !throwflag) { |
| if (f->f_exc_type != NULL && f->f_exc_type != Py_None) { |
| /* We were in an except handler when we left, |
| restore the exception state which was put aside |
| (see YIELD_VALUE). */ |
| SWAP_EXC_STATE(); |
| } |
| else { |
| SAVE_EXC_STATE(); |
| } |
| } |
| |
| #ifdef LLTRACE |
| lltrace = PyDict_GetItemString(f->f_globals, "__lltrace__") != NULL; |
| #endif |
| #if defined(Py_DEBUG) || defined(LLTRACE) |
| { |
| PyObject *error_type, *error_value, *error_traceback; |
| PyErr_Fetch(&error_type, &error_value, &error_traceback); |
| filename = _PyUnicode_AsString(co->co_filename); |
| if (filename == NULL && tstate->overflowed) { |
| /* maximum recursion depth exceeded */ |
| goto exit_eval_frame; |
| } |
| PyErr_Restore(error_type, error_value, error_traceback); |
| } |
| #endif |
| |
| why = WHY_NOT; |
| err = 0; |
| x = Py_None; /* Not a reference, just anything non-NULL */ |
| w = NULL; |
| |
| if (throwflag) { /* support for generator.throw() */ |
| why = WHY_EXCEPTION; |
| goto on_error; |
| } |
| |
| for (;;) { |
| #ifdef WITH_TSC |
| if (inst1 == 0) { |
| /* Almost surely, the opcode executed a break |
| or a continue, preventing inst1 from being set |
| on the way out of the loop. |
| */ |
| READ_TIMESTAMP(inst1); |
| loop1 = inst1; |
| } |
| dump_tsc(opcode, ticked, inst0, inst1, loop0, loop1, |
| intr0, intr1); |
| ticked = 0; |
| inst1 = 0; |
| intr0 = 0; |
| intr1 = 0; |
| READ_TIMESTAMP(loop0); |
| #endif |
| assert(stack_pointer >= f->f_valuestack); /* else underflow */ |
| assert(STACK_LEVEL() <= co->co_stacksize); /* else overflow */ |
| |
| /* Do periodic things. Doing this every time through |
| the loop would add too much overhead, so we do it |
| only every Nth instruction. We also do it if |
| ``pendingcalls_to_do'' is set, i.e. when an asynchronous |
| event needs attention (e.g. a signal handler or |
| async I/O handler); see Py_AddPendingCall() and |
| Py_MakePendingCalls() above. */ |
| |
| if (_Py_atomic_load_relaxed(&eval_breaker)) { |
| if (*next_instr == SETUP_FINALLY) { |
| /* Make the last opcode before |
| a try: finally: block uninterruptable. */ |
| goto fast_next_opcode; |
| } |
| tstate->tick_counter++; |
| #ifdef WITH_TSC |
| ticked = 1; |
| #endif |
| if (_Py_atomic_load_relaxed(&pendingcalls_to_do)) { |
| if (Py_MakePendingCalls() < 0) { |
| why = WHY_EXCEPTION; |
| goto on_error; |
| } |
| } |
| #ifdef WITH_THREAD |
| if (_Py_atomic_load_relaxed(&gil_drop_request)) { |
| /* Give another thread a chance */ |
| if (PyThreadState_Swap(NULL) != tstate) |
| Py_FatalError("ceval: tstate mix-up"); |
| drop_gil(tstate); |
| |
| /* Other threads may run now */ |
| |
| take_gil(tstate); |
| if (PyThreadState_Swap(tstate) != NULL) |
| Py_FatalError("ceval: orphan tstate"); |
| } |
| #endif |
| /* Check for asynchronous exceptions. */ |
| if (tstate->async_exc != NULL) { |
| x = tstate->async_exc; |
| tstate->async_exc = NULL; |
| UNSIGNAL_ASYNC_EXC(); |
| PyErr_SetNone(x); |
| Py_DECREF(x); |
| why = WHY_EXCEPTION; |
| goto on_error; |
| } |
| } |
| |
| fast_next_opcode: |
| f->f_lasti = INSTR_OFFSET(); |
| |
| /* line-by-line tracing support */ |
| |
| if (_Py_TracingPossible && |
| tstate->c_tracefunc != NULL && !tstate->tracing) { |
| /* see maybe_call_line_trace |
| for expository comments */ |
| f->f_stacktop = stack_pointer; |
| |
| err = maybe_call_line_trace(tstate->c_tracefunc, |
| tstate->c_traceobj, |
| f, &instr_lb, &instr_ub, |
| &instr_prev); |
| /* Reload possibly changed frame fields */ |
| JUMPTO(f->f_lasti); |
| if (f->f_stacktop != NULL) { |
| stack_pointer = f->f_stacktop; |
| f->f_stacktop = NULL; |
| } |
| if (err) { |
| /* trace function raised an exception */ |
| goto on_error; |
| } |
| } |
| |
| /* Extract opcode and argument */ |
| |
| opcode = NEXTOP(); |
| oparg = 0; /* allows oparg to be stored in a register because |
| it doesn't have to be remembered across a full loop */ |
| if (HAS_ARG(opcode)) |
| oparg = NEXTARG(); |
| dispatch_opcode: |
| #ifdef DYNAMIC_EXECUTION_PROFILE |
| #ifdef DXPAIRS |
| dxpairs[lastopcode][opcode]++; |
| lastopcode = opcode; |
| #endif |
| dxp[opcode]++; |
| #endif |
| |
| #ifdef LLTRACE |
| /* Instruction tracing */ |
| |
| if (lltrace) { |
| if (HAS_ARG(opcode)) { |
| printf("%d: %d, %d\n", |
| f->f_lasti, opcode, oparg); |
| } |
| else { |
| printf("%d: %d\n", |
| f->f_lasti, opcode); |
| } |
| } |
| #endif |
| |
| /* Main switch on opcode */ |
| READ_TIMESTAMP(inst0); |
| |
| switch (opcode) { |
| |
| /* BEWARE! |
| It is essential that any operation that fails sets either |
| x to NULL, err to nonzero, or why to anything but WHY_NOT, |
| and that no operation that succeeds does this! */ |
| |
| /* case STOP_CODE: this is an error! */ |
| |
| TARGET(NOP) |
| FAST_DISPATCH(); |
| |
| TARGET(LOAD_FAST) |
| x = GETLOCAL(oparg); |
| if (x != NULL) { |
| Py_INCREF(x); |
| PUSH(x); |
| FAST_DISPATCH(); |
| } |
| format_exc_check_arg(PyExc_UnboundLocalError, |
| UNBOUNDLOCAL_ERROR_MSG, |
| PyTuple_GetItem(co->co_varnames, oparg)); |
| break; |
| |
| TARGET(LOAD_CONST) |
| x = GETITEM(consts, oparg); |
| Py_INCREF(x); |
| PUSH(x); |
| FAST_DISPATCH(); |
| |
| PREDICTED_WITH_ARG(STORE_FAST); |
| TARGET(STORE_FAST) |
| v = POP(); |
| SETLOCAL(oparg, v); |
| FAST_DISPATCH(); |
| |
| TARGET(POP_TOP) |
| v = POP(); |
| Py_DECREF(v); |
| FAST_DISPATCH(); |
| |
| TARGET(ROT_TWO) |
| v = TOP(); |
| w = SECOND(); |
| SET_TOP(w); |
| SET_SECOND(v); |
| FAST_DISPATCH(); |
| |
| TARGET(ROT_THREE) |
| v = TOP(); |
| w = SECOND(); |
| x = THIRD(); |
| SET_TOP(w); |
| SET_SECOND(x); |
| SET_THIRD(v); |
| FAST_DISPATCH(); |
| |
| TARGET(DUP_TOP) |
| v = TOP(); |
| Py_INCREF(v); |
| PUSH(v); |
| FAST_DISPATCH(); |
| |
| TARGET(DUP_TOP_TWO) |
| x = TOP(); |
| Py_INCREF(x); |
| w = SECOND(); |
| Py_INCREF(w); |
| STACKADJ(2); |
| SET_TOP(x); |
| SET_SECOND(w); |
| FAST_DISPATCH(); |
| |
| TARGET(UNARY_POSITIVE) |
| v = TOP(); |
| x = PyNumber_Positive(v); |
| Py_DECREF(v); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(UNARY_NEGATIVE) |
| v = TOP(); |
| x = PyNumber_Negative(v); |
| Py_DECREF(v); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(UNARY_NOT) |
| v = TOP(); |
| err = PyObject_IsTrue(v); |
| Py_DECREF(v); |
| if (err == 0) { |
| Py_INCREF(Py_True); |
| SET_TOP(Py_True); |
| DISPATCH(); |
| } |
| else if (err > 0) { |
| Py_INCREF(Py_False); |
| SET_TOP(Py_False); |
| err = 0; |
| DISPATCH(); |
| } |
| STACKADJ(-1); |
| break; |
| |
| TARGET(UNARY_INVERT) |
| v = TOP(); |
| x = PyNumber_Invert(v); |
| Py_DECREF(v); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(BINARY_POWER) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_Power(v, w, Py_None); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(BINARY_MULTIPLY) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_Multiply(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(BINARY_TRUE_DIVIDE) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_TrueDivide(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(BINARY_FLOOR_DIVIDE) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_FloorDivide(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(BINARY_MODULO) |
| w = POP(); |
| v = TOP(); |
| if (PyUnicode_CheckExact(v)) |
| x = PyUnicode_Format(v, w); |
| else |
| x = PyNumber_Remainder(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(BINARY_ADD) |
| w = POP(); |
| v = TOP(); |
| if (PyUnicode_CheckExact(v) && |
| PyUnicode_CheckExact(w)) { |
| x = unicode_concatenate(v, w, f, next_instr); |
| /* unicode_concatenate consumed the ref to v */ |
| goto skip_decref_vx; |
| } |
| else { |
| x = PyNumber_Add(v, w); |
| } |
| Py_DECREF(v); |
| skip_decref_vx: |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(BINARY_SUBTRACT) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_Subtract(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(BINARY_SUBSCR) |
| w = POP(); |
| v = TOP(); |
| x = PyObject_GetItem(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(BINARY_LSHIFT) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_Lshift(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(BINARY_RSHIFT) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_Rshift(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(BINARY_AND) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_And(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(BINARY_XOR) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_Xor(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(BINARY_OR) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_Or(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(LIST_APPEND) |
| w = POP(); |
| v = PEEK(oparg); |
| err = PyList_Append(v, w); |
| Py_DECREF(w); |
| if (err == 0) { |
| PREDICT(JUMP_ABSOLUTE); |
| DISPATCH(); |
| } |
| break; |
| |
| TARGET(SET_ADD) |
| w = POP(); |
| v = stack_pointer[-oparg]; |
| err = PySet_Add(v, w); |
| Py_DECREF(w); |
| if (err == 0) { |
| PREDICT(JUMP_ABSOLUTE); |
| DISPATCH(); |
| } |
| break; |
| |
| TARGET(INPLACE_POWER) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_InPlacePower(v, w, Py_None); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(INPLACE_MULTIPLY) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_InPlaceMultiply(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(INPLACE_TRUE_DIVIDE) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_InPlaceTrueDivide(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(INPLACE_FLOOR_DIVIDE) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_InPlaceFloorDivide(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(INPLACE_MODULO) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_InPlaceRemainder(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(INPLACE_ADD) |
| w = POP(); |
| v = TOP(); |
| if (PyUnicode_CheckExact(v) && |
| PyUnicode_CheckExact(w)) { |
| x = unicode_concatenate(v, w, f, next_instr); |
| /* unicode_concatenate consumed the ref to v */ |
| goto skip_decref_v; |
| } |
| else { |
| x = PyNumber_InPlaceAdd(v, w); |
| } |
| Py_DECREF(v); |
| skip_decref_v: |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(INPLACE_SUBTRACT) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_InPlaceSubtract(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(INPLACE_LSHIFT) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_InPlaceLshift(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(INPLACE_RSHIFT) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_InPlaceRshift(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(INPLACE_AND) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_InPlaceAnd(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(INPLACE_XOR) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_InPlaceXor(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(INPLACE_OR) |
| w = POP(); |
| v = TOP(); |
| x = PyNumber_InPlaceOr(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(STORE_SUBSCR) |
| w = TOP(); |
| v = SECOND(); |
| u = THIRD(); |
| STACKADJ(-3); |
| /* v[w] = u */ |
| err = PyObject_SetItem(v, w, u); |
| Py_DECREF(u); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| if (err == 0) DISPATCH(); |
| break; |
| |
| TARGET(DELETE_SUBSCR) |
| w = TOP(); |
| v = SECOND(); |
| STACKADJ(-2); |
| /* del v[w] */ |
| err = PyObject_DelItem(v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| if (err == 0) DISPATCH(); |
| break; |
| |
| TARGET(PRINT_EXPR) |
| v = POP(); |
| w = PySys_GetObject("displayhook"); |
| if (w == NULL) { |
| PyErr_SetString(PyExc_RuntimeError, |
| "lost sys.displayhook"); |
| err = -1; |
| x = NULL; |
| } |
| if (err == 0) { |
| x = PyTuple_Pack(1, v); |
| if (x == NULL) |
| err = -1; |
| } |
| if (err == 0) { |
| w = PyEval_CallObject(w, x); |
| Py_XDECREF(w); |
| if (w == NULL) |
| err = -1; |
| } |
| Py_DECREF(v); |
| Py_XDECREF(x); |
| break; |
| |
| #ifdef CASE_TOO_BIG |
| default: switch (opcode) { |
| #endif |
| TARGET(RAISE_VARARGS) |
| v = w = NULL; |
| switch (oparg) { |
| case 2: |
| v = POP(); /* cause */ |
| case 1: |
| w = POP(); /* exc */ |
| case 0: /* Fallthrough */ |
| why = do_raise(w, v); |
| break; |
| default: |
| PyErr_SetString(PyExc_SystemError, |
| "bad RAISE_VARARGS oparg"); |
| why = WHY_EXCEPTION; |
| break; |
| } |
| break; |
| |
| TARGET(STORE_LOCALS) |
| x = POP(); |
| v = f->f_locals; |
| Py_XDECREF(v); |
| f->f_locals = x; |
| DISPATCH(); |
| |
| TARGET(RETURN_VALUE) |
| retval = POP(); |
| why = WHY_RETURN; |
| goto fast_block_end; |
| |
| TARGET(YIELD_VALUE) |
| retval = POP(); |
| f->f_stacktop = stack_pointer; |
| why = WHY_YIELD; |
| /* Put aside the current exception state and restore |
| that of the calling frame. This only serves when |
| "yield" is used inside an except handler. */ |
| SWAP_EXC_STATE(); |
| goto fast_yield; |
| |
| TARGET(POP_EXCEPT) |
| { |
| PyTryBlock *b = PyFrame_BlockPop(f); |
| if (b->b_type != EXCEPT_HANDLER) { |
| PyErr_SetString(PyExc_SystemError, |
| "popped block is not an except handler"); |
| why = WHY_EXCEPTION; |
| break; |
| } |
| UNWIND_EXCEPT_HANDLER(b); |
| } |
| DISPATCH(); |
| |
| TARGET(POP_BLOCK) |
| { |
| PyTryBlock *b = PyFrame_BlockPop(f); |
| UNWIND_BLOCK(b); |
| } |
| DISPATCH(); |
| |
| PREDICTED(END_FINALLY); |
| TARGET(END_FINALLY) |
| v = POP(); |
| if (PyLong_Check(v)) { |
| why = (enum why_code) PyLong_AS_LONG(v); |
| assert(why != WHY_YIELD); |
| if (why == WHY_RETURN || |
| why == WHY_CONTINUE) |
| retval = POP(); |
| if (why == WHY_SILENCED) { |
| /* An exception was silenced by 'with', we must |
| manually unwind the EXCEPT_HANDLER block which was |
| created when the exception was caught, otherwise |
| the stack will be in an inconsistent state. */ |
| PyTryBlock *b = PyFrame_BlockPop(f); |
| assert(b->b_type == EXCEPT_HANDLER); |
| UNWIND_EXCEPT_HANDLER(b); |
| why = WHY_NOT; |
| } |
| } |
| else if (PyExceptionClass_Check(v)) { |
| w = POP(); |
| u = POP(); |
| PyErr_Restore(v, w, u); |
| why = WHY_RERAISE; |
| break; |
| } |
| else if (v != Py_None) { |
| PyErr_SetString(PyExc_SystemError, |
| "'finally' pops bad exception"); |
| why = WHY_EXCEPTION; |
| } |
| Py_DECREF(v); |
| break; |
| |
| TARGET(LOAD_BUILD_CLASS) |
| x = PyDict_GetItemString(f->f_builtins, |
| "__build_class__"); |
| if (x == NULL) { |
| PyErr_SetString(PyExc_ImportError, |
| "__build_class__ not found"); |
| break; |
| } |
| Py_INCREF(x); |
| PUSH(x); |
| break; |
| |
| TARGET(STORE_NAME) |
| w = GETITEM(names, oparg); |
| v = POP(); |
| if ((x = f->f_locals) != NULL) { |
| if (PyDict_CheckExact(x)) |
| err = PyDict_SetItem(x, w, v); |
| else |
| err = PyObject_SetItem(x, w, v); |
| Py_DECREF(v); |
| if (err == 0) DISPATCH(); |
| break; |
| } |
| PyErr_Format(PyExc_SystemError, |
| "no locals found when storing %R", w); |
| break; |
| |
| TARGET(DELETE_NAME) |
| w = GETITEM(names, oparg); |
| if ((x = f->f_locals) != NULL) { |
| if ((err = PyObject_DelItem(x, w)) != 0) |
| format_exc_check_arg(PyExc_NameError, |
| NAME_ERROR_MSG, |
| w); |
| break; |
| } |
| PyErr_Format(PyExc_SystemError, |
| "no locals when deleting %R", w); |
| break; |
| |
| PREDICTED_WITH_ARG(UNPACK_SEQUENCE); |
| TARGET(UNPACK_SEQUENCE) |
| v = POP(); |
| if (PyTuple_CheckExact(v) && |
| PyTuple_GET_SIZE(v) == oparg) { |
| PyObject **items = \ |
| ((PyTupleObject *)v)->ob_item; |
| while (oparg--) { |
| w = items[oparg]; |
| Py_INCREF(w); |
| PUSH(w); |
| } |
| Py_DECREF(v); |
| DISPATCH(); |
| } else if (PyList_CheckExact(v) && |
| PyList_GET_SIZE(v) == oparg) { |
| PyObject **items = \ |
| ((PyListObject *)v)->ob_item; |
| while (oparg--) { |
| w = items[oparg]; |
| Py_INCREF(w); |
| PUSH(w); |
| } |
| } else if (unpack_iterable(v, oparg, -1, |
| stack_pointer + oparg)) { |
| STACKADJ(oparg); |
| } else { |
| /* unpack_iterable() raised an exception */ |
| why = WHY_EXCEPTION; |
| } |
| Py_DECREF(v); |
| break; |
| |
| TARGET(UNPACK_EX) |
| { |
| int totalargs = 1 + (oparg & 0xFF) + (oparg >> 8); |
| v = POP(); |
| |
| if (unpack_iterable(v, oparg & 0xFF, oparg >> 8, |
| stack_pointer + totalargs)) { |
| stack_pointer += totalargs; |
| } else { |
| why = WHY_EXCEPTION; |
| } |
| Py_DECREF(v); |
| break; |
| } |
| |
| TARGET(STORE_ATTR) |
| w = GETITEM(names, oparg); |
| v = TOP(); |
| u = SECOND(); |
| STACKADJ(-2); |
| err = PyObject_SetAttr(v, w, u); /* v.w = u */ |
| Py_DECREF(v); |
| Py_DECREF(u); |
| if (err == 0) DISPATCH(); |
| break; |
| |
| TARGET(DELETE_ATTR) |
| w = GETITEM(names, oparg); |
| v = POP(); |
| err = PyObject_SetAttr(v, w, (PyObject *)NULL); |
| /* del v.w */ |
| Py_DECREF(v); |
| break; |
| |
| TARGET(STORE_GLOBAL) |
| w = GETITEM(names, oparg); |
| v = POP(); |
| err = PyDict_SetItem(f->f_globals, w, v); |
| Py_DECREF(v); |
| if (err == 0) DISPATCH(); |
| break; |
| |
| TARGET(DELETE_GLOBAL) |
| w = GETITEM(names, oparg); |
| if ((err = PyDict_DelItem(f->f_globals, w)) != 0) |
| format_exc_check_arg( |
| PyExc_NameError, GLOBAL_NAME_ERROR_MSG, w); |
| break; |
| |
| TARGET(LOAD_NAME) |
| w = GETITEM(names, oparg); |
| if ((v = f->f_locals) == NULL) { |
| PyErr_Format(PyExc_SystemError, |
| "no locals when loading %R", w); |
| why = WHY_EXCEPTION; |
| break; |
| } |
| if (PyDict_CheckExact(v)) { |
| x = PyDict_GetItem(v, w); |
| Py_XINCREF(x); |
| } |
| else { |
| x = PyObject_GetItem(v, w); |
| if (x == NULL && PyErr_Occurred()) { |
| if (!PyErr_ExceptionMatches( |
| PyExc_KeyError)) |
| break; |
| PyErr_Clear(); |
| } |
| } |
| if (x == NULL) { |
| x = PyDict_GetItem(f->f_globals, w); |
| if (x == NULL) { |
| x = PyDict_GetItem(f->f_builtins, w); |
| if (x == NULL) { |
| format_exc_check_arg( |
| PyExc_NameError, |
| NAME_ERROR_MSG, w); |
| break; |
| } |
| } |
| Py_INCREF(x); |
| } |
| PUSH(x); |
| DISPATCH(); |
| |
| TARGET(LOAD_GLOBAL) |
| w = GETITEM(names, oparg); |
| if (PyUnicode_CheckExact(w)) { |
| /* Inline the PyDict_GetItem() calls. |
| WARNING: this is an extreme speed hack. |
| Do not try this at home. */ |
| Py_hash_t hash = ((PyUnicodeObject *)w)->hash; |
| if (hash != -1) { |
| PyDictObject *d; |
| PyDictEntry *e; |
| d = (PyDictObject *)(f->f_globals); |
| e = d->ma_lookup(d, w, hash); |
| if (e == NULL) { |
| x = NULL; |
| break; |
| } |
| x = e->me_value; |
| if (x != NULL) { |
| Py_INCREF(x); |
| PUSH(x); |
| DISPATCH(); |
| } |
| d = (PyDictObject *)(f->f_builtins); |
| e = d->ma_lookup(d, w, hash); |
| if (e == NULL) { |
| x = NULL; |
| break; |
| } |
| x = e->me_value; |
| if (x != NULL) { |
| Py_INCREF(x); |
| PUSH(x); |
| DISPATCH(); |
| } |
| goto load_global_error; |
| } |
| } |
| /* This is the un-inlined version of the code above */ |
| x = PyDict_GetItem(f->f_globals, w); |
| if (x == NULL) { |
| x = PyDict_GetItem(f->f_builtins, w); |
| if (x == NULL) { |
| load_global_error: |
| format_exc_check_arg( |
| PyExc_NameError, |
| GLOBAL_NAME_ERROR_MSG, w); |
| break; |
| } |
| } |
| Py_INCREF(x); |
| PUSH(x); |
| DISPATCH(); |
| |
| TARGET(DELETE_FAST) |
| x = GETLOCAL(oparg); |
| if (x != NULL) { |
| SETLOCAL(oparg, NULL); |
| DISPATCH(); |
| } |
| format_exc_check_arg( |
| PyExc_UnboundLocalError, |
| UNBOUNDLOCAL_ERROR_MSG, |
| PyTuple_GetItem(co->co_varnames, oparg) |
| ); |
| break; |
| |
| TARGET(DELETE_DEREF) |
| x = freevars[oparg]; |
| if (PyCell_GET(x) != NULL) { |
| PyCell_Set(x, NULL); |
| DISPATCH(); |
| } |
| err = -1; |
| format_exc_unbound(co, oparg); |
| break; |
| |
| TARGET(LOAD_CLOSURE) |
| x = freevars[oparg]; |
| Py_INCREF(x); |
| PUSH(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(LOAD_DEREF) |
| x = freevars[oparg]; |
| w = PyCell_Get(x); |
| if (w != NULL) { |
| PUSH(w); |
| DISPATCH(); |
| } |
| err = -1; |
| format_exc_unbound(co, oparg); |
| break; |
| |
| TARGET(STORE_DEREF) |
| w = POP(); |
| x = freevars[oparg]; |
| PyCell_Set(x, w); |
| Py_DECREF(w); |
| DISPATCH(); |
| |
| TARGET(BUILD_TUPLE) |
| x = PyTuple_New(oparg); |
| if (x != NULL) { |
| for (; --oparg >= 0;) { |
| w = POP(); |
| PyTuple_SET_ITEM(x, oparg, w); |
| } |
| PUSH(x); |
| DISPATCH(); |
| } |
| break; |
| |
| TARGET(BUILD_LIST) |
| x = PyList_New(oparg); |
| if (x != NULL) { |
| for (; --oparg >= 0;) { |
| w = POP(); |
| PyList_SET_ITEM(x, oparg, w); |
| } |
| PUSH(x); |
| DISPATCH(); |
| } |
| break; |
| |
| TARGET(BUILD_SET) |
| x = PySet_New(NULL); |
| if (x != NULL) { |
| for (; --oparg >= 0;) { |
| w = POP(); |
| if (err == 0) |
| err = PySet_Add(x, w); |
| Py_DECREF(w); |
| } |
| if (err != 0) { |
| Py_DECREF(x); |
| break; |
| } |
| PUSH(x); |
| DISPATCH(); |
| } |
| break; |
| |
| TARGET(BUILD_MAP) |
| x = _PyDict_NewPresized((Py_ssize_t)oparg); |
| PUSH(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(STORE_MAP) |
| w = TOP(); /* key */ |
| u = SECOND(); /* value */ |
| v = THIRD(); /* dict */ |
| STACKADJ(-2); |
| assert (PyDict_CheckExact(v)); |
| err = PyDict_SetItem(v, w, u); /* v[w] = u */ |
| Py_DECREF(u); |
| Py_DECREF(w); |
| if (err == 0) DISPATCH(); |
| break; |
| |
| TARGET(MAP_ADD) |
| w = TOP(); /* key */ |
| u = SECOND(); /* value */ |
| STACKADJ(-2); |
| v = stack_pointer[-oparg]; /* dict */ |
| assert (PyDict_CheckExact(v)); |
| err = PyDict_SetItem(v, w, u); /* v[w] = u */ |
| Py_DECREF(u); |
| Py_DECREF(w); |
| if (err == 0) { |
| PREDICT(JUMP_ABSOLUTE); |
| DISPATCH(); |
| } |
| break; |
| |
| TARGET(LOAD_ATTR) |
| w = GETITEM(names, oparg); |
| v = TOP(); |
| x = PyObject_GetAttr(v, w); |
| Py_DECREF(v); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(COMPARE_OP) |
| w = POP(); |
| v = TOP(); |
| x = cmp_outcome(oparg, v, w); |
| Py_DECREF(v); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x == NULL) break; |
| PREDICT(POP_JUMP_IF_FALSE); |
| PREDICT(POP_JUMP_IF_TRUE); |
| DISPATCH(); |
| |
| TARGET(IMPORT_NAME) |
| w = GETITEM(names, oparg); |
| x = PyDict_GetItemString(f->f_builtins, "__import__"); |
| if (x == NULL) { |
| PyErr_SetString(PyExc_ImportError, |
| "__import__ not found"); |
| break; |
| } |
| Py_INCREF(x); |
| v = POP(); |
| u = TOP(); |
| if (PyLong_AsLong(u) != -1 || PyErr_Occurred()) |
| w = PyTuple_Pack(5, |
| w, |
| f->f_globals, |
| f->f_locals == NULL ? |
| Py_None : f->f_locals, |
| v, |
| u); |
| else |
| w = PyTuple_Pack(4, |
| w, |
| f->f_globals, |
| f->f_locals == NULL ? |
| Py_None : f->f_locals, |
| v); |
| Py_DECREF(v); |
| Py_DECREF(u); |
| if (w == NULL) { |
| u = POP(); |
| Py_DECREF(x); |
| x = NULL; |
| break; |
| } |
| READ_TIMESTAMP(intr0); |
| v = x; |
| x = PyEval_CallObject(v, w); |
| Py_DECREF(v); |
| READ_TIMESTAMP(intr1); |
| Py_DECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(IMPORT_STAR) |
| v = POP(); |
| PyFrame_FastToLocals(f); |
| if ((x = f->f_locals) == NULL) { |
| PyErr_SetString(PyExc_SystemError, |
| "no locals found during 'import *'"); |
| break; |
| } |
| READ_TIMESTAMP(intr0); |
| err = import_all_from(x, v); |
| READ_TIMESTAMP(intr1); |
| PyFrame_LocalsToFast(f, 0); |
| Py_DECREF(v); |
| if (err == 0) DISPATCH(); |
| break; |
| |
| TARGET(IMPORT_FROM) |
| w = GETITEM(names, oparg); |
| v = TOP(); |
| READ_TIMESTAMP(intr0); |
| x = import_from(v, w); |
| READ_TIMESTAMP(intr1); |
| PUSH(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(JUMP_FORWARD) |
| JUMPBY(oparg); |
| FAST_DISPATCH(); |
| |
| PREDICTED_WITH_ARG(POP_JUMP_IF_FALSE); |
| TARGET(POP_JUMP_IF_FALSE) |
| w = POP(); |
| if (w == Py_True) { |
| Py_DECREF(w); |
| FAST_DISPATCH(); |
| } |
| if (w == Py_False) { |
| Py_DECREF(w); |
| JUMPTO(oparg); |
| FAST_DISPATCH(); |
| } |
| err = PyObject_IsTrue(w); |
| Py_DECREF(w); |
| if (err > 0) |
| err = 0; |
| else if (err == 0) |
| JUMPTO(oparg); |
| else |
| break; |
| DISPATCH(); |
| |
| PREDICTED_WITH_ARG(POP_JUMP_IF_TRUE); |
| TARGET(POP_JUMP_IF_TRUE) |
| w = POP(); |
| if (w == Py_False) { |
| Py_DECREF(w); |
| FAST_DISPATCH(); |
| } |
| if (w == Py_True) { |
| Py_DECREF(w); |
| JUMPTO(oparg); |
| FAST_DISPATCH(); |
| } |
| err = PyObject_IsTrue(w); |
| Py_DECREF(w); |
| if (err > 0) { |
| err = 0; |
| JUMPTO(oparg); |
| } |
| else if (err == 0) |
| ; |
| else |
| break; |
| DISPATCH(); |
| |
| TARGET(JUMP_IF_FALSE_OR_POP) |
| w = TOP(); |
| if (w == Py_True) { |
| STACKADJ(-1); |
| Py_DECREF(w); |
| FAST_DISPATCH(); |
| } |
| if (w == Py_False) { |
| JUMPTO(oparg); |
| FAST_DISPATCH(); |
| } |
| err = PyObject_IsTrue(w); |
| if (err > 0) { |
| STACKADJ(-1); |
| Py_DECREF(w); |
| err = 0; |
| } |
| else if (err == 0) |
| JUMPTO(oparg); |
| else |
| break; |
| DISPATCH(); |
| |
| TARGET(JUMP_IF_TRUE_OR_POP) |
| w = TOP(); |
| if (w == Py_False) { |
| STACKADJ(-1); |
| Py_DECREF(w); |
| FAST_DISPATCH(); |
| } |
| if (w == Py_True) { |
| JUMPTO(oparg); |
| FAST_DISPATCH(); |
| } |
| err = PyObject_IsTrue(w); |
| if (err > 0) { |
| err = 0; |
| JUMPTO(oparg); |
| } |
| else if (err == 0) { |
| STACKADJ(-1); |
| Py_DECREF(w); |
| } |
| else |
| break; |
| DISPATCH(); |
| |
| PREDICTED_WITH_ARG(JUMP_ABSOLUTE); |
| TARGET(JUMP_ABSOLUTE) |
| JUMPTO(oparg); |
| #if FAST_LOOPS |
| /* Enabling this path speeds-up all while and for-loops by bypassing |
| the per-loop checks for signals. By default, this should be turned-off |
| because it prevents detection of a control-break in tight loops like |
| "while 1: pass". Compile with this option turned-on when you need |
| the speed-up and do not need break checking inside tight loops (ones |
| that contain only instructions ending with FAST_DISPATCH). |
| */ |
| FAST_DISPATCH(); |
| #else |
| DISPATCH(); |
| #endif |
| |
| TARGET(GET_ITER) |
| /* before: [obj]; after [getiter(obj)] */ |
| v = TOP(); |
| x = PyObject_GetIter(v); |
| Py_DECREF(v); |
| if (x != NULL) { |
| SET_TOP(x); |
| PREDICT(FOR_ITER); |
| DISPATCH(); |
| } |
| STACKADJ(-1); |
| break; |
| |
| PREDICTED_WITH_ARG(FOR_ITER); |
| TARGET(FOR_ITER) |
| /* before: [iter]; after: [iter, iter()] *or* [] */ |
| v = TOP(); |
| x = (*v->ob_type->tp_iternext)(v); |
| if (x != NULL) { |
| PUSH(x); |
| PREDICT(STORE_FAST); |
| PREDICT(UNPACK_SEQUENCE); |
| DISPATCH(); |
| } |
| if (PyErr_Occurred()) { |
| if (!PyErr_ExceptionMatches( |
| PyExc_StopIteration)) |
| break; |
| PyErr_Clear(); |
| } |
| /* iterator ended normally */ |
| x = v = POP(); |
| Py_DECREF(v); |
| JUMPBY(oparg); |
| DISPATCH(); |
| |
| TARGET(BREAK_LOOP) |
| why = WHY_BREAK; |
| goto fast_block_end; |
| |
| TARGET(CONTINUE_LOOP) |
| retval = PyLong_FromLong(oparg); |
| if (!retval) { |
| x = NULL; |
| break; |
| } |
| why = WHY_CONTINUE; |
| goto fast_block_end; |
| |
| TARGET_WITH_IMPL(SETUP_LOOP, _setup_finally) |
| TARGET_WITH_IMPL(SETUP_EXCEPT, _setup_finally) |
| TARGET(SETUP_FINALLY) |
| _setup_finally: |
| /* NOTE: If you add any new block-setup opcodes that |
| are not try/except/finally handlers, you may need |
| to update the PyGen_NeedsFinalizing() function. |
| */ |
| |
| PyFrame_BlockSetup(f, opcode, INSTR_OFFSET() + oparg, |
| STACK_LEVEL()); |
| DISPATCH(); |
| |
| TARGET(SETUP_WITH) |
| { |
| static PyObject *exit, *enter; |
| w = TOP(); |
| x = special_lookup(w, "__exit__", &exit); |
| if (!x) |
| break; |
| SET_TOP(x); |
| u = special_lookup(w, "__enter__", &enter); |
| Py_DECREF(w); |
| if (!u) { |
| x = NULL; |
| break; |
| } |
| x = PyObject_CallFunctionObjArgs(u, NULL); |
| Py_DECREF(u); |
| if (!x) |
| break; |
| /* Setup the finally block before pushing the result |
| of __enter__ on the stack. */ |
| PyFrame_BlockSetup(f, SETUP_FINALLY, INSTR_OFFSET() + oparg, |
| STACK_LEVEL()); |
| |
| PUSH(x); |
| DISPATCH(); |
| } |
| |
| TARGET(WITH_CLEANUP) |
| { |
| /* At the top of the stack are 1-3 values indicating |
| how/why we entered the finally clause: |
| - TOP = None |
| - (TOP, SECOND) = (WHY_{RETURN,CONTINUE}), retval |
| - TOP = WHY_*; no retval below it |
| - (TOP, SECOND, THIRD) = exc_info() |
| (FOURTH, FITH, SIXTH) = previous exception for EXCEPT_HANDLER |
| Below them is EXIT, the context.__exit__ bound method. |
| In the last case, we must call |
| EXIT(TOP, SECOND, THIRD) |
| otherwise we must call |
| EXIT(None, None, None) |
| |
| In the first two cases, we remove EXIT from the |
| stack, leaving the rest in the same order. In the |
| third case, we shift the bottom 3 values of the |
| stack down, and replace the empty spot with NULL. |
| |
| In addition, if the stack represents an exception, |
| *and* the function call returns a 'true' value, we |
| push WHY_SILENCED onto the stack. END_FINALLY will |
| then not re-raise the exception. (But non-local |
| gotos should still be resumed.) |
| */ |
| |
| PyObject *exit_func; |
| u = TOP(); |
| if (u == Py_None) { |
| (void)POP(); |
| exit_func = TOP(); |
| SET_TOP(u); |
| v = w = Py_None; |
| } |
| else if (PyLong_Check(u)) { |
| (void)POP(); |
| switch(PyLong_AsLong(u)) { |
| case WHY_RETURN: |
| case WHY_CONTINUE: |
| /* Retval in TOP. */ |
| exit_func = SECOND(); |
| SET_SECOND(TOP()); |
| SET_TOP(u); |
| break; |
| default: |
| exit_func = TOP(); |
| SET_TOP(u); |
| break; |
| } |
| u = v = w = Py_None; |
| } |
| else { |
| PyObject *tp, *exc, *tb; |
| PyTryBlock *block; |
| v = SECOND(); |
| w = THIRD(); |
| tp = FOURTH(); |
| exc = PEEK(5); |
| tb = PEEK(6); |
| exit_func = PEEK(7); |
| SET_VALUE(7, tb); |
| SET_VALUE(6, exc); |
| SET_VALUE(5, tp); |
| /* UNWIND_EXCEPT_HANDLER will pop this off. */ |
| SET_FOURTH(NULL); |
| /* We just shifted the stack down, so we have |
| to tell the except handler block that the |
| values are lower than it expects. */ |
| block = &f->f_blockstack[f->f_iblock - 1]; |
| assert(block->b_type == EXCEPT_HANDLER); |
| block->b_level--; |
| } |
| /* XXX Not the fastest way to call it... */ |
| x = PyObject_CallFunctionObjArgs(exit_func, u, v, w, |
| NULL); |
| Py_DECREF(exit_func); |
| if (x == NULL) |
| break; /* Go to error exit */ |
| |
| if (u != Py_None) |
| err = PyObject_IsTrue(x); |
| else |
| err = 0; |
| Py_DECREF(x); |
| |
| if (err < 0) |
| break; /* Go to error exit */ |
| else if (err > 0) { |
| err = 0; |
| /* There was an exception and a True return */ |
| PUSH(PyLong_FromLong((long) WHY_SILENCED)); |
| } |
| PREDICT(END_FINALLY); |
| break; |
| } |
| |
| TARGET(CALL_FUNCTION) |
| { |
| PyObject **sp; |
| PCALL(PCALL_ALL); |
| sp = stack_pointer; |
| #ifdef WITH_TSC |
| x = call_function(&sp, oparg, &intr0, &intr1); |
| #else |
| x = call_function(&sp, oparg); |
| #endif |
| stack_pointer = sp; |
| PUSH(x); |
| if (x != NULL) |
| DISPATCH(); |
| break; |
| } |
| |
| TARGET_WITH_IMPL(CALL_FUNCTION_VAR, _call_function_var_kw) |
| TARGET_WITH_IMPL(CALL_FUNCTION_KW, _call_function_var_kw) |
| TARGET(CALL_FUNCTION_VAR_KW) |
| _call_function_var_kw: |
| { |
| int na = oparg & 0xff; |
| int nk = (oparg>>8) & 0xff; |
| int flags = (opcode - CALL_FUNCTION) & 3; |
| int n = na + 2 * nk; |
| PyObject **pfunc, *func, **sp; |
| PCALL(PCALL_ALL); |
| if (flags & CALL_FLAG_VAR) |
| n++; |
| if (flags & CALL_FLAG_KW) |
| n++; |
| pfunc = stack_pointer - n - 1; |
| func = *pfunc; |
| |
| if (PyMethod_Check(func) |
| && PyMethod_GET_SELF(func) != NULL) { |
| PyObject *self = PyMethod_GET_SELF(func); |
| Py_INCREF(self); |
| func = PyMethod_GET_FUNCTION(func); |
| Py_INCREF(func); |
| Py_DECREF(*pfunc); |
| *pfunc = self; |
| na++; |
| n++; |
| } else |
| Py_INCREF(func); |
| sp = stack_pointer; |
| READ_TIMESTAMP(intr0); |
| x = ext_do_call(func, &sp, flags, na, nk); |
| READ_TIMESTAMP(intr1); |
| stack_pointer = sp; |
| Py_DECREF(func); |
| |
| while (stack_pointer > pfunc) { |
| w = POP(); |
| Py_DECREF(w); |
| } |
| PUSH(x); |
| if (x != NULL) |
| DISPATCH(); |
| break; |
| } |
| |
| TARGET_WITH_IMPL(MAKE_CLOSURE, _make_function) |
| TARGET(MAKE_FUNCTION) |
| _make_function: |
| { |
| int posdefaults = oparg & 0xff; |
| int kwdefaults = (oparg>>8) & 0xff; |
| int num_annotations = (oparg >> 16) & 0x7fff; |
| |
| v = POP(); /* code object */ |
| x = PyFunction_New(v, f->f_globals); |
| Py_DECREF(v); |
| |
| if (x != NULL && opcode == MAKE_CLOSURE) { |
| v = POP(); |
| if (PyFunction_SetClosure(x, v) != 0) { |
| /* Can't happen unless bytecode is corrupt. */ |
| why = WHY_EXCEPTION; |
| } |
| Py_DECREF(v); |
| } |
| |
| if (x != NULL && num_annotations > 0) { |
| Py_ssize_t name_ix; |
| u = POP(); /* names of args with annotations */ |
| v = PyDict_New(); |
| if (v == NULL) { |
| Py_DECREF(x); |
| x = NULL; |
| break; |
| } |
| name_ix = PyTuple_Size(u); |
| assert(num_annotations == name_ix+1); |
| while (name_ix > 0) { |
| --name_ix; |
| t = PyTuple_GET_ITEM(u, name_ix); |
| w = POP(); |
| /* XXX(nnorwitz): check for errors */ |
| PyDict_SetItem(v, t, w); |
| Py_DECREF(w); |
| } |
| |
| if (PyFunction_SetAnnotations(x, v) != 0) { |
| /* Can't happen unless |
| PyFunction_SetAnnotations changes. */ |
| why = WHY_EXCEPTION; |
| } |
| Py_DECREF(v); |
| Py_DECREF(u); |
| } |
| |
| /* XXX Maybe this should be a separate opcode? */ |
| if (x != NULL && posdefaults > 0) { |
| v = PyTuple_New(posdefaults); |
| if (v == NULL) { |
| Py_DECREF(x); |
| x = NULL; |
| break; |
| } |
| while (--posdefaults >= 0) { |
| w = POP(); |
| PyTuple_SET_ITEM(v, posdefaults, w); |
| } |
| if (PyFunction_SetDefaults(x, v) != 0) { |
| /* Can't happen unless |
| PyFunction_SetDefaults changes. */ |
| why = WHY_EXCEPTION; |
| } |
| Py_DECREF(v); |
| } |
| if (x != NULL && kwdefaults > 0) { |
| v = PyDict_New(); |
| if (v == NULL) { |
| Py_DECREF(x); |
| x = NULL; |
| break; |
| } |
| while (--kwdefaults >= 0) { |
| w = POP(); /* default value */ |
| u = POP(); /* kw only arg name */ |
| /* XXX(nnorwitz): check for errors */ |
| PyDict_SetItem(v, u, w); |
| Py_DECREF(w); |
| Py_DECREF(u); |
| } |
| if (PyFunction_SetKwDefaults(x, v) != 0) { |
| /* Can't happen unless |
| PyFunction_SetKwDefaults changes. */ |
| why = WHY_EXCEPTION; |
| } |
| Py_DECREF(v); |
| } |
| PUSH(x); |
| break; |
| } |
| |
| TARGET(BUILD_SLICE) |
| if (oparg == 3) |
| w = POP(); |
| else |
| w = NULL; |
| v = POP(); |
| u = TOP(); |
| x = PySlice_New(u, v, w); |
| Py_DECREF(u); |
| Py_DECREF(v); |
| Py_XDECREF(w); |
| SET_TOP(x); |
| if (x != NULL) DISPATCH(); |
| break; |
| |
| TARGET(EXTENDED_ARG) |
| opcode = NEXTOP(); |
| oparg = oparg<<16 | NEXTARG(); |
| goto dispatch_opcode; |
| |
| #if USE_COMPUTED_GOTOS |
| _unknown_opcode: |
| #endif |
| default: |
| fprintf(stderr, |
| "XXX lineno: %d, opcode: %d\n", |
| PyFrame_GetLineNumber(f), |
| opcode); |
| PyErr_SetString(PyExc_SystemError, "unknown opcode"); |
| why = WHY_EXCEPTION; |
| break; |
| |
| #ifdef CASE_TOO_BIG |
| } |
| #endif |
| |
| } /* switch */ |
| |
| on_error: |
| |
| READ_TIMESTAMP(inst1); |
| |
| /* Quickly continue if no error occurred */ |
| |
| if (why == WHY_NOT) { |
| if (err == 0 && x != NULL) { |
| #ifdef CHECKEXC |
| /* This check is expensive! */ |
| if (PyErr_Occurred()) |
| fprintf(stderr, |
| "XXX undetected error\n"); |
| else { |
| #endif |
| READ_TIMESTAMP(loop1); |
| continue; /* Normal, fast path */ |
| #ifdef CHECKEXC |
| } |
| #endif |
| } |
| why = WHY_EXCEPTION; |
| x = Py_None; |
| err = 0; |
| } |
| |
| /* Double-check exception status */ |
| |
| if (why == WHY_EXCEPTION || why == WHY_RERAISE) { |
| if (!PyErr_Occurred()) { |
| PyErr_SetString(PyExc_SystemError, |
| "error return without exception set"); |
| why = WHY_EXCEPTION; |
| } |
| } |
| #ifdef CHECKEXC |
| else { |
| /* This check is expensive! */ |
| if (PyErr_Occurred()) { |
| char buf[128]; |
| sprintf(buf, "Stack unwind with exception " |
| "set and why=%d", why); |
| Py_FatalError(buf); |
| } |
| } |
| #endif |
| |
| /* Log traceback info if this is a real exception */ |
| |
| if (why == WHY_EXCEPTION) { |
| PyTraceBack_Here(f); |
| |
| if (tstate->c_tracefunc != NULL) |
| call_exc_trace(tstate->c_tracefunc, |
| tstate->c_traceobj, f); |
| } |
| |
| /* For the rest, treat WHY_RERAISE as WHY_EXCEPTION */ |
| |
| if (why == WHY_RERAISE) |
| why = WHY_EXCEPTION; |
| |
| /* Unwind stacks if a (pseudo) exception occurred */ |
| |
| fast_block_end: |
| while (why != WHY_NOT && f->f_iblock > 0) { |
| /* Peek at the current block. */ |
| PyTryBlock *b = &f->f_blockstack[f->f_iblock - 1]; |
| |
| assert(why != WHY_YIELD); |
| if (b->b_type == SETUP_LOOP && why == WHY_CONTINUE) { |
| why = WHY_NOT; |
| JUMPTO(PyLong_AS_LONG(retval)); |
| Py_DECREF(retval); |
| break; |
| } |
| /* Now we have to pop the block. */ |
| f->f_iblock--; |
| |
| if (b->b_type == EXCEPT_HANDLER) { |
| UNWIND_EXCEPT_HANDLER(b); |
| continue; |
| } |
| UNWIND_BLOCK(b); |
| if (b->b_type == SETUP_LOOP && why == WHY_BREAK) { |
| why = WHY_NOT; |
| JUMPTO(b->b_handler); |
| break; |
| } |
| if (why == WHY_EXCEPTION && (b->b_type == SETUP_EXCEPT |
| || b->b_type == SETUP_FINALLY)) { |
| PyObject *exc, *val, *tb; |
| int handler = b->b_handler; |
| /* Beware, this invalidates all b->b_* fields */ |
| PyFrame_BlockSetup(f, EXCEPT_HANDLER, -1, STACK_LEVEL()); |
| PUSH(tstate->exc_traceback); |
| PUSH(tstate->exc_value); |
| if (tstate->exc_type != NULL) { |
| PUSH(tstate->exc_type); |
| } |
| else { |
| Py_INCREF(Py_None); |
| PUSH(Py_None); |
| } |
| PyErr_Fetch(&exc, &val, &tb); |
| /* Make the raw exception data |
| available to the handler, |
| so a program can emulate the |
| Python main loop. */ |
| PyErr_NormalizeException( |
| &exc, &val, &tb); |
| PyException_SetTraceback(val, tb); |
| Py_INCREF(exc); |
| tstate->exc_type = exc; |
| Py_INCREF(val); |
| tstate->exc_value = val; |
| tstate->exc_traceback = tb; |
| if (tb == NULL) |
| tb = Py_None; |
| Py_INCREF(tb); |
| PUSH(tb); |
| PUSH(val); |
| PUSH(exc); |
| why = WHY_NOT; |
| JUMPTO(handler); |
| break; |
| } |
| if (b->b_type == SETUP_FINALLY) { |
| if (why & (WHY_RETURN | WHY_CONTINUE)) |
| PUSH(retval); |
| PUSH(PyLong_FromLong((long)why)); |
| why = WHY_NOT; |
| JUMPTO(b->b_handler); |
| break; |
| } |
| } /* unwind stack */ |
| |
| /* End the loop if we still have an error (or return) */ |
| |
| if (why != WHY_NOT) |
| break; |
| READ_TIMESTAMP(loop1); |
| |
| } /* main loop */ |
| |
| assert(why != WHY_YIELD); |
| /* Pop remaining stack entries. */ |
| while (!EMPTY()) { |
| v = POP(); |
| Py_XDECREF(v); |
| } |
| |
| if (why != WHY_RETURN) |
| retval = NULL; |
| |
| fast_yield: |
| if (tstate->use_tracing) { |
| if (tstate->c_tracefunc) { |
| if (why == WHY_RETURN || why == WHY_YIELD) { |
| if (call_trace(tstate->c_tracefunc, |
| tstate->c_traceobj, f, |
| PyTrace_RETURN, retval)) { |
| Py_XDECREF(retval); |
| retval = NULL; |
| why = WHY_EXCEPTION; |
| } |
| } |
| else if (why == WHY_EXCEPTION) { |
| call_trace_protected(tstate->c_tracefunc, |
| tstate->c_traceobj, f, |
| PyTrace_RETURN, NULL); |
| } |
| } |
| if (tstate->c_profilefunc) { |
| if (why == WHY_EXCEPTION) |
| call_trace_protected(tstate->c_profilefunc, |
| tstate->c_profileobj, f, |
| PyTrace_RETURN, NULL); |
| else if (call_trace(tstate->c_profilefunc, |
| tstate->c_profileobj, f, |
| PyTrace_RETURN, retval)) { |
| Py_XDECREF(retval); |
| retval = NULL; |
| why = WHY_EXCEPTION; |
| } |
| } |
| } |
| |
| /* pop frame */ |
| exit_eval_frame: |
| Py_LeaveRecursiveCall(); |
| tstate->frame = f->f_back; |
| |
| return retval; |
| } |
| |
| /* This is gonna seem *real weird*, but if you put some other code between |
| PyEval_EvalFrame() and PyEval_EvalCodeEx() you will need to adjust |
| the test in the if statements in Misc/gdbinit (pystack and pystackv). */ |
| |
| PyObject * |
| PyEval_EvalCodeEx(PyCodeObject *co, PyObject *globals, PyObject *locals, |
| PyObject **args, int argcount, PyObject **kws, int kwcount, |
| PyObject **defs, int defcount, PyObject *kwdefs, PyObject *closure) |
| { |
| register PyFrameObject *f; |
| register PyObject *retval = NULL; |
| register PyObject **fastlocals, **freevars; |
| PyThreadState *tstate = PyThreadState_GET(); |
| PyObject *x, *u; |
| int total_args = co->co_argcount + co->co_kwonlyargcount; |
| |
| if (globals == NULL) { |
| PyErr_SetString(PyExc_SystemError, |
| "PyEval_EvalCodeEx: NULL globals"); |
| return NULL; |
| } |
| |
| assert(tstate != NULL); |
| assert(globals != NULL); |
| f = PyFrame_New(tstate, co, globals, locals); |
| if (f == NULL) |
| return NULL; |
| |
| fastlocals = f->f_localsplus; |
| freevars = f->f_localsplus + co->co_nlocals; |
| |
| if (total_args || co->co_flags & (CO_VARARGS | CO_VARKEYWORDS)) { |
| int i; |
| int n = argcount; |
| PyObject *kwdict = NULL; |
| if (co->co_flags & CO_VARKEYWORDS) { |
| kwdict = PyDict_New(); |
| if (kwdict == NULL) |
| goto fail; |
| i = total_args; |
| if (co->co_flags & CO_VARARGS) |
| i++; |
| SETLOCAL(i, kwdict); |
| } |
| if (argcount > co->co_argcount) { |
| if (!(co->co_flags & CO_VARARGS)) { |
| PyErr_Format(PyExc_TypeError, |
| "%U() takes %s %d " |
| "positional argument%s (%d given)", |
| co->co_name, |
| defcount ? "at most" : "exactly", |
| co->co_argcount, |
| co->co_argcount == 1 ? "" : "s", |
| argcount + kwcount); |
| goto fail; |
| } |
| n = co->co_argcount; |
| } |
| for (i = 0; i < n; i++) { |
| x = args[i]; |
| Py_INCREF(x); |
| SETLOCAL(i, x); |
| } |
| if (co->co_flags & CO_VARARGS) { |
| u = PyTuple_New(argcount - n); |
| if (u == NULL) |
| goto fail; |
| SETLOCAL(total_args, u); |
| for (i = n; i < argcount; i++) { |
| x = args[i]; |
| Py_INCREF(x); |
| PyTuple_SET_ITEM(u, i-n, x); |
| } |
| } |
| for (i = 0; i < kwcount; i++) { |
| PyObject **co_varnames; |
| PyObject *keyword = kws[2*i]; |
| PyObject *value = kws[2*i + 1]; |
| int j; |
| if (keyword == NULL || !PyUnicode_Check(keyword)) { |
| PyErr_Format(PyExc_TypeError, |
| "%U() keywords must be strings", |
| co->co_name); |
| goto fail; |
| } |
| /* Speed hack: do raw pointer compares. As names are |
| normally interned this should almost always hit. */ |
| co_varnames = ((PyTupleObject *)(co->co_varnames))->ob_item; |
| for (j = 0; j < total_args; j++) { |
| PyObject *nm = co_varnames[j]; |
| if (nm == keyword) |
| goto kw_found; |
| } |
| /* Slow fallback, just in case */ |
| for (j = 0; j < total_args; j++) { |
| PyObject *nm = co_varnames[j]; |
| int cmp = PyObject_RichCompareBool( |
| keyword, nm, Py_EQ); |
| if (cmp > 0) |
| goto kw_found; |
| else if (cmp < 0) |
| goto fail; |
| } |
| if (j >= total_args && kwdict == NULL) { |
| PyErr_Format(PyExc_TypeError, |
| "%U() got an unexpected " |
| "keyword argument '%S'", |
| co->co_name, |
| keyword); |
| goto fail; |
| } |
| PyDict_SetItem(kwdict, keyword, value); |
| continue; |
| kw_found: |
| if (GETLOCAL(j) != NULL) { |
| PyErr_Format(PyExc_TypeError, |
| "%U() got multiple " |
| "values for keyword " |
| "argument '%S'", |
| co->co_name, |
| keyword); |
| goto fail; |
| } |
| Py_INCREF(value); |
| SETLOCAL(j, value); |
| } |
| if (co->co_kwonlyargcount > 0) { |
| for (i = co->co_argcount; i < total_args; i++) { |
| PyObject *name; |
| if (GETLOCAL(i) != NULL) |
| continue; |
| name = PyTuple_GET_ITEM(co->co_varnames, i); |
| if (kwdefs != NULL) { |
| PyObject *def = PyDict_GetItem(kwdefs, name); |
| if (def) { |
| Py_INCREF(def); |
| SETLOCAL(i, def); |
| continue; |
| } |
| } |
| PyErr_Format(PyExc_TypeError, |
| "%U() needs keyword-only argument %S", |
| co->co_name, name); |
| goto fail; |
| } |
| } |
| if (argcount < co->co_argcount) { |
| int m = co->co_argcount - defcount; |
| for (i = argcount; i < m; i++) { |
| if (GETLOCAL(i) == NULL) { |
| int j, given = 0; |
| for (j = 0; j < co->co_argcount; j++) |
| if (GETLOCAL(j)) |
| given++; |
| PyErr_Format(PyExc_TypeError, |
| "%U() takes %s %d " |
| "argument%s " |
| "(%d given)", |
| co->co_name, |
| ((co->co_flags & CO_VARARGS) || |
| defcount) ? "at least" |
| : "exactly", |
| m, m == 1 ? "" : "s", given); |
| goto fail; |
| } |
| } |
| if (n > m) |
| i = n - m; |
| else |
| i = 0; |
| for (; i < defcount; i++) { |
| if (GETLOCAL(m+i) == NULL) { |
| PyObject *def = defs[i]; |
| Py_INCREF(def); |
| SETLOCAL(m+i, def); |
| } |
| } |
| } |
| } |
| else if (argcount > 0 || kwcount > 0) { |
| PyErr_Format(PyExc_TypeError, |
| "%U() takes no arguments (%d given)", |
| co->co_name, |
| argcount + kwcount); |
| goto fail; |
| } |
| /* Allocate and initialize storage for cell vars, and copy free |
| vars into frame. This isn't too efficient right now. */ |
| if (PyTuple_GET_SIZE(co->co_cellvars)) { |
| int i, j, nargs, found; |
| Py_UNICODE *cellname, *argname; |
| PyObject *c; |
| |
| nargs = total_args; |
| if (co->co_flags & CO_VARARGS) |
| nargs++; |
| if (co->co_flags & CO_VARKEYWORDS) |
| nargs++; |
| |
| /* Initialize each cell var, taking into account |
| cell vars that are initialized from arguments. |
| |
| Should arrange for the compiler to put cellvars |
| that are arguments at the beginning of the cellvars |
| list so that we can march over it more efficiently? |
| */ |
| for (i = 0; i < PyTuple_GET_SIZE(co->co_cellvars); ++i) { |
| cellname = PyUnicode_AS_UNICODE( |
| PyTuple_GET_ITEM(co->co_cellvars, i)); |
| found = 0; |
| for (j = 0; j < nargs; j++) { |
| argname = PyUnicode_AS_UNICODE( |
| PyTuple_GET_ITEM(co->co_varnames, j)); |
| if (Py_UNICODE_strcmp(cellname, argname) == 0) { |
| c = PyCell_New(GETLOCAL(j)); |
| if (c == NULL) |
| goto fail; |
| GETLOCAL(co->co_nlocals + i) = c; |
| found = 1; |
| break; |
| } |
| } |
| if (found == 0) { |
| c = PyCell_New(NULL); |
| if (c == NULL) |
| goto fail; |
| SETLOCAL(co->co_nlocals + i, c); |
| } |
| } |
| } |
| if (PyTuple_GET_SIZE(co->co_freevars)) { |
| int i; |
| for (i = 0; i < PyTuple_GET_SIZE(co->co_freevars); ++i) { |
| PyObject *o = PyTuple_GET_ITEM(closure, i); |
| Py_INCREF(o); |
| freevars[PyTuple_GET_SIZE(co->co_cellvars) + i] = o; |
| } |
| } |
| |
| if (co->co_flags & CO_GENERATOR) { |
| /* Don't need to keep the reference to f_back, it will be set |
| * when the generator is resumed. */ |
| Py_XDECREF(f->f_back); |
| f->f_back = NULL; |
| |
| PCALL(PCALL_GENERATOR); |
| |
| /* Create a new generator that owns the ready to run frame |
| * and return that as the value. */ |
| return PyGen_New(f); |
| } |
| |
| retval = PyEval_EvalFrameEx(f,0); |
| |
| fail: /* Jump here from prelude on failure */ |
| |
| /* decref'ing the frame can cause __del__ methods to get invoked, |
| which can call back into Python. While we're done with the |
| current Python frame (f), the associated C stack is still in use, |
| so recursion_depth must be boosted for the duration. |
| */ |
| assert(tstate != NULL); |
| ++tstate->recursion_depth; |
| Py_DECREF(f); |
| --tstate->recursion_depth; |
| return retval; |
| } |
| |
| |
| static PyObject * |
| special_lookup(PyObject *o, char *meth, PyObject **cache) |
| { |
| PyObject *res; |
| res = _PyObject_LookupSpecial(o, meth, cache); |
| if (res == NULL && !PyErr_Occurred()) { |
| PyErr_SetObject(PyExc_AttributeError, *cache); |
| return NULL; |
| } |
| return res; |
| } |
| |
| |
| /* Logic for the raise statement (too complicated for inlining). |
| This *consumes* a reference count to each of its arguments. */ |
| static enum why_code |
| do_raise(PyObject *exc, PyObject *cause) |
| { |
| PyObject *type = NULL, *value = NULL; |
| |
| if (exc == NULL) { |
| /* Reraise */ |
| PyThreadState *tstate = PyThreadState_GET(); |
| PyObject *tb; |
| type = tstate->exc_type; |
| value = tstate->exc_value; |
| tb = tstate->exc_traceback; |
| if (type == Py_None) { |
| PyErr_SetString(PyExc_RuntimeError, |
| "No active exception to reraise"); |
| return WHY_EXCEPTION; |
| } |
| Py_XINCREF(type); |
| Py_XINCREF(value); |
| Py_XINCREF(tb); |
| PyErr_Restore(type, value, tb); |
| return WHY_RERAISE; |
| } |
| |
| /* We support the following forms of raise: |
| raise |
| raise <instance> |
| raise <type> */ |
| |
| if (PyExceptionClass_Check(exc)) { |
| type = exc; |
| value = PyObject_CallObject(exc, NULL); |
| if (value == NULL) |
| goto raise_error; |
| } |
| else if (PyExceptionInstance_Check(exc)) { |
| value = exc; |
| type = PyExceptionInstance_Class(exc); |
| Py_INCREF(type); |
| } |
| else { |
| /* Not something you can raise. You get an exception |
| anyway, just not what you specified :-) */ |
| Py_DECREF(exc); |
| PyErr_SetString(PyExc_TypeError, |
| "exceptions must derive from BaseException"); |
| goto raise_error; |
| } |
| |
| if (cause) { |
| PyObject *fixed_cause; |
| if (PyExceptionClass_Check(cause)) { |
| fixed_cause = PyObject_CallObject(cause, NULL); |
| if (fixed_cause == NULL) |
| goto raise_error; |
| Py_DECREF(cause); |
| } |
| else if (PyExceptionInstance_Check(cause)) { |
| fixed_cause = cause; |
| } |
| else { |
| PyErr_SetString(PyExc_TypeError, |
| "exception causes must derive from " |
| "BaseException"); |
| goto raise_error; |
| } |
| PyException_SetCause(value, fixed_cause); |
| } |
| |
| PyErr_SetObject(type, value); |
| /* PyErr_SetObject incref's its arguments */ |
| Py_XDECREF(value); |
| Py_XDECREF(type); |
| return WHY_EXCEPTION; |
| |
| raise_error: |
| Py_XDECREF(value); |
| Py_XDECREF(type); |
| Py_XDECREF(cause); |
| return WHY_EXCEPTION; |
| } |
| |
| /* Iterate v argcnt times and store the results on the stack (via decreasing |
| sp). Return 1 for success, 0 if error. |
| |
| If argcntafter == -1, do a simple unpack. If it is >= 0, do an unpack |
| with a variable target. |
| */ |
| |
| static int |
| unpack_iterable(PyObject *v, int argcnt, int argcntafter, PyObject **sp) |
| { |
| int i = 0, j = 0; |
| Py_ssize_t ll = 0; |
| PyObject *it; /* iter(v) */ |
| PyObject *w; |
| PyObject *l = NULL; /* variable list */ |
| |
| assert(v != NULL); |
| |
| it = PyObject_GetIter(v); |
| if (it == NULL) |
| goto Error; |
| |
| for (; i < argcnt; i++) { |
| w = PyIter_Next(it); |
| if (w == NULL) { |
| /* Iterator done, via error or exhaustion. */ |
| if (!PyErr_Occurred()) { |
| PyErr_Format(PyExc_ValueError, |
| "need more than %d value%s to unpack", |
| i, i == 1 ? "" : "s"); |
| } |
| goto Error; |
| } |
| *--sp = w; |
| } |
| |
| if (argcntafter == -1) { |
| /* We better have exhausted the iterator now. */ |
| w = PyIter_Next(it); |
| if (w == NULL) { |
| if (PyErr_Occurred()) |
| goto Error; |
| Py_DECREF(it); |
| return 1; |
| } |
| Py_DECREF(w); |
| PyErr_Format(PyExc_ValueError, "too many values to unpack " |
| "(expected %d)", argcnt); |
| goto Error; |
| } |
| |
| l = PySequence_List(it); |
| if (l == NULL) |
| goto Error; |
| *--sp = l; |
| i++; |
| |
| ll = PyList_GET_SIZE(l); |
| if (ll < argcntafter) { |
| PyErr_Format(PyExc_ValueError, "need more than %zd values to unpack", |
| argcnt + ll); |
| goto Error; |
| } |
| |
| /* Pop the "after-variable" args off the list. */ |
| for (j = argcntafter; j > 0; j--, i++) { |
| *--sp = PyList_GET_ITEM(l, ll - j); |
| } |
| /* Resize the list. */ |
| Py_SIZE(l) = ll - argcntafter; |
| Py_DECREF(it); |
| return 1; |
| |
| Error: |
| for (; i > 0; i--, sp++) |
| Py_DECREF(*sp); |
| Py_XDECREF(it); |
| return 0; |
| } |
| |
| |
| #ifdef LLTRACE |
| static int |
| prtrace(PyObject *v, char *str) |
| { |
| printf("%s ", str); |
| if (PyObject_Print(v, stdout, 0) != 0) |
| PyErr_Clear(); /* Don't know what else to do */ |
| printf("\n"); |
| return 1; |
| } |
| #endif |
| |
| static void |
| call_exc_trace(Py_tracefunc func, PyObject *self, PyFrameObject *f) |
| { |
| PyObject *type, *value, *traceback, *arg; |
| int err; |
| PyErr_Fetch(&type, &value, &traceback); |
| if (value == NULL) { |
| value = Py_None; |
| Py_INCREF(value); |
| } |
| arg = PyTuple_Pack(3, type, value, traceback); |
| if (arg == NULL) { |
| PyErr_Restore(type, value, traceback); |
| return; |
| } |
| err = call_trace(func, self, f, PyTrace_EXCEPTION, arg); |
| Py_DECREF(arg); |
| if (err == 0) |
| PyErr_Restore(type, value, traceback); |
| else { |
| Py_XDECREF(type); |
| Py_XDECREF(value); |
| Py_XDECREF(traceback); |
| } |
| } |
| |
| static int |
| call_trace_protected(Py_tracefunc func, PyObject *obj, PyFrameObject *frame, |
| int what, PyObject *arg) |
| { |
| PyObject *type, *value, *traceback; |
| int err; |
| PyErr_Fetch(&type, &value, &traceback); |
| err = call_trace(func, obj, frame, what, arg); |
| if (err == 0) |
| { |
| PyErr_Restore(type, value, traceback); |
| return 0; |
| } |
| else { |
| Py_XDECREF(type); |
| Py_XDECREF(value); |
| Py_XDECREF(traceback); |
| return -1; |
| } |
| } |
| |
| static int |
| call_trace(Py_tracefunc func, PyObject *obj, PyFrameObject *frame, |
| int what, PyObject *arg) |
| { |
| register PyThreadState *tstate = frame->f_tstate; |
| int result; |
| if (tstate->tracing) |
| return 0; |
| tstate->tracing++; |
| tstate->use_tracing = 0; |
| result = func(obj, frame, what, arg); |
| tstate->use_tracing = ((tstate->c_tracefunc != NULL) |
| || (tstate->c_profilefunc != NULL)); |
| tstate->tracing--; |
| return result; |
| } |
| |
| PyObject * |
| _PyEval_CallTracing(PyObject *func, PyObject *args) |
| { |
| PyFrameObject *frame = PyEval_GetFrame(); |
| PyThreadState *tstate = frame->f_tstate; |
| int save_tracing = tstate->tracing; |
| int save_use_tracing = tstate->use_tracing; |
| PyObject *result; |
| |
| tstate->tracing = 0; |
| tstate->use_tracing = ((tstate->c_tracefunc != NULL) |
| || (tstate->c_profilefunc != NULL)); |
| result = PyObject_Call(func, args, NULL); |
| tstate->tracing = save_tracing; |
| tstate->use_tracing = save_use_tracing; |
| return result; |
| } |
| |
| /* See Objects/lnotab_notes.txt for a description of how tracing works. */ |
| static int |
| maybe_call_line_trace(Py_tracefunc func, PyObject *obj, |
| PyFrameObject *frame, int *instr_lb, int *instr_ub, |
| int *instr_prev) |
| { |
| int result = 0; |
| int line = frame->f_lineno; |
| |
| /* If the last instruction executed isn't in the current |
| instruction window, reset the window. |
| */ |
| if (frame->f_lasti < *instr_lb || frame->f_lasti >= *instr_ub) { |
| PyAddrPair bounds; |
| line = _PyCode_CheckLineNumber(frame->f_code, frame->f_lasti, |
| &bounds); |
| *instr_lb = bounds.ap_lower; |
| *instr_ub = bounds.ap_upper; |
| } |
| /* If the last instruction falls at the start of a line or if |
| it represents a jump backwards, update the frame's line |
| number and call the trace function. */ |
| if (frame->f_lasti == *instr_lb || frame->f_lasti < *instr_prev) { |
| frame->f_lineno = line; |
| result = call_trace(func, obj, frame, PyTrace_LINE, Py_None); |
| } |
| *instr_prev = frame->f_lasti; |
| return result; |
| } |
| |
| void |
| PyEval_SetProfile(Py_tracefunc func, PyObject *arg) |
| { |
| PyThreadState *tstate = PyThreadState_GET(); |
| PyObject *temp = tstate->c_profileobj; |
| Py_XINCREF(arg); |
| tstate->c_profilefunc = NULL; |
| tstate->c_profileobj = NULL; |
| /* Must make sure that tracing is not ignored if 'temp' is freed */ |
| tstate->use_tracing = tstate->c_tracefunc != NULL; |
| Py_XDECREF(temp); |
| tstate->c_profilefunc = func; |
| tstate->c_profileobj = arg; |
| /* Flag that tracing or profiling is turned on */ |
| tstate->use_tracing = (func != NULL) || (tstate->c_tracefunc != NULL); |
| } |
| |
| void |
| PyEval_SetTrace(Py_tracefunc func, PyObject *arg) |
| { |
| PyThreadState *tstate = PyThreadState_GET(); |
| PyObject *temp = tstate->c_traceobj; |
| _Py_TracingPossible += (func != NULL) - (tstate->c_tracefunc != NULL); |
| Py_XINCREF(arg); |
| tstate->c_tracefunc = NULL; |
| tstate->c_traceobj = NULL; |
| /* Must make sure that profiling is not ignored if 'temp' is freed */ |
| tstate->use_tracing = tstate->c_profilefunc != NULL; |
| Py_XDECREF(temp); |
| tstate->c_tracefunc = func; |
| tstate->c_traceobj = arg; |
| /* Flag that tracing or profiling is turned on */ |
| tstate->use_tracing = ((func != NULL) |
| || (tstate->c_profilefunc != NULL)); |
| } |
| |
| PyObject * |
| PyEval_GetBuiltins(void) |
| { |
| PyFrameObject *current_frame = PyEval_GetFrame(); |
| if (current_frame == NULL) |
| return PyThreadState_GET()->interp->builtins; |
| else |
| return current_frame->f_builtins; |
| } |
| |
| PyObject * |
| PyEval_GetLocals(void) |
| { |
| PyFrameObject *current_frame = PyEval_GetFrame(); |
| if (current_frame == NULL) |
| return NULL; |
| PyFrame_FastToLocals(current_frame); |
| return current_frame->f_locals; |
| } |
| |
| PyObject * |
| PyEval_GetGlobals(void) |
| { |
| PyFrameObject *current_frame = PyEval_GetFrame(); |
| if (current_frame == NULL) |
| return NULL; |
| else |
| return current_frame->f_globals; |
| } |
| |
| PyFrameObject * |
| PyEval_GetFrame(void) |
| { |
| PyThreadState *tstate = PyThreadState_GET(); |
| return _PyThreadState_GetFrame(tstate); |
| } |
| |
| int |
| PyEval_MergeCompilerFlags(PyCompilerFlags *cf) |
| { |
| PyFrameObject *current_frame = PyEval_GetFrame(); |
| int result = cf->cf_flags != 0; |
| |
| if (current_frame != NULL) { |
| const int codeflags = current_frame->f_code->co_flags; |
| const int compilerflags = codeflags & PyCF_MASK; |
| if (compilerflags) { |
| result = 1; |
| cf->cf_flags |= compilerflags; |
| } |
| #if 0 /* future keyword */ |
| if (codeflags & CO_GENERATOR_ALLOWED) { |
| result = 1; |
| cf->cf_flags |= CO_GENERATOR_ALLOWED; |
| } |
| #endif |
| } |
| return result; |
| } |
| |
| |
| /* External interface to call any callable object. |
| The arg must be a tuple or NULL. The kw must be a dict or NULL. */ |
| |
| PyObject * |
| PyEval_CallObjectWithKeywords(PyObject *func, PyObject *arg, PyObject *kw) |
| { |
| PyObject *result; |
| |
| if (arg == NULL) { |
| arg = PyTuple_New(0); |
| if (arg == NULL) |
| return NULL; |
| } |
| else if (!PyTuple_Check(arg)) { |
| PyErr_SetString(PyExc_TypeError, |
| "argument list must be a tuple"); |
| return NULL; |
| } |
| else |
| Py_INCREF(arg); |
| |
| if (kw != NULL && !PyDict_Check(kw)) { |
| PyErr_SetString(PyExc_TypeError, |
| "keyword list must be a dictionary"); |
| Py_DECREF(arg); |
| return NULL; |
| } |
| |
| result = PyObject_Call(func, arg, kw); |
| Py_DECREF(arg); |
| return result; |
| } |
| |
| const char * |
| PyEval_GetFuncName(PyObject *func) |
| { |
| if (PyMethod_Check(func)) |
| return PyEval_GetFuncName(PyMethod_GET_FUNCTION(func)); |
| else if (PyFunction_Check(func)) |
| return _PyUnicode_AsString(((PyFunctionObject*)func)->func_name); |
| else if (PyCFunction_Check(func)) |
| return ((PyCFunctionObject*)func)->m_ml->ml_name; |
| else |
| return func->ob_type->tp_name; |
| } |
| |
| const char * |
| PyEval_GetFuncDesc(PyObject *func) |
| { |
| if (PyMethod_Check(func)) |
| return "()"; |
| else if (PyFunction_Check(func)) |
| return "()"; |
| else if (PyCFunction_Check(func)) |
| return "()"; |
| else |
| return " object"; |
| } |
| |
| static void |
| err_args(PyObject *func, int flags, int nargs) |
| { |
| if (flags & METH_NOARGS) |
| PyErr_Format(PyExc_TypeError, |
| "%.200s() takes no arguments (%d given)", |
| ((PyCFunctionObject *)func)->m_ml->ml_name, |
| nargs); |
| else |
| PyErr_Format(PyExc_TypeError, |
| "%.200s() takes exactly one argument (%d given)", |
| ((PyCFunctionObject *)func)->m_ml->ml_name, |
| nargs); |
| } |
| |
| #define C_TRACE(x, call) \ |
| if (tstate->use_tracing && tstate->c_profilefunc) { \ |
| if (call_trace(tstate->c_profilefunc, \ |
| tstate->c_profileobj, \ |
| tstate->frame, PyTrace_C_CALL, \ |
| func)) { \ |
| x = NULL; \ |
| } \ |
| else { \ |
| x = call; \ |
| if (tstate->c_profilefunc != NULL) { \ |
| if (x == NULL) { \ |
| call_trace_protected(tstate->c_profilefunc, \ |
| tstate->c_profileobj, \ |
| tstate->frame, PyTrace_C_EXCEPTION, \ |
| func); \ |
| /* XXX should pass (type, value, tb) */ \ |
| } else { \ |
| if (call_trace(tstate->c_profilefunc, \ |
| tstate->c_profileobj, \ |
| tstate->frame, PyTrace_C_RETURN, \ |
| func)) { \ |
| Py_DECREF(x); \ |
| x = NULL; \ |
| } \ |
| } \ |
| } \ |
| } \ |
| } else { \ |
| x = call; \ |
| } |
| |
| static PyObject * |
| call_function(PyObject ***pp_stack, int oparg |
| #ifdef WITH_TSC |
| , uint64* pintr0, uint64* pintr1 |
| #endif |
| ) |
| { |
| int na = oparg & 0xff; |
| int nk = (oparg>>8) & 0xff; |
| int n = na + 2 * nk; |
| PyObject **pfunc = (*pp_stack) - n - 1; |
| PyObject *func = *pfunc; |
| PyObject *x, *w; |
| |
| /* Always dispatch PyCFunction first, because these are |
| presumed to be the most frequent callable object. |
| */ |
| if (PyCFunction_Check(func) && nk == 0) { |
| int flags = PyCFunction_GET_FLAGS(func); |
| PyThreadState *tstate = PyThreadState_GET(); |
| |
| PCALL(PCALL_CFUNCTION); |
| if (flags & (METH_NOARGS | METH_O)) { |
| PyCFunction meth = PyCFunction_GET_FUNCTION(func); |
| PyObject *self = PyCFunction_GET_SELF(func); |
| if (flags & METH_NOARGS && na == 0) { |
| C_TRACE(x, (*meth)(self,NULL)); |
| } |
| else if (flags & METH_O && na == 1) { |
| PyObject *arg = EXT_POP(*pp_stack); |
| C_TRACE(x, (*meth)(self,arg)); |
| Py_DECREF(arg); |
| } |
| else { |
| err_args(func, flags, na); |
| x = NULL; |
| } |
| } |
| else { |
| PyObject *callargs; |
| callargs = load_args(pp_stack, na); |
| READ_TIMESTAMP(*pintr0); |
| C_TRACE(x, PyCFunction_Call(func,callargs,NULL)); |
| READ_TIMESTAMP(*pintr1); |
| Py_XDECREF(callargs); |
| } |
| } else { |
| if (PyMethod_Check(func) && PyMethod_GET_SELF(func) != NULL) { |
| /* optimize access to bound methods */ |
| PyObject *self = PyMethod_GET_SELF(func); |
| PCALL(PCALL_METHOD); |
| PCALL(PCALL_BOUND_METHOD); |
| Py_INCREF(self); |
| func = PyMethod_GET_FUNCTION(func); |
| Py_INCREF(func); |
| Py_DECREF(*pfunc); |
| *pfunc = self; |
| na++; |
| n++; |
| } else |
| Py_INCREF(func); |
| READ_TIMESTAMP(*pintr0); |
| if (PyFunction_Check(func)) |
| x = fast_function(func, pp_stack, n, na, nk); |
| else |
| x = do_call(func, pp_stack, na, nk); |
| READ_TIMESTAMP(*pintr1); |
| Py_DECREF(func); |
| } |
| |
| /* Clear the stack of the function object. Also removes |
| the arguments in case they weren't consumed already |
| (fast_function() and err_args() leave them on the stack). |
| */ |
| while ((*pp_stack) > pfunc) { |
| w = EXT_POP(*pp_stack); |
| Py_DECREF(w); |
| PCALL(PCALL_POP); |
| } |
| return x; |
| } |
| |
| /* The fast_function() function optimize calls for which no argument |
| tuple is necessary; the objects are passed directly from the stack. |
| For the simplest case -- a function that takes only positional |
| arguments and is called with only positional arguments -- it |
| inlines the most primitive frame setup code from |
| PyEval_EvalCodeEx(), which vastly reduces the checks that must be |
| done before evaluating the frame. |
| */ |
| |
| static PyObject * |
| fast_function(PyObject *func, PyObject ***pp_stack, int n, int na, int nk) |
| { |
| PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func); |
| PyObject *globals = PyFunction_GET_GLOBALS(func); |
| PyObject *argdefs = PyFunction_GET_DEFAULTS(func); |
| PyObject *kwdefs = PyFunction_GET_KW_DEFAULTS(func); |
| PyObject **d = NULL; |
| int nd = 0; |
| |
| PCALL(PCALL_FUNCTION); |
| PCALL(PCALL_FAST_FUNCTION); |
| if (argdefs == NULL && co->co_argcount == n && |
| co->co_kwonlyargcount == 0 && nk==0 && |
| co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)) { |
| PyFrameObject *f; |
| PyObject *retval = NULL; |
| PyThreadState *tstate = PyThreadState_GET(); |
| PyObject **fastlocals, **stack; |
| int i; |
| |
| PCALL(PCALL_FASTER_FUNCTION); |
| assert(globals != NULL); |
| /* XXX Perhaps we should create a specialized |
| PyFrame_New() that doesn't take locals, but does |
| take builtins without sanity checking them. |
| */ |
| assert(tstate != NULL); |
| f = PyFrame_New(tstate, co, globals, NULL); |
| if (f == NULL) |
| return NULL; |
| |
| fastlocals = f->f_localsplus; |
| stack = (*pp_stack) - n; |
| |
| for (i = 0; i < n; i++) { |
| Py_INCREF(*stack); |
| fastlocals[i] = *stack++; |
| } |
| retval = PyEval_EvalFrameEx(f,0); |
| ++tstate->recursion_depth; |
| Py_DECREF(f); |
| --tstate->recursion_depth; |
| return retval; |
| } |
| if (argdefs != NULL) { |
| d = &PyTuple_GET_ITEM(argdefs, 0); |
| nd = Py_SIZE(argdefs); |
| } |
| return PyEval_EvalCodeEx(co, globals, |
| (PyObject *)NULL, (*pp_stack)-n, na, |
| (*pp_stack)-2*nk, nk, d, nd, kwdefs, |
| PyFunction_GET_CLOSURE(func)); |
| } |
| |
| static PyObject * |
| update_keyword_args(PyObject *orig_kwdict, int nk, PyObject ***pp_stack, |
| PyObject *func) |
| { |
| PyObject *kwdict = NULL; |
| if (orig_kwdict == NULL) |
| kwdict = PyDict_New(); |
| else { |
| kwdict = PyDict_Copy(orig_kwdict); |
| Py_DECREF(orig_kwdict); |
| } |
| if (kwdict == NULL) |
| return NULL; |
| while (--nk >= 0) { |
| int err; |
| PyObject *value = EXT_POP(*pp_stack); |
| PyObject *key = EXT_POP(*pp_stack); |
| if (PyDict_GetItem(kwdict, key) != NULL) { |
| PyErr_Format(PyExc_TypeError, |
| "%.200s%s got multiple values " |
| "for keyword argument '%U'", |
| PyEval_GetFuncName(func), |
| PyEval_GetFuncDesc(func), |
| key); |
| Py_DECREF(key); |
| Py_DECREF(value); |
| Py_DECREF(kwdict); |
| return NULL; |
| } |
| err = PyDict_SetItem(kwdict, key, value); |
| Py_DECREF(key); |
| Py_DECREF(value); |
| if (err) { |
| Py_DECREF(kwdict); |
| return NULL; |
| } |
| } |
| return kwdict; |
| } |
| |
| static PyObject * |
| update_star_args(int nstack, int nstar, PyObject *stararg, |
| PyObject ***pp_stack) |
| { |
| PyObject *callargs, *w; |
| |
| callargs = PyTuple_New(nstack + nstar); |
| if (callargs == NULL) { |
| return NULL; |
| } |
| if (nstar) { |
| int i; |
| for (i = 0; i < nstar; i++) { |
| PyObject *a = PyTuple_GET_ITEM(stararg, i); |
| Py_INCREF(a); |
| PyTuple_SET_ITEM(callargs, nstack + i, a); |
| } |
| } |
| while (--nstack >= 0) { |
| w = EXT_POP(*pp_stack); |
| PyTuple_SET_ITEM(callargs, nstack, w); |
| } |
| return callargs; |
| } |
| |
| static PyObject * |
| load_args(PyObject ***pp_stack, int na) |
| { |
| PyObject *args = PyTuple_New(na); |
| PyObject *w; |
| |
| if (args == NULL) |
| return NULL; |
| while (--na >= 0) { |
| w = EXT_POP(*pp_stack); |
| PyTuple_SET_ITEM(args, na, w); |
| } |
| return args; |
| } |
| |
| static PyObject * |
| do_call(PyObject *func, PyObject ***pp_stack, int na, int nk) |
| { |
| PyObject *callargs = NULL; |
| PyObject *kwdict = NULL; |
| PyObject *result = NULL; |
| |
| if (nk > 0) { |
| kwdict = update_keyword_args(NULL, nk, pp_stack, func); |
| if (kwdict == NULL) |
| goto call_fail; |
| } |
| callargs = load_args(pp_stack, na); |
| if (callargs == NULL) |
| goto call_fail; |
| #ifdef CALL_PROFILE |
| /* At this point, we have to look at the type of func to |
| update the call stats properly. Do it here so as to avoid |
| exposing the call stats machinery outside ceval.c |
| */ |
| if (PyFunction_Check(func)) |
| PCALL(PCALL_FUNCTION); |
| else if (PyMethod_Check(func)) |
| PCALL(PCALL_METHOD); |
| else if (PyType_Check(func)) |
| PCALL(PCALL_TYPE); |
| else if (PyCFunction_Check(func)) |
| PCALL(PCALL_CFUNCTION); |
| else |
| PCALL(PCALL_OTHER); |
| #endif |
| if (PyCFunction_Check(func)) { |
| PyThreadState *tstate = PyThreadState_GET(); |
| C_TRACE(result, PyCFunction_Call(func, callargs, kwdict)); |
| } |
| else |
| result = PyObject_Call(func, callargs, kwdict); |
| call_fail: |
| Py_XDECREF(callargs); |
| Py_XDECREF(kwdict); |
| return result; |
| } |
| |
| static PyObject * |
| ext_do_call(PyObject *func, PyObject ***pp_stack, int flags, int na, int nk) |
| { |
| int nstar = 0; |
| PyObject *callargs = NULL; |
| PyObject *stararg = NULL; |
| PyObject *kwdict = NULL; |
| PyObject *result = NULL; |
| |
| if (flags & CALL_FLAG_KW) { |
| kwdict = EXT_POP(*pp_stack); |
| if (!PyDict_Check(kwdict)) { |
| PyObject *d; |
| d = PyDict_New(); |
| if (d == NULL) |
| goto ext_call_fail; |
| if (PyDict_Update(d, kwdict) != 0) { |
| Py_DECREF(d); |
| /* PyDict_Update raises attribute |
| * error (percolated from an attempt |
| * to get 'keys' attribute) instead of |
| * a type error if its second argument |
| * is not a mapping. |
| */ |
| if (PyErr_ExceptionMatches(PyExc_AttributeError)) { |
| PyErr_Format(PyExc_TypeError, |
| "%.200s%.200s argument after ** " |
| "must be a mapping, not %.200s", |
| PyEval_GetFuncName(func), |
| PyEval_GetFuncDesc(func), |
| kwdict->ob_type->tp_name); |
| } |
| goto ext_call_fail; |
| } |
| Py_DECREF(kwdict); |
| kwdict = d; |
| } |
| } |
| if (flags & CALL_FLAG_VAR) { |
| stararg = EXT_POP(*pp_stack); |
| if (!PyTuple_Check(stararg)) { |
| PyObject *t = NULL; |
| t = PySequence_Tuple(stararg); |
| if (t == NULL) { |
| if (PyErr_ExceptionMatches(PyExc_TypeError)) { |
| PyErr_Format(PyExc_TypeError, |
| "%.200s%.200s argument after * " |
| "must be a sequence, not %200s", |
| PyEval_GetFuncName(func), |
| PyEval_GetFuncDesc(func), |
| stararg->ob_type->tp_name); |
| } |
| goto ext_call_fail; |
| } |
| Py_DECREF(stararg); |
| stararg = t; |
| } |
| nstar = PyTuple_GET_SIZE(stararg); |
| } |
| if (nk > 0) { |
| kwdict = update_keyword_args(kwdict, nk, pp_stack, func); |
| if (kwdict == NULL) |
| goto ext_call_fail; |
| } |
| callargs = update_star_args(na, nstar, stararg, pp_stack); |
| if (callargs == NULL) |
| goto ext_call_fail; |
| #ifdef CALL_PROFILE |
| /* At this point, we have to look at the type of func to |
| update the call stats properly. Do it here so as to avoid |
| exposing the call stats machinery outside ceval.c |
| */ |
| if (PyFunction_Check(func)) |
| PCALL(PCALL_FUNCTION); |
| else if (PyMethod_Check(func)) |
| PCALL(PCALL_METHOD); |
| else if (PyType_Check(func)) |
| PCALL(PCALL_TYPE); |
| else if (PyCFunction_Check(func)) |
| PCALL(PCALL_CFUNCTION); |
| else |
| PCALL(PCALL_OTHER); |
| #endif |
| if (PyCFunction_Check(func)) { |
| PyThreadState *tstate = PyThreadState_GET(); |
| C_TRACE(result, PyCFunction_Call(func, callargs, kwdict)); |
| } |
| else |
| result = PyObject_Call(func, callargs, kwdict); |
| ext_call_fail: |
| Py_XDECREF(callargs); |
| Py_XDECREF(kwdict); |
| Py_XDECREF(stararg); |
| return result; |
| } |
| |
| /* Extract a slice index from a PyInt or PyLong or an object with the |
| nb_index slot defined, and store in *pi. |
| Silently reduce values larger than PY_SSIZE_T_MAX to PY_SSIZE_T_MAX, |
| and silently boost values less than -PY_SSIZE_T_MAX-1 to -PY_SSIZE_T_MAX-1. |
| Return 0 on error, 1 on success. |
| */ |
| /* Note: If v is NULL, return success without storing into *pi. This |
| is because_PyEval_SliceIndex() is called by apply_slice(), which can be |
| called by the SLICE opcode with v and/or w equal to NULL. |
| */ |
| int |
| _PyEval_SliceIndex(PyObject *v, Py_ssize_t *pi) |
| { |
| if (v != NULL) { |
| Py_ssize_t x; |
| if (PyIndex_Check(v)) { |
| x = PyNumber_AsSsize_t(v, NULL); |
| if (x == -1 && PyErr_Occurred()) |
| return 0; |
| } |
| else { |
| PyErr_SetString(PyExc_TypeError, |
| "slice indices must be integers or " |
| "None or have an __index__ method"); |
| return 0; |
| } |
| *pi = x; |
| } |
| return 1; |
| } |
| |
| #define CANNOT_CATCH_MSG "catching classes that do not inherit from "\ |
| "BaseException is not allowed" |
| |
| static PyObject * |
| cmp_outcome(int op, register PyObject *v, register PyObject *w) |
| { |
| int res = 0; |
| switch (op) { |
| case PyCmp_IS: |
| res = (v == w); |
| break; |
| case PyCmp_IS_NOT: |
| res = (v != w); |
| break; |
| case PyCmp_IN: |
| res = PySequence_Contains(w, v); |
| if (res < 0) |
| return NULL; |
| break; |
| case PyCmp_NOT_IN: |
| res = PySequence_Contains(w, v); |
| if (res < 0) |
| return NULL; |
| res = !res; |
| break; |
| case PyCmp_EXC_MATCH: |
| if (PyTuple_Check(w)) { |
| Py_ssize_t i, length; |
| length = PyTuple_Size(w); |
| for (i = 0; i < length; i += 1) { |
| PyObject *exc = PyTuple_GET_ITEM(w, i); |
| if (!PyExceptionClass_Check(exc)) { |
| PyErr_SetString(PyExc_TypeError, |
| CANNOT_CATCH_MSG); |
| return NULL; |
| } |
| } |
| } |
| else { |
| if (!PyExceptionClass_Check(w)) { |
| PyErr_SetString(PyExc_TypeError, |
| CANNOT_CATCH_MSG); |
| return NULL; |
| } |
| } |
| res = PyErr_GivenExceptionMatches(v, w); |
| break; |
| default: |
| return PyObject_RichCompare(v, w, op); |
| } |
| v = res ? Py_True : Py_False; |
| Py_INCREF(v); |
| return v; |
| } |
| |
| static PyObject * |
| import_from(PyObject *v, PyObject *name) |
| { |
| PyObject *x; |
| |
| x = PyObject_GetAttr(v, name); |
| if (x == NULL && PyErr_ExceptionMatches(PyExc_AttributeError)) { |
| PyErr_Format(PyExc_ImportError, "cannot import name %S", name); |
| } |
| return x; |
| } |
| |
| static int |
| import_all_from(PyObject *locals, PyObject *v) |
| { |
| PyObject *all = PyObject_GetAttrString(v, "__all__"); |
| PyObject *dict, *name, *value; |
| int skip_leading_underscores = 0; |
| int pos, err; |
| |
| if (all == NULL) { |
| if (!PyErr_ExceptionMatches(PyExc_AttributeError)) |
| return -1; /* Unexpected error */ |
| PyErr_Clear(); |
| dict = PyObject_GetAttrString(v, "__dict__"); |
| if (dict == NULL) { |
| if (!PyErr_ExceptionMatches(PyExc_AttributeError)) |
| return -1; |
| PyErr_SetString(PyExc_ImportError, |
| "from-import-* object has no __dict__ and no __all__"); |
| return -1; |
| } |
| all = PyMapping_Keys(dict); |
| Py_DECREF(dict); |
| if (all == NULL) |
| return -1; |
| skip_leading_underscores = 1; |
| } |
| |
| for (pos = 0, err = 0; ; pos++) { |
| name = PySequence_GetItem(all, pos); |
| if (name == NULL) { |
| if (!PyErr_ExceptionMatches(PyExc_IndexError)) |
| err = -1; |
| else |
| PyErr_Clear(); |
| break; |
| } |
| if (skip_leading_underscores && |
| PyUnicode_Check(name) && |
| PyUnicode_AS_UNICODE(name)[0] == '_') |
| { |
| Py_DECREF(name); |
| continue; |
| } |
| value = PyObject_GetAttr(v, name); |
| if (value == NULL) |
| err = -1; |
| else if (PyDict_CheckExact(locals)) |
| err = PyDict_SetItem(locals, name, value); |
| else |
| err = PyObject_SetItem(locals, name, value); |
| Py_DECREF(name); |
| Py_XDECREF(value); |
| if (err != 0) |
| break; |
| } |
| Py_DECREF(all); |
| return err; |
| } |
| |
| static void |
| format_exc_check_arg(PyObject *exc, const char *format_str, PyObject *obj) |
| { |
| const char *obj_str; |
| |
| if (!obj) |
| return; |
| |
| obj_str = _PyUnicode_AsString(obj); |
| if (!obj_str) |
| return; |
| |
| PyErr_Format(exc, format_str, obj_str); |
| } |
| |
| static void |
| format_exc_unbound(PyCodeObject *co, int oparg) |
| { |
| PyObject *name; |
| /* Don't stomp existing exception */ |
| if (PyErr_Occurred()) |
| return; |
| if (oparg < PyTuple_GET_SIZE(co->co_cellvars)) { |
| name = PyTuple_GET_ITEM(co->co_cellvars, |
| oparg); |
| format_exc_check_arg( |
| PyExc_UnboundLocalError, |
| UNBOUNDLOCAL_ERROR_MSG, |
| name); |
| } else { |
| name = PyTuple_GET_ITEM(co->co_freevars, oparg - |
| PyTuple_GET_SIZE(co->co_cellvars)); |
| format_exc_check_arg(PyExc_NameError, |
| UNBOUNDFREE_ERROR_MSG, name); |
| } |
| } |
| |
| static PyObject * |
| unicode_concatenate(PyObject *v, PyObject *w, |
| PyFrameObject *f, unsigned char *next_instr) |
| { |
| /* This function implements 'variable += expr' when both arguments |
| are (Unicode) strings. */ |
| Py_ssize_t v_len = PyUnicode_GET_SIZE(v); |
| Py_ssize_t w_len = PyUnicode_GET_SIZE(w); |
| Py_ssize_t new_len = v_len + w_len; |
| if (new_len < 0) { |
| PyErr_SetString(PyExc_OverflowError, |
| "strings are too large to concat"); |
| return NULL; |
| } |
| |
| if (Py_REFCNT(v) == 2) { |
| /* In the common case, there are 2 references to the value |
| * stored in 'variable' when the += is performed: one on the |
| * value stack (in 'v') and one still stored in the |
| * 'variable'. We try to delete the variable now to reduce |
| * the refcnt to 1. |
| */ |
| switch (*next_instr) { |
| case STORE_FAST: |
| { |
| int oparg = PEEKARG(); |
| PyObject **fastlocals = f->f_localsplus; |
| if (GETLOCAL(oparg) == v) |
| SETLOCAL(oparg, NULL); |
| break; |
| } |
| case STORE_DEREF: |
| { |
| PyObject **freevars = (f->f_localsplus + |
| f->f_code->co_nlocals); |
| PyObject *c = freevars[PEEKARG()]; |
| if (PyCell_GET(c) == v) |
| PyCell_Set(c, NULL); |
| break; |
| } |
| case STORE_NAME: |
| { |
| PyObject *names = f->f_code->co_names; |
| PyObject *name = GETITEM(names, PEEKARG()); |
| PyObject *locals = f->f_locals; |
| if (PyDict_CheckExact(locals) && |
| PyDict_GetItem(locals, name) == v) { |
| if (PyDict_DelItem(locals, name) != 0) { |
| PyErr_Clear(); |
| } |
| } |
| break; |
| } |
| } |
| } |
| |
| if (Py_REFCNT(v) == 1 && !PyUnicode_CHECK_INTERNED(v)) { |
| /* Now we own the last reference to 'v', so we can resize it |
| * in-place. |
| */ |
| if (PyUnicode_Resize(&v, new_len) != 0) { |
| /* XXX if PyUnicode_Resize() fails, 'v' has been |
| * deallocated so it cannot be put back into |
| * 'variable'. The MemoryError is raised when there |
| * is no value in 'variable', which might (very |
| * remotely) be a cause of incompatibilities. |
| */ |
| return NULL; |
| } |
| /* copy 'w' into the newly allocated area of 'v' */ |
| memcpy(PyUnicode_AS_UNICODE(v) + v_len, |
| PyUnicode_AS_UNICODE(w), w_len*sizeof(Py_UNICODE)); |
| return v; |
| } |
| else { |
| /* When in-place resizing is not an option. */ |
| w = PyUnicode_Concat(v, w); |
| Py_DECREF(v); |
| return w; |
| } |
| } |
| |
| #ifdef DYNAMIC_EXECUTION_PROFILE |
| |
| static PyObject * |
| getarray(long a[256]) |
| { |
| int i; |
| PyObject *l = PyList_New(256); |
| if (l == NULL) return NULL; |
| for (i = 0; i < 256; i++) { |
| PyObject *x = PyLong_FromLong(a[i]); |
| if (x == NULL) { |
| Py_DECREF(l); |
| return NULL; |
| } |
| PyList_SetItem(l, i, x); |
| } |
| for (i = 0; i < 256; i++) |
| a[i] = 0; |
| return l; |
| } |
| |
| PyObject * |
| _Py_GetDXProfile(PyObject *self, PyObject *args) |
| { |
| #ifndef DXPAIRS |
| return getarray(dxp); |
| #else |
| int i; |
| PyObject *l = PyList_New(257); |
| if (l == NULL) return NULL; |
| for (i = 0; i < 257; i++) { |
| PyObject *x = getarray(dxpairs[i]); |
| if (x == NULL) { |
| Py_DECREF(l); |
| return NULL; |
| } |
| PyList_SetItem(l, i, x); |
| } |
| return l; |
| #endif |
| } |
| |
| #endif |