| /* Complex math module */ | 
 |  | 
 | /* much code borrowed from mathmodule.c */ | 
 |  | 
 | #include "Python.h" | 
 |  | 
 | #ifndef M_PI | 
 | #define M_PI (3.141592653589793239) | 
 | #endif | 
 |  | 
 | /* First, the C functions that do the real work */ | 
 |  | 
 | /* constants */ | 
 | static Py_complex c_one = {1., 0.}; | 
 | static Py_complex c_half = {0.5, 0.}; | 
 | static Py_complex c_i = {0., 1.}; | 
 | static Py_complex c_halfi = {0., 0.5}; | 
 |  | 
 | /* forward declarations */ | 
 | static Py_complex c_log(Py_complex); | 
 | static Py_complex c_prodi(Py_complex); | 
 | static Py_complex c_sqrt(Py_complex); | 
 | static PyObject * math_error(void); | 
 |  | 
 |  | 
 | static Py_complex | 
 | c_acos(Py_complex x) | 
 | { | 
 | 	return c_neg(c_prodi(c_log(c_sum(x,c_prod(c_i, | 
 | 		    c_sqrt(c_diff(c_one,c_prod(x,x)))))))); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(c_acos_doc, | 
 | "acos(x)\n" | 
 | "\n" | 
 | "Return the arc cosine of x."); | 
 |  | 
 |  | 
 | static Py_complex | 
 | c_acosh(Py_complex x) | 
 | { | 
 | 	Py_complex z; | 
 | 	z = c_sqrt(c_half); | 
 | 	z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x,c_one)), | 
 | 				  c_sqrt(c_diff(x,c_one))))); | 
 | 	return c_sum(z, z); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(c_acosh_doc, | 
 | "acosh(x)\n" | 
 | "\n" | 
 | "Return the hyperbolic arccosine of x."); | 
 |  | 
 |  | 
 | static Py_complex | 
 | c_asin(Py_complex x) | 
 | { | 
 | 	/* -i * log[(sqrt(1-x**2) + i*x] */ | 
 | 	const Py_complex squared = c_prod(x, x); | 
 | 	const Py_complex sqrt_1_minus_x_sq = c_sqrt(c_diff(c_one, squared)); | 
 |         return c_neg(c_prodi(c_log( | 
 |         		c_sum(sqrt_1_minus_x_sq, c_prodi(x)) | 
 | 		    )       )     ); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(c_asin_doc, | 
 | "asin(x)\n" | 
 | "\n" | 
 | "Return the arc sine of x."); | 
 |  | 
 |  | 
 | static Py_complex | 
 | c_asinh(Py_complex x) | 
 | { | 
 | 	Py_complex z; | 
 | 	z = c_sqrt(c_half); | 
 | 	z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x, c_i)), | 
 | 				  c_sqrt(c_diff(x, c_i))))); | 
 | 	return c_sum(z, z); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(c_asinh_doc, | 
 | "asinh(x)\n" | 
 | "\n" | 
 | "Return the hyperbolic arc sine of x."); | 
 |  | 
 |  | 
 | static Py_complex | 
 | c_atan(Py_complex x) | 
 | { | 
 | 	return c_prod(c_halfi,c_log(c_quot(c_sum(c_i,x),c_diff(c_i,x)))); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(c_atan_doc, | 
 | "atan(x)\n" | 
 | "\n" | 
 | "Return the arc tangent of x."); | 
 |  | 
 |  | 
 | static Py_complex | 
 | c_atanh(Py_complex x) | 
 | { | 
 | 	return c_prod(c_half,c_log(c_quot(c_sum(c_one,x),c_diff(c_one,x)))); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(c_atanh_doc, | 
 | "atanh(x)\n" | 
 | "\n" | 
 | "Return the hyperbolic arc tangent of x."); | 
 |  | 
 |  | 
 | static Py_complex | 
 | c_cos(Py_complex x) | 
 | { | 
 | 	Py_complex r; | 
 | 	r.real = cos(x.real)*cosh(x.imag); | 
 | 	r.imag = -sin(x.real)*sinh(x.imag); | 
 | 	return r; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(c_cos_doc, | 
 | "cos(x)\n" | 
 | "n" | 
 | "Return the cosine of x."); | 
 |  | 
 |  | 
 | static Py_complex | 
 | c_cosh(Py_complex x) | 
 | { | 
 | 	Py_complex r; | 
 | 	r.real = cos(x.imag)*cosh(x.real); | 
 | 	r.imag = sin(x.imag)*sinh(x.real); | 
 | 	return r; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(c_cosh_doc, | 
 | "cosh(x)\n" | 
 | "n" | 
 | "Return the hyperbolic cosine of x."); | 
 |  | 
 |  | 
 | static Py_complex | 
 | c_exp(Py_complex x) | 
 | { | 
 | 	Py_complex r; | 
 | 	double l = exp(x.real); | 
 | 	r.real = l*cos(x.imag); | 
 | 	r.imag = l*sin(x.imag); | 
 | 	return r; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(c_exp_doc, | 
 | "exp(x)\n" | 
 | "\n" | 
 | "Return the exponential value e**x."); | 
 |  | 
 |  | 
 | static Py_complex | 
 | c_log(Py_complex x) | 
 | { | 
 | 	Py_complex r; | 
 | 	double l = hypot(x.real,x.imag); | 
 | 	r.imag = atan2(x.imag, x.real); | 
 | 	r.real = log(l); | 
 | 	return r; | 
 | } | 
 |  | 
 |  | 
 | static Py_complex | 
 | c_log10(Py_complex x) | 
 | { | 
 | 	Py_complex r; | 
 | 	double l = hypot(x.real,x.imag); | 
 | 	r.imag = atan2(x.imag, x.real)/log(10.); | 
 | 	r.real = log10(l); | 
 | 	return r; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(c_log10_doc, | 
 | "log10(x)\n" | 
 | "\n" | 
 | "Return the base-10 logarithm of x."); | 
 |  | 
 |  | 
 | /* internal function not available from Python */ | 
 | static Py_complex | 
 | c_prodi(Py_complex x) | 
 | { | 
 | 	Py_complex r; | 
 | 	r.real = -x.imag; | 
 | 	r.imag = x.real; | 
 | 	return r; | 
 | } | 
 |  | 
 |  | 
 | static Py_complex | 
 | c_sin(Py_complex x) | 
 | { | 
 | 	Py_complex r; | 
 | 	r.real = sin(x.real) * cosh(x.imag); | 
 | 	r.imag = cos(x.real) * sinh(x.imag); | 
 | 	return r; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(c_sin_doc, | 
 | "sin(x)\n" | 
 | "\n" | 
 | "Return the sine of x."); | 
 |  | 
 |  | 
 | static Py_complex | 
 | c_sinh(Py_complex x) | 
 | { | 
 | 	Py_complex r; | 
 | 	r.real = cos(x.imag) * sinh(x.real); | 
 | 	r.imag = sin(x.imag) * cosh(x.real); | 
 | 	return r; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(c_sinh_doc, | 
 | "sinh(x)\n" | 
 | "\n" | 
 | "Return the hyperbolic sine of x."); | 
 |  | 
 |  | 
 | static Py_complex | 
 | c_sqrt(Py_complex x) | 
 | { | 
 | 	Py_complex r; | 
 | 	double s,d; | 
 | 	if (x.real == 0. && x.imag == 0.) | 
 | 		r = x; | 
 | 	else { | 
 | 		s = sqrt(0.5*(fabs(x.real) + hypot(x.real,x.imag))); | 
 | 		d = 0.5*x.imag/s; | 
 | 		if (x.real > 0.) { | 
 | 			r.real = s; | 
 | 			r.imag = d; | 
 | 		} | 
 | 		else if (x.imag >= 0.) { | 
 | 			r.real = d; | 
 | 			r.imag = s; | 
 | 		} | 
 | 		else { | 
 | 			r.real = -d; | 
 | 			r.imag = -s; | 
 | 		} | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(c_sqrt_doc, | 
 | "sqrt(x)\n" | 
 | "\n" | 
 | "Return the square root of x."); | 
 |  | 
 |  | 
 | static Py_complex | 
 | c_tan(Py_complex x) | 
 | { | 
 | 	Py_complex r; | 
 | 	double sr,cr,shi,chi; | 
 | 	double rs,is,rc,ic; | 
 | 	double d; | 
 | 	sr = sin(x.real); | 
 | 	cr = cos(x.real); | 
 | 	shi = sinh(x.imag); | 
 | 	chi = cosh(x.imag); | 
 | 	rs = sr * chi; | 
 | 	is = cr * shi; | 
 | 	rc = cr * chi; | 
 | 	ic = -sr * shi; | 
 | 	d = rc*rc + ic * ic; | 
 | 	r.real = (rs*rc + is*ic) / d; | 
 | 	r.imag = (is*rc - rs*ic) / d; | 
 | 	return r; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(c_tan_doc, | 
 | "tan(x)\n" | 
 | "\n" | 
 | "Return the tangent of x."); | 
 |  | 
 |  | 
 | static Py_complex | 
 | c_tanh(Py_complex x) | 
 | { | 
 | 	Py_complex r; | 
 | 	double si,ci,shr,chr; | 
 | 	double rs,is,rc,ic; | 
 | 	double d; | 
 | 	si = sin(x.imag); | 
 | 	ci = cos(x.imag); | 
 | 	shr = sinh(x.real); | 
 | 	chr = cosh(x.real); | 
 | 	rs = ci * shr; | 
 | 	is = si * chr; | 
 | 	rc = ci * chr; | 
 | 	ic = si * shr; | 
 | 	d = rc*rc + ic*ic; | 
 | 	r.real = (rs*rc + is*ic) / d; | 
 | 	r.imag = (is*rc - rs*ic) / d; | 
 | 	return r; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(c_tanh_doc, | 
 | "tanh(x)\n" | 
 | "\n" | 
 | "Return the hyperbolic tangent of x."); | 
 |  | 
 | static PyObject * | 
 | cmath_log(PyObject *self, PyObject *args) | 
 | { | 
 | 	Py_complex x; | 
 | 	Py_complex y; | 
 |  | 
 | 	if (!PyArg_ParseTuple(args, "D|D", &x, &y)) | 
 | 		return NULL; | 
 |  | 
 | 	errno = 0; | 
 | 	PyFPE_START_PROTECT("complex function", return 0) | 
 | 	x = c_log(x); | 
 | 	if (PyTuple_GET_SIZE(args) == 2) | 
 | 		x = c_quot(x, c_log(y)); | 
 | 	PyFPE_END_PROTECT(x) | 
 | 	if (errno != 0) | 
 | 		return math_error(); | 
 | 	Py_ADJUST_ERANGE2(x.real, x.imag); | 
 | 	return PyComplex_FromCComplex(x); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(cmath_log_doc, | 
 | "log(x[, base]) -> the logarithm of x to the given base.\n\ | 
 | If the base not specified, returns the natural logarithm (base e) of x."); | 
 |  | 
 |  | 
 | /* And now the glue to make them available from Python: */ | 
 |  | 
 | static PyObject * | 
 | math_error(void) | 
 | { | 
 | 	if (errno == EDOM) | 
 | 		PyErr_SetString(PyExc_ValueError, "math domain error"); | 
 | 	else if (errno == ERANGE) | 
 | 		PyErr_SetString(PyExc_OverflowError, "math range error"); | 
 | 	else    /* Unexpected math error */ | 
 | 		PyErr_SetFromErrno(PyExc_ValueError); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static PyObject * | 
 | math_1(PyObject *args, Py_complex (*func)(Py_complex)) | 
 | { | 
 | 	Py_complex x; | 
 | 	if (!PyArg_ParseTuple(args, "D", &x)) | 
 | 		return NULL; | 
 | 	errno = 0; | 
 | 	PyFPE_START_PROTECT("complex function", return 0) | 
 | 	x = (*func)(x); | 
 | 	PyFPE_END_PROTECT(x) | 
 | 	Py_ADJUST_ERANGE2(x.real, x.imag); | 
 | 	if (errno != 0) | 
 | 		return math_error(); | 
 | 	else | 
 | 		return PyComplex_FromCComplex(x); | 
 | } | 
 |  | 
 | #define FUNC1(stubname, func) \ | 
 | 	static PyObject * stubname(PyObject *self, PyObject *args) { \ | 
 | 		return math_1(args, func); \ | 
 | 	} | 
 |  | 
 | FUNC1(cmath_acos, c_acos) | 
 | FUNC1(cmath_acosh, c_acosh) | 
 | FUNC1(cmath_asin, c_asin) | 
 | FUNC1(cmath_asinh, c_asinh) | 
 | FUNC1(cmath_atan, c_atan) | 
 | FUNC1(cmath_atanh, c_atanh) | 
 | FUNC1(cmath_cos, c_cos) | 
 | FUNC1(cmath_cosh, c_cosh) | 
 | FUNC1(cmath_exp, c_exp) | 
 | FUNC1(cmath_log10, c_log10) | 
 | FUNC1(cmath_sin, c_sin) | 
 | FUNC1(cmath_sinh, c_sinh) | 
 | FUNC1(cmath_sqrt, c_sqrt) | 
 | FUNC1(cmath_tan, c_tan) | 
 | FUNC1(cmath_tanh, c_tanh) | 
 |  | 
 |  | 
 | PyDoc_STRVAR(module_doc, | 
 | "This module is always available. It provides access to mathematical\n" | 
 | "functions for complex numbers."); | 
 |  | 
 | static PyMethodDef cmath_methods[] = { | 
 | 	{"acos",   cmath_acos,  METH_VARARGS, c_acos_doc}, | 
 | 	{"acosh",  cmath_acosh, METH_VARARGS, c_acosh_doc}, | 
 | 	{"asin",   cmath_asin,  METH_VARARGS, c_asin_doc}, | 
 | 	{"asinh",  cmath_asinh, METH_VARARGS, c_asinh_doc}, | 
 | 	{"atan",   cmath_atan,  METH_VARARGS, c_atan_doc}, | 
 | 	{"atanh",  cmath_atanh, METH_VARARGS, c_atanh_doc}, | 
 | 	{"cos",    cmath_cos,   METH_VARARGS, c_cos_doc}, | 
 | 	{"cosh",   cmath_cosh,  METH_VARARGS, c_cosh_doc}, | 
 | 	{"exp",    cmath_exp,   METH_VARARGS, c_exp_doc}, | 
 | 	{"log",    cmath_log,   METH_VARARGS, cmath_log_doc}, | 
 | 	{"log10",  cmath_log10, METH_VARARGS, c_log10_doc}, | 
 | 	{"sin",    cmath_sin,   METH_VARARGS, c_sin_doc}, | 
 | 	{"sinh",   cmath_sinh,  METH_VARARGS, c_sinh_doc}, | 
 | 	{"sqrt",   cmath_sqrt,  METH_VARARGS, c_sqrt_doc}, | 
 | 	{"tan",    cmath_tan,   METH_VARARGS, c_tan_doc}, | 
 | 	{"tanh",   cmath_tanh,  METH_VARARGS, c_tanh_doc}, | 
 | 	{NULL,		NULL}		/* sentinel */ | 
 | }; | 
 |  | 
 | PyMODINIT_FUNC | 
 | initcmath(void) | 
 | { | 
 | 	PyObject *m; | 
 |  | 
 | 	m = Py_InitModule3("cmath", cmath_methods, module_doc); | 
 | 	if (m == NULL) | 
 | 		return; | 
 |  | 
 | 	PyModule_AddObject(m, "pi", | 
 |                            PyFloat_FromDouble(atan(1.0) * 4.0)); | 
 | 	PyModule_AddObject(m, "e", PyFloat_FromDouble(exp(1.0))); | 
 | } |