| \section{\module{operator} --- |
| Standard operators as functions.} |
| \declaremodule{builtin}{operator} |
| \sectionauthor{Skip Montanaro}{skip@automatrix.com} |
| |
| \modulesynopsis{All Python's standard operators as built-in functions.} |
| |
| |
| The \module{operator} module exports a set of functions implemented in C |
| corresponding to the intrinsic operators of Python. For example, |
| \code{operator.add(x, y)} is equivalent to the expression \code{x+y}. The |
| function names are those used for special class methods; variants without |
| leading and trailing \samp{__} are also provided for convenience. |
| |
| The functions fall into categories that perform object comparisons, |
| logical operations, mathematical operations, sequence operations, and |
| abstract type tests. |
| |
| The object comparison functions are useful for all objects, and are |
| named after the rich comparison operators they support: |
| |
| \begin{funcdesc}{lt}{a, b} |
| \funcline{le}{a, b} |
| \funcline{eq}{a, b} |
| \funcline{ne}{a, b} |
| \funcline{ge}{a, b} |
| \funcline{gt}{a, b} |
| \funcline{__lt__}{a, b} |
| \funcline{__le__}{a, b} |
| \funcline{__eq__}{a, b} |
| \funcline{__ne__}{a, b} |
| \funcline{__ge__}{a, b} |
| \funcline{__gt__}{a, b} |
| Perform ``rich comparisons'' between \var{a} and \var{b}. Specifically, |
| \code{lt(\var{a}, \var{b})} is equivalent to \code{\var{a} < \var{b}}, |
| \code{le(\var{a}, \var{b})} is equivalent to \code{\var{a} <= \var{b}}, |
| \code{eq(\var{a}, \var{b})} is equivalent to \code{\var{a} == \var{b}}, |
| \code{ne(\var{a}, \var{b})} is equivalent to \code{\var{a} != \var{b}}, |
| \code{gt(\var{a}, \var{b})} is equivalent to \code{\var{a} > \var{b}} |
| and |
| \code{ge(\var{a}, \var{b})} is equivalent to \code{\var{a} >= \var{b}}. |
| Note that unlike the built-in \function{cmp()}, these functions can |
| return any value, which may or may not be interpretable as a Boolean |
| value. See the \citetitle[../ref/ref.html]{Python Reference Manual} |
| for more informations about rich comparisons. |
| \versionadded{2.2} |
| \end{funcdesc} |
| |
| |
| The logical operations are also generally applicable to all objects, |
| and support truth tests and Boolean operations: |
| |
| \begin{funcdesc}{not_}{o} |
| \funcline{__not__}{o} |
| Return the outcome of \keyword{not} \var{o}. (Note that there is no |
| \method{__not__()} method for object instances; only the interpreter |
| core defines this operation. The result is affected by the |
| \method{__nonzero__()} and \method{__len__()} methods.) |
| \end{funcdesc} |
| |
| \begin{funcdesc}{truth}{o} |
| Return \code{1} if \var{o} is true, and 0 otherwise. |
| \end{funcdesc} |
| |
| |
| The mathematical and bitwise operations are the most numerous: |
| |
| \begin{funcdesc}{abs}{o} |
| \funcline{__abs__}{o} |
| Return the absolute value of \var{o}. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{add}{a, b} |
| \funcline{__add__}{a, b} |
| Return \var{a} \code{+} \var{b}, for \var{a} and \var{b} numbers. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{and_}{a, b} |
| \funcline{__and__}{a, b} |
| Return the bitwise and of \var{a} and \var{b}. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{div}{a, b} |
| \funcline{__div__}{a, b} |
| Return \var{a} \code{/} \var{b} when \code{__future__.division} is not |
| in effect. This is also known as ``classic'' division. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{floordiv}{a, b} |
| \funcline{__floordiv__}{a, b} |
| Return \var{a} \code{//} \var{b}. |
| \versionadded{2.2} |
| \end{funcdesc} |
| |
| \begin{funcdesc}{inv}{o} |
| \funcline{invert}{o} |
| \funcline{__inv__}{o} |
| \funcline{__invert__}{o} |
| Return the bitwise inverse of the number \var{o}. This is equivalent |
| to \code{\textasciitilde}\var{o}. The names \function{invert()} and |
| \function{__invert__()} were added in Python 2.0. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{lshift}{a, b} |
| \funcline{__lshift__}{a, b} |
| Return \var{a} shifted left by \var{b}. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{mod}{a, b} |
| \funcline{__mod__}{a, b} |
| Return \var{a} \code{\%} \var{b}. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{mul}{a, b} |
| \funcline{__mul__}{a, b} |
| Return \var{a} \code{*} \var{b}, for \var{a} and \var{b} numbers. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{neg}{o} |
| \funcline{__neg__}{o} |
| Return \var{o} negated. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{or_}{a, b} |
| \funcline{__or__}{a, b} |
| Return the bitwise or of \var{a} and \var{b}. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{pos}{o} |
| \funcline{__pos__}{o} |
| Return \var{o} positive. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{rshift}{a, b} |
| \funcline{__rshift__}{a, b} |
| Return \var{a} shifted right by \var{b}. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{sub}{a, b} |
| \funcline{__sub__}{a, b} |
| Return \var{a} \code{-} \var{b}. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{truediv}{a, b} |
| \funcline{__truediv__}{a, b} |
| Return \var{a} \code{/} \var{b} when \code{__future__.division} is in |
| effect. This is also known as division. |
| \versionadded{2.2} |
| \end{funcdesc} |
| |
| \begin{funcdesc}{xor}{a, b} |
| \funcline{__xor__}{a, b} |
| Return the bitwise exclusive or of \var{a} and \var{b}. |
| \end{funcdesc} |
| |
| |
| Operations which work with sequences include: |
| |
| \begin{funcdesc}{concat}{a, b} |
| \funcline{__concat__}{a, b} |
| Return \var{a} \code{+} \var{b} for \var{a} and \var{b} sequences. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{contains}{a, b} |
| \funcline{__contains__}{a, b} |
| Return the outcome of the test \var{b} \code{in} \var{a}. |
| Note the reversed operands. The name \function{__contains__()} was |
| added in Python 2.0. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{countOf}{a, b} |
| Return the number of occurrences of \var{b} in \var{a}. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{delitem}{a, b} |
| \funcline{__delitem__}{a, b} |
| Remove the value of \var{a} at index \var{b}. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{delslice}{a, b, c} |
| \funcline{__delslice__}{a, b, c} |
| Delete the slice of \var{a} from index \var{b} to index \var{c}\code{-1}. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{getitem}{a, b} |
| \funcline{__getitem__}{a, b} |
| Return the value of \var{a} at index \var{b}. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{getslice}{a, b, c} |
| \funcline{__getslice__}{a, b, c} |
| Return the slice of \var{a} from index \var{b} to index \var{c}\code{-1}. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{indexOf}{a, b} |
| Return the index of the first of occurrence of \var{b} in \var{a}. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{repeat}{a, b} |
| \funcline{__repeat__}{a, b} |
| Return \var{a} \code{*} \var{b} where \var{a} is a sequence and |
| \var{b} is an integer. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{sequenceIncludes}{\unspecified} |
| \deprecated{2.0}{Use \function{contains()} instead.} |
| Alias for \function{contains()}. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{setitem}{a, b, c} |
| \funcline{__setitem__}{a, b, c} |
| Set the value of \var{a} at index \var{b} to \var{c}. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{setslice}{a, b, c, v} |
| \funcline{__setslice__}{a, b, c, v} |
| Set the slice of \var{a} from index \var{b} to index \var{c}\code{-1} to the |
| sequence \var{v}. |
| \end{funcdesc} |
| |
| |
| The \module{operator} module also defines a few predicates to test the |
| type of objects. \note{Be careful not to misinterpret the |
| results of these functions; only \function{isCallable()} has any |
| measure of reliability with instance objects. For example:} |
| |
| \begin{verbatim} |
| >>> class C: |
| ... pass |
| ... |
| >>> import operator |
| >>> o = C() |
| >>> operator.isMappingType(o) |
| 1 |
| \end{verbatim} |
| |
| \begin{funcdesc}{isCallable}{o} |
| \deprecated{2.0}{Use the \function{callable()} built-in function instead.} |
| Returns true if the object \var{o} can be called like a function, |
| otherwise it returns false. True is returned for functions, bound and |
| unbound methods, class objects, and instance objects which support the |
| \method{__call__()} method. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{isMappingType}{o} |
| Returns true if the object \var{o} supports the mapping interface. |
| This is true for dictionaries and all instance objects. |
| \warning{There is no reliable way to test if an instance |
| supports the complete mapping protocol since the interface itself is |
| ill-defined. This makes this test less useful than it otherwise might |
| be.} |
| \end{funcdesc} |
| |
| \begin{funcdesc}{isNumberType}{o} |
| Returns true if the object \var{o} represents a number. This is true |
| for all numeric types implemented in C, and for all instance objects. |
| \warning{There is no reliable way to test if an instance |
| supports the complete numeric interface since the interface itself is |
| ill-defined. This makes this test less useful than it otherwise might |
| be.} |
| \end{funcdesc} |
| |
| \begin{funcdesc}{isSequenceType}{o} |
| Returns true if the object \var{o} supports the sequence protocol. |
| This returns true for all objects which define sequence methods in C, |
| and for all instance objects. \warning{There is no reliable |
| way to test if an instance supports the complete sequence interface |
| since the interface itself is ill-defined. This makes this test less |
| useful than it otherwise might be.} |
| \end{funcdesc} |
| |
| |
| Example: Build a dictionary that maps the ordinals from \code{0} to |
| \code{256} to their character equivalents. |
| |
| \begin{verbatim} |
| >>> import operator |
| >>> d = {} |
| >>> keys = range(256) |
| >>> vals = map(chr, keys) |
| >>> map(operator.setitem, [d]*len(keys), keys, vals) |
| \end{verbatim} |
| |
| |
| \subsection{Mapping Operators to Functions \label{operator-map}} |
| |
| This table shows how abstract operations correspond to operator |
| symbols in the Python syntax and the functions in the |
| \refmodule{operator} module. |
| |
| |
| \begin{tableiii}{l|c|l}{textrm}{Operation}{Syntax}{Function} |
| \lineiii{Addition}{\code{\var{a} + \var{b}}} |
| {\code{add(\var{a}, \var{b})}} |
| \lineiii{Concatenation}{\code{\var{seq1} + \var{seq2}}} |
| {\code{concat(\var{seq1}, \var{seq2})}} |
| \lineiii{Containment Test}{\code{\var{o} in \var{seq}}} |
| {\code{contains(\var{seq}, \var{o})}} |
| \lineiii{Division}{\code{\var{a} / \var{b}}} |
| {\code{div(\var{a}, \var{b}) \#} without \code{__future__.division}} |
| \lineiii{Division}{\code{\var{a} / \var{b}}} |
| {\code{truediv(\var{a}, \var{b}) \#} with \code{__future__.division}} |
| \lineiii{Division}{\code{\var{a} // \var{b}}} |
| {\code{floordiv(\var{a}, \var{b})}} |
| \lineiii{Bitwise And}{\code{\var{a} \&\ \var{b}}} |
| {\code{and_(\var{a}, \var{b})}} |
| \lineiii{Bitwise Exclusive Or}{\code{\var{a} \^\ \var{b}}} |
| {\code{xor(\var{a}, \var{b})}} |
| \lineiii{Bitwise Inversion}{\code{\~{} \var{a}}} |
| {\code{invert(\var{a})}} |
| \lineiii{Bitwise Or}{\code{\var{a} | \var{b}}} |
| {\code{or_(\var{a}, \var{b})}} |
| \lineiii{Indexed Assignment}{\code{\var{o}[\var{k}] = \var{v}}} |
| {\code{setitem(\var{o}, \var{k}, \var{v})}} |
| \lineiii{Indexed Deletion}{\code{del \var{o}[\var{k}]}} |
| {\code{delitem(\var{o}, \var{k})}} |
| \lineiii{Indexing}{\code{\var{o}[\var{k}]}} |
| {\code{getitem(\var{o}, \var{k})}} |
| \lineiii{Left Shift}{\code{\var{a} <\code{<} \var{b}}} |
| {\code{lshift(\var{a}, \var{b})}} |
| \lineiii{Modulo}{\code{\var{a} \%\ \var{b}}} |
| {\code{mod(\var{a}, \var{b})}} |
| \lineiii{Multiplication}{\code{\var{a} * \var{b}}} |
| {\code{mul(\var{a}, \var{b})}} |
| \lineiii{Negation (Arithmetic)}{\code{- \var{a}}} |
| {\code{neg(\var{a})}} |
| \lineiii{Negation (Logical)}{\code{not \var{a}}} |
| {\code{not_(\var{a})}} |
| \lineiii{Right Shift}{\code{\var{a} >\code{>} \var{b}}} |
| {\code{rshift(\var{a}, \var{b})}} |
| \lineiii{Sequence Repitition}{\code{\var{seq} * \var{i}}} |
| {\code{repeat(\var{seq}, \var{i})}} |
| \lineiii{Slice Assignment}{\code{\var{seq}[\var{i}:\var{j}]} = \var{values}} |
| {\code{setslice(\var{seq}, \var{i}, \var{j}, \var{values})}} |
| \lineiii{Slice Deletion}{\code{del \var{seq}[\var{i}:\var{j}]}} |
| {\code{delslice(\var{seq}, \var{i}, \var{j})}} |
| \lineiii{Slicing}{\code{\var{seq}[\var{i}:\var{j}]}} |
| {\code{getslice(\var{seq}, \var{i}, \var{j})}} |
| \lineiii{String Formatting}{\code{\var{s} \%\ \var{o}}} |
| {\code{mod(\var{s}, \var{o})}} |
| \lineiii{Subtraction}{\code{\var{a} - \var{b}}} |
| {\code{sub(\var{a}, \var{b})}} |
| \lineiii{Truth Test}{\code{\var{o}}} |
| {\code{truth(\var{o})}} |
| \lineiii{Ordering}{\code{\var{a} < \var{b}}} |
| {\code{lt(\var{a}, \var{b})}} |
| \lineiii{Ordering}{\code{\var{a} <= \var{b}}} |
| {\code{le(\var{a}, \var{b})}} |
| \lineiii{Equality}{\code{\var{a} == \var{b}}} |
| {\code{eq(\var{a}, \var{b})}} |
| \lineiii{Difference}{\code{\var{a} != \var{b}}} |
| {\code{ne(\var{a}, \var{b})}} |
| \lineiii{Ordering}{\code{\var{a} >= \var{b}}} |
| {\code{ge(\var{a}, \var{b})}} |
| \lineiii{Ordering}{\code{\var{a} > \var{b}}} |
| {\code{gt(\var{a}, \var{b})}} |
| \end{tableiii} |