|  | 
 | /* Float object implementation */ | 
 |  | 
 | /* XXX There should be overflow checks here, but it's hard to check | 
 |    for any kind of float exception without losing portability. */ | 
 |  | 
 | #include "Python.h" | 
 |  | 
 | #include <ctype.h> | 
 | #include <float.h> | 
 |  | 
 | /*[clinic input] | 
 | class float "PyObject *" "&PyFloat_Type" | 
 | [clinic start generated code]*/ | 
 | /*[clinic end generated code: output=da39a3ee5e6b4b0d input=dd0003f68f144284]*/ | 
 |  | 
 | #include "clinic/floatobject.c.h" | 
 |  | 
 | /* Special free list | 
 |    free_list is a singly-linked list of available PyFloatObjects, linked | 
 |    via abuse of their ob_type members. | 
 | */ | 
 |  | 
 | #ifndef PyFloat_MAXFREELIST | 
 | #define PyFloat_MAXFREELIST    100 | 
 | #endif | 
 | static int numfree = 0; | 
 | static PyFloatObject *free_list = NULL; | 
 |  | 
 | double | 
 | PyFloat_GetMax(void) | 
 | { | 
 |     return DBL_MAX; | 
 | } | 
 |  | 
 | double | 
 | PyFloat_GetMin(void) | 
 | { | 
 |     return DBL_MIN; | 
 | } | 
 |  | 
 | static PyTypeObject FloatInfoType; | 
 |  | 
 | PyDoc_STRVAR(floatinfo__doc__, | 
 | "sys.float_info\n\ | 
 | \n\ | 
 | A structseq holding information about the float type. It contains low level\n\ | 
 | information about the precision and internal representation. Please study\n\ | 
 | your system's :file:`float.h` for more information."); | 
 |  | 
 | static PyStructSequence_Field floatinfo_fields[] = { | 
 |     {"max",             "DBL_MAX -- maximum representable finite float"}, | 
 |     {"max_exp",         "DBL_MAX_EXP -- maximum int e such that radix**(e-1) " | 
 |                     "is representable"}, | 
 |     {"max_10_exp",      "DBL_MAX_10_EXP -- maximum int e such that 10**e " | 
 |                     "is representable"}, | 
 |     {"min",             "DBL_MIN -- Minimum positive normalizer float"}, | 
 |     {"min_exp",         "DBL_MIN_EXP -- minimum int e such that radix**(e-1) " | 
 |                     "is a normalized float"}, | 
 |     {"min_10_exp",      "DBL_MIN_10_EXP -- minimum int e such that 10**e is " | 
 |                     "a normalized"}, | 
 |     {"dig",             "DBL_DIG -- digits"}, | 
 |     {"mant_dig",        "DBL_MANT_DIG -- mantissa digits"}, | 
 |     {"epsilon",         "DBL_EPSILON -- Difference between 1 and the next " | 
 |                     "representable float"}, | 
 |     {"radix",           "FLT_RADIX -- radix of exponent"}, | 
 |     {"rounds",          "FLT_ROUNDS -- addition rounds"}, | 
 |     {0} | 
 | }; | 
 |  | 
 | static PyStructSequence_Desc floatinfo_desc = { | 
 |     "sys.float_info",           /* name */ | 
 |     floatinfo__doc__,           /* doc */ | 
 |     floatinfo_fields,           /* fields */ | 
 |     11 | 
 | }; | 
 |  | 
 | PyObject * | 
 | PyFloat_GetInfo(void) | 
 | { | 
 |     PyObject* floatinfo; | 
 |     int pos = 0; | 
 |  | 
 |     floatinfo = PyStructSequence_New(&FloatInfoType); | 
 |     if (floatinfo == NULL) { | 
 |         return NULL; | 
 |     } | 
 |  | 
 | #define SetIntFlag(flag) \ | 
 |     PyStructSequence_SET_ITEM(floatinfo, pos++, PyLong_FromLong(flag)) | 
 | #define SetDblFlag(flag) \ | 
 |     PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag)) | 
 |  | 
 |     SetDblFlag(DBL_MAX); | 
 |     SetIntFlag(DBL_MAX_EXP); | 
 |     SetIntFlag(DBL_MAX_10_EXP); | 
 |     SetDblFlag(DBL_MIN); | 
 |     SetIntFlag(DBL_MIN_EXP); | 
 |     SetIntFlag(DBL_MIN_10_EXP); | 
 |     SetIntFlag(DBL_DIG); | 
 |     SetIntFlag(DBL_MANT_DIG); | 
 |     SetDblFlag(DBL_EPSILON); | 
 |     SetIntFlag(FLT_RADIX); | 
 |     SetIntFlag(FLT_ROUNDS); | 
 | #undef SetIntFlag | 
 | #undef SetDblFlag | 
 |  | 
 |     if (PyErr_Occurred()) { | 
 |         Py_CLEAR(floatinfo); | 
 |         return NULL; | 
 |     } | 
 |     return floatinfo; | 
 | } | 
 |  | 
 | PyObject * | 
 | PyFloat_FromDouble(double fval) | 
 | { | 
 |     PyFloatObject *op = free_list; | 
 |     if (op != NULL) { | 
 |         free_list = (PyFloatObject *) Py_TYPE(op); | 
 |         numfree--; | 
 |     } else { | 
 |         op = (PyFloatObject*) PyObject_MALLOC(sizeof(PyFloatObject)); | 
 |         if (!op) | 
 |             return PyErr_NoMemory(); | 
 |     } | 
 |     /* Inline PyObject_New */ | 
 |     (void)PyObject_INIT(op, &PyFloat_Type); | 
 |     op->ob_fval = fval; | 
 |     return (PyObject *) op; | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_from_string_inner(const char *s, Py_ssize_t len, void *obj) | 
 | { | 
 |     double x; | 
 |     const char *end; | 
 |     const char *last = s + len; | 
 |     /* strip space */ | 
 |     while (s < last && Py_ISSPACE(*s)) { | 
 |         s++; | 
 |     } | 
 |  | 
 |     while (s < last - 1 && Py_ISSPACE(last[-1])) { | 
 |         last--; | 
 |     } | 
 |  | 
 |     /* We don't care about overflow or underflow.  If the platform | 
 |      * supports them, infinities and signed zeroes (on underflow) are | 
 |      * fine. */ | 
 |     x = PyOS_string_to_double(s, (char **)&end, NULL); | 
 |     if (end != last) { | 
 |         PyErr_Format(PyExc_ValueError, | 
 |                      "could not convert string to float: " | 
 |                      "%R", obj); | 
 |         return NULL; | 
 |     } | 
 |     else if (x == -1.0 && PyErr_Occurred()) { | 
 |         return NULL; | 
 |     } | 
 |     else { | 
 |         return PyFloat_FromDouble(x); | 
 |     } | 
 | } | 
 |  | 
 | PyObject * | 
 | PyFloat_FromString(PyObject *v) | 
 | { | 
 |     const char *s; | 
 |     PyObject *s_buffer = NULL; | 
 |     Py_ssize_t len; | 
 |     Py_buffer view = {NULL, NULL}; | 
 |     PyObject *result = NULL; | 
 |  | 
 |     if (PyUnicode_Check(v)) { | 
 |         s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v); | 
 |         if (s_buffer == NULL) | 
 |             return NULL; | 
 |         s = PyUnicode_AsUTF8AndSize(s_buffer, &len); | 
 |         if (s == NULL) { | 
 |             Py_DECREF(s_buffer); | 
 |             return NULL; | 
 |         } | 
 |     } | 
 |     else if (PyBytes_Check(v)) { | 
 |         s = PyBytes_AS_STRING(v); | 
 |         len = PyBytes_GET_SIZE(v); | 
 |     } | 
 |     else if (PyByteArray_Check(v)) { | 
 |         s = PyByteArray_AS_STRING(v); | 
 |         len = PyByteArray_GET_SIZE(v); | 
 |     } | 
 |     else if (PyObject_GetBuffer(v, &view, PyBUF_SIMPLE) == 0) { | 
 |         s = (const char *)view.buf; | 
 |         len = view.len; | 
 |         /* Copy to NUL-terminated buffer. */ | 
 |         s_buffer = PyBytes_FromStringAndSize(s, len); | 
 |         if (s_buffer == NULL) { | 
 |             PyBuffer_Release(&view); | 
 |             return NULL; | 
 |         } | 
 |         s = PyBytes_AS_STRING(s_buffer); | 
 |     } | 
 |     else { | 
 |         PyErr_Format(PyExc_TypeError, | 
 |             "float() argument must be a string or a number, not '%.200s'", | 
 |             Py_TYPE(v)->tp_name); | 
 |         return NULL; | 
 |     } | 
 |     result = _Py_string_to_number_with_underscores(s, len, "float", v, v, | 
 |                                                    float_from_string_inner); | 
 |     PyBuffer_Release(&view); | 
 |     Py_XDECREF(s_buffer); | 
 |     return result; | 
 | } | 
 |  | 
 | static void | 
 | float_dealloc(PyFloatObject *op) | 
 | { | 
 |     if (PyFloat_CheckExact(op)) { | 
 |         if (numfree >= PyFloat_MAXFREELIST)  { | 
 |             PyObject_FREE(op); | 
 |             return; | 
 |         } | 
 |         numfree++; | 
 |         Py_TYPE(op) = (struct _typeobject *)free_list; | 
 |         free_list = op; | 
 |     } | 
 |     else | 
 |         Py_TYPE(op)->tp_free((PyObject *)op); | 
 | } | 
 |  | 
 | double | 
 | PyFloat_AsDouble(PyObject *op) | 
 | { | 
 |     PyNumberMethods *nb; | 
 |     PyObject *res; | 
 |     double val; | 
 |  | 
 |     if (op == NULL) { | 
 |         PyErr_BadArgument(); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if (PyFloat_Check(op)) { | 
 |         return PyFloat_AS_DOUBLE(op); | 
 |     } | 
 |  | 
 |     nb = Py_TYPE(op)->tp_as_number; | 
 |     if (nb == NULL || nb->nb_float == NULL) { | 
 |         PyErr_Format(PyExc_TypeError, "must be real number, not %.50s", | 
 |                      op->ob_type->tp_name); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     res = (*nb->nb_float) (op); | 
 |     if (res == NULL) { | 
 |         return -1; | 
 |     } | 
 |     if (!PyFloat_CheckExact(res)) { | 
 |         if (!PyFloat_Check(res)) { | 
 |             PyErr_Format(PyExc_TypeError, | 
 |                          "%.50s.__float__ returned non-float (type %.50s)", | 
 |                          op->ob_type->tp_name, res->ob_type->tp_name); | 
 |             Py_DECREF(res); | 
 |             return -1; | 
 |         } | 
 |         if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, | 
 |                 "%.50s.__float__ returned non-float (type %.50s).  " | 
 |                 "The ability to return an instance of a strict subclass of float " | 
 |                 "is deprecated, and may be removed in a future version of Python.", | 
 |                 op->ob_type->tp_name, res->ob_type->tp_name)) { | 
 |             Py_DECREF(res); | 
 |             return -1; | 
 |         } | 
 |     } | 
 |  | 
 |     val = PyFloat_AS_DOUBLE(res); | 
 |     Py_DECREF(res); | 
 |     return val; | 
 | } | 
 |  | 
 | /* Macro and helper that convert PyObject obj to a C double and store | 
 |    the value in dbl.  If conversion to double raises an exception, obj is | 
 |    set to NULL, and the function invoking this macro returns NULL.  If | 
 |    obj is not of float or int type, Py_NotImplemented is incref'ed, | 
 |    stored in obj, and returned from the function invoking this macro. | 
 | */ | 
 | #define CONVERT_TO_DOUBLE(obj, dbl)                     \ | 
 |     if (PyFloat_Check(obj))                             \ | 
 |         dbl = PyFloat_AS_DOUBLE(obj);                   \ | 
 |     else if (convert_to_double(&(obj), &(dbl)) < 0)     \ | 
 |         return obj; | 
 |  | 
 | /* Methods */ | 
 |  | 
 | static int | 
 | convert_to_double(PyObject **v, double *dbl) | 
 | { | 
 |     PyObject *obj = *v; | 
 |  | 
 |     if (PyLong_Check(obj)) { | 
 |         *dbl = PyLong_AsDouble(obj); | 
 |         if (*dbl == -1.0 && PyErr_Occurred()) { | 
 |             *v = NULL; | 
 |             return -1; | 
 |         } | 
 |     } | 
 |     else { | 
 |         Py_INCREF(Py_NotImplemented); | 
 |         *v = Py_NotImplemented; | 
 |         return -1; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_repr(PyFloatObject *v) | 
 | { | 
 |     PyObject *result; | 
 |     char *buf; | 
 |  | 
 |     buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v), | 
 |                                 'r', 0, | 
 |                                 Py_DTSF_ADD_DOT_0, | 
 |                                 NULL); | 
 |     if (!buf) | 
 |         return PyErr_NoMemory(); | 
 |     result = _PyUnicode_FromASCII(buf, strlen(buf)); | 
 |     PyMem_Free(buf); | 
 |     return result; | 
 | } | 
 |  | 
 | /* Comparison is pretty much a nightmare.  When comparing float to float, | 
 |  * we do it as straightforwardly (and long-windedly) as conceivable, so | 
 |  * that, e.g., Python x == y delivers the same result as the platform | 
 |  * C x == y when x and/or y is a NaN. | 
 |  * When mixing float with an integer type, there's no good *uniform* approach. | 
 |  * Converting the double to an integer obviously doesn't work, since we | 
 |  * may lose info from fractional bits.  Converting the integer to a double | 
 |  * also has two failure modes:  (1) an int may trigger overflow (too | 
 |  * large to fit in the dynamic range of a C double); (2) even a C long may have | 
 |  * more bits than fit in a C double (e.g., on a 64-bit box long may have | 
 |  * 63 bits of precision, but a C double probably has only 53), and then | 
 |  * we can falsely claim equality when low-order integer bits are lost by | 
 |  * coercion to double.  So this part is painful too. | 
 |  */ | 
 |  | 
 | static PyObject* | 
 | float_richcompare(PyObject *v, PyObject *w, int op) | 
 | { | 
 |     double i, j; | 
 |     int r = 0; | 
 |  | 
 |     assert(PyFloat_Check(v)); | 
 |     i = PyFloat_AS_DOUBLE(v); | 
 |  | 
 |     /* Switch on the type of w.  Set i and j to doubles to be compared, | 
 |      * and op to the richcomp to use. | 
 |      */ | 
 |     if (PyFloat_Check(w)) | 
 |         j = PyFloat_AS_DOUBLE(w); | 
 |  | 
 |     else if (!Py_IS_FINITE(i)) { | 
 |         if (PyLong_Check(w)) | 
 |             /* If i is an infinity, its magnitude exceeds any | 
 |              * finite integer, so it doesn't matter which int we | 
 |              * compare i with.  If i is a NaN, similarly. | 
 |              */ | 
 |             j = 0.0; | 
 |         else | 
 |             goto Unimplemented; | 
 |     } | 
 |  | 
 |     else if (PyLong_Check(w)) { | 
 |         int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1; | 
 |         int wsign = _PyLong_Sign(w); | 
 |         size_t nbits; | 
 |         int exponent; | 
 |  | 
 |         if (vsign != wsign) { | 
 |             /* Magnitudes are irrelevant -- the signs alone | 
 |              * determine the outcome. | 
 |              */ | 
 |             i = (double)vsign; | 
 |             j = (double)wsign; | 
 |             goto Compare; | 
 |         } | 
 |         /* The signs are the same. */ | 
 |         /* Convert w to a double if it fits.  In particular, 0 fits. */ | 
 |         nbits = _PyLong_NumBits(w); | 
 |         if (nbits == (size_t)-1 && PyErr_Occurred()) { | 
 |             /* This long is so large that size_t isn't big enough | 
 |              * to hold the # of bits.  Replace with little doubles | 
 |              * that give the same outcome -- w is so large that | 
 |              * its magnitude must exceed the magnitude of any | 
 |              * finite float. | 
 |              */ | 
 |             PyErr_Clear(); | 
 |             i = (double)vsign; | 
 |             assert(wsign != 0); | 
 |             j = wsign * 2.0; | 
 |             goto Compare; | 
 |         } | 
 |         if (nbits <= 48) { | 
 |             j = PyLong_AsDouble(w); | 
 |             /* It's impossible that <= 48 bits overflowed. */ | 
 |             assert(j != -1.0 || ! PyErr_Occurred()); | 
 |             goto Compare; | 
 |         } | 
 |         assert(wsign != 0); /* else nbits was 0 */ | 
 |         assert(vsign != 0); /* if vsign were 0, then since wsign is | 
 |                              * not 0, we would have taken the | 
 |                              * vsign != wsign branch at the start */ | 
 |         /* We want to work with non-negative numbers. */ | 
 |         if (vsign < 0) { | 
 |             /* "Multiply both sides" by -1; this also swaps the | 
 |              * comparator. | 
 |              */ | 
 |             i = -i; | 
 |             op = _Py_SwappedOp[op]; | 
 |         } | 
 |         assert(i > 0.0); | 
 |         (void) frexp(i, &exponent); | 
 |         /* exponent is the # of bits in v before the radix point; | 
 |          * we know that nbits (the # of bits in w) > 48 at this point | 
 |          */ | 
 |         if (exponent < 0 || (size_t)exponent < nbits) { | 
 |             i = 1.0; | 
 |             j = 2.0; | 
 |             goto Compare; | 
 |         } | 
 |         if ((size_t)exponent > nbits) { | 
 |             i = 2.0; | 
 |             j = 1.0; | 
 |             goto Compare; | 
 |         } | 
 |         /* v and w have the same number of bits before the radix | 
 |          * point.  Construct two ints that have the same comparison | 
 |          * outcome. | 
 |          */ | 
 |         { | 
 |             double fracpart; | 
 |             double intpart; | 
 |             PyObject *result = NULL; | 
 |             PyObject *vv = NULL; | 
 |             PyObject *ww = w; | 
 |  | 
 |             if (wsign < 0) { | 
 |                 ww = PyNumber_Negative(w); | 
 |                 if (ww == NULL) | 
 |                     goto Error; | 
 |             } | 
 |             else | 
 |                 Py_INCREF(ww); | 
 |  | 
 |             fracpart = modf(i, &intpart); | 
 |             vv = PyLong_FromDouble(intpart); | 
 |             if (vv == NULL) | 
 |                 goto Error; | 
 |  | 
 |             if (fracpart != 0.0) { | 
 |                 /* Shift left, and or a 1 bit into vv | 
 |                  * to represent the lost fraction. | 
 |                  */ | 
 |                 PyObject *temp; | 
 |  | 
 |                 temp = PyNumber_Lshift(ww, _PyLong_One); | 
 |                 if (temp == NULL) | 
 |                     goto Error; | 
 |                 Py_DECREF(ww); | 
 |                 ww = temp; | 
 |  | 
 |                 temp = PyNumber_Lshift(vv, _PyLong_One); | 
 |                 if (temp == NULL) | 
 |                     goto Error; | 
 |                 Py_DECREF(vv); | 
 |                 vv = temp; | 
 |  | 
 |                 temp = PyNumber_Or(vv, _PyLong_One); | 
 |                 if (temp == NULL) | 
 |                     goto Error; | 
 |                 Py_DECREF(vv); | 
 |                 vv = temp; | 
 |             } | 
 |  | 
 |             r = PyObject_RichCompareBool(vv, ww, op); | 
 |             if (r < 0) | 
 |                 goto Error; | 
 |             result = PyBool_FromLong(r); | 
 |          Error: | 
 |             Py_XDECREF(vv); | 
 |             Py_XDECREF(ww); | 
 |             return result; | 
 |         } | 
 |     } /* else if (PyLong_Check(w)) */ | 
 |  | 
 |     else        /* w isn't float or int */ | 
 |         goto Unimplemented; | 
 |  | 
 |  Compare: | 
 |     PyFPE_START_PROTECT("richcompare", return NULL) | 
 |     switch (op) { | 
 |     case Py_EQ: | 
 |         r = i == j; | 
 |         break; | 
 |     case Py_NE: | 
 |         r = i != j; | 
 |         break; | 
 |     case Py_LE: | 
 |         r = i <= j; | 
 |         break; | 
 |     case Py_GE: | 
 |         r = i >= j; | 
 |         break; | 
 |     case Py_LT: | 
 |         r = i < j; | 
 |         break; | 
 |     case Py_GT: | 
 |         r = i > j; | 
 |         break; | 
 |     } | 
 |     PyFPE_END_PROTECT(r) | 
 |     return PyBool_FromLong(r); | 
 |  | 
 |  Unimplemented: | 
 |     Py_RETURN_NOTIMPLEMENTED; | 
 | } | 
 |  | 
 | static Py_hash_t | 
 | float_hash(PyFloatObject *v) | 
 | { | 
 |     return _Py_HashDouble(v->ob_fval); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_add(PyObject *v, PyObject *w) | 
 | { | 
 |     double a,b; | 
 |     CONVERT_TO_DOUBLE(v, a); | 
 |     CONVERT_TO_DOUBLE(w, b); | 
 |     PyFPE_START_PROTECT("add", return 0) | 
 |     a = a + b; | 
 |     PyFPE_END_PROTECT(a) | 
 |     return PyFloat_FromDouble(a); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_sub(PyObject *v, PyObject *w) | 
 | { | 
 |     double a,b; | 
 |     CONVERT_TO_DOUBLE(v, a); | 
 |     CONVERT_TO_DOUBLE(w, b); | 
 |     PyFPE_START_PROTECT("subtract", return 0) | 
 |     a = a - b; | 
 |     PyFPE_END_PROTECT(a) | 
 |     return PyFloat_FromDouble(a); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_mul(PyObject *v, PyObject *w) | 
 | { | 
 |     double a,b; | 
 |     CONVERT_TO_DOUBLE(v, a); | 
 |     CONVERT_TO_DOUBLE(w, b); | 
 |     PyFPE_START_PROTECT("multiply", return 0) | 
 |     a = a * b; | 
 |     PyFPE_END_PROTECT(a) | 
 |     return PyFloat_FromDouble(a); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_div(PyObject *v, PyObject *w) | 
 | { | 
 |     double a,b; | 
 |     CONVERT_TO_DOUBLE(v, a); | 
 |     CONVERT_TO_DOUBLE(w, b); | 
 |     if (b == 0.0) { | 
 |         PyErr_SetString(PyExc_ZeroDivisionError, | 
 |                         "float division by zero"); | 
 |         return NULL; | 
 |     } | 
 |     PyFPE_START_PROTECT("divide", return 0) | 
 |     a = a / b; | 
 |     PyFPE_END_PROTECT(a) | 
 |     return PyFloat_FromDouble(a); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_rem(PyObject *v, PyObject *w) | 
 | { | 
 |     double vx, wx; | 
 |     double mod; | 
 |     CONVERT_TO_DOUBLE(v, vx); | 
 |     CONVERT_TO_DOUBLE(w, wx); | 
 |     if (wx == 0.0) { | 
 |         PyErr_SetString(PyExc_ZeroDivisionError, | 
 |                         "float modulo"); | 
 |         return NULL; | 
 |     } | 
 |     PyFPE_START_PROTECT("modulo", return 0) | 
 |     mod = fmod(vx, wx); | 
 |     if (mod) { | 
 |         /* ensure the remainder has the same sign as the denominator */ | 
 |         if ((wx < 0) != (mod < 0)) { | 
 |             mod += wx; | 
 |         } | 
 |     } | 
 |     else { | 
 |         /* the remainder is zero, and in the presence of signed zeroes | 
 |            fmod returns different results across platforms; ensure | 
 |            it has the same sign as the denominator. */ | 
 |         mod = copysign(0.0, wx); | 
 |     } | 
 |     PyFPE_END_PROTECT(mod) | 
 |     return PyFloat_FromDouble(mod); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_divmod(PyObject *v, PyObject *w) | 
 | { | 
 |     double vx, wx; | 
 |     double div, mod, floordiv; | 
 |     CONVERT_TO_DOUBLE(v, vx); | 
 |     CONVERT_TO_DOUBLE(w, wx); | 
 |     if (wx == 0.0) { | 
 |         PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()"); | 
 |         return NULL; | 
 |     } | 
 |     PyFPE_START_PROTECT("divmod", return 0) | 
 |     mod = fmod(vx, wx); | 
 |     /* fmod is typically exact, so vx-mod is *mathematically* an | 
 |        exact multiple of wx.  But this is fp arithmetic, and fp | 
 |        vx - mod is an approximation; the result is that div may | 
 |        not be an exact integral value after the division, although | 
 |        it will always be very close to one. | 
 |     */ | 
 |     div = (vx - mod) / wx; | 
 |     if (mod) { | 
 |         /* ensure the remainder has the same sign as the denominator */ | 
 |         if ((wx < 0) != (mod < 0)) { | 
 |             mod += wx; | 
 |             div -= 1.0; | 
 |         } | 
 |     } | 
 |     else { | 
 |         /* the remainder is zero, and in the presence of signed zeroes | 
 |            fmod returns different results across platforms; ensure | 
 |            it has the same sign as the denominator. */ | 
 |         mod = copysign(0.0, wx); | 
 |     } | 
 |     /* snap quotient to nearest integral value */ | 
 |     if (div) { | 
 |         floordiv = floor(div); | 
 |         if (div - floordiv > 0.5) | 
 |             floordiv += 1.0; | 
 |     } | 
 |     else { | 
 |         /* div is zero - get the same sign as the true quotient */ | 
 |         floordiv = copysign(0.0, vx / wx); /* zero w/ sign of vx/wx */ | 
 |     } | 
 |     PyFPE_END_PROTECT(floordiv) | 
 |     return Py_BuildValue("(dd)", floordiv, mod); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_floor_div(PyObject *v, PyObject *w) | 
 | { | 
 |     PyObject *t, *r; | 
 |  | 
 |     t = float_divmod(v, w); | 
 |     if (t == NULL || t == Py_NotImplemented) | 
 |         return t; | 
 |     assert(PyTuple_CheckExact(t)); | 
 |     r = PyTuple_GET_ITEM(t, 0); | 
 |     Py_INCREF(r); | 
 |     Py_DECREF(t); | 
 |     return r; | 
 | } | 
 |  | 
 | /* determine whether x is an odd integer or not;  assumes that | 
 |    x is not an infinity or nan. */ | 
 | #define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0) | 
 |  | 
 | static PyObject * | 
 | float_pow(PyObject *v, PyObject *w, PyObject *z) | 
 | { | 
 |     double iv, iw, ix; | 
 |     int negate_result = 0; | 
 |  | 
 |     if ((PyObject *)z != Py_None) { | 
 |         PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not " | 
 |             "allowed unless all arguments are integers"); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     CONVERT_TO_DOUBLE(v, iv); | 
 |     CONVERT_TO_DOUBLE(w, iw); | 
 |  | 
 |     /* Sort out special cases here instead of relying on pow() */ | 
 |     if (iw == 0) {              /* v**0 is 1, even 0**0 */ | 
 |         return PyFloat_FromDouble(1.0); | 
 |     } | 
 |     if (Py_IS_NAN(iv)) {        /* nan**w = nan, unless w == 0 */ | 
 |         return PyFloat_FromDouble(iv); | 
 |     } | 
 |     if (Py_IS_NAN(iw)) {        /* v**nan = nan, unless v == 1; 1**nan = 1 */ | 
 |         return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw); | 
 |     } | 
 |     if (Py_IS_INFINITY(iw)) { | 
 |         /* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if | 
 |          *     abs(v) > 1 (including case where v infinite) | 
 |          * | 
 |          * v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if | 
 |          *     abs(v) > 1 (including case where v infinite) | 
 |          */ | 
 |         iv = fabs(iv); | 
 |         if (iv == 1.0) | 
 |             return PyFloat_FromDouble(1.0); | 
 |         else if ((iw > 0.0) == (iv > 1.0)) | 
 |             return PyFloat_FromDouble(fabs(iw)); /* return inf */ | 
 |         else | 
 |             return PyFloat_FromDouble(0.0); | 
 |     } | 
 |     if (Py_IS_INFINITY(iv)) { | 
 |         /* (+-inf)**w is: inf for w positive, 0 for w negative; in | 
 |          *     both cases, we need to add the appropriate sign if w is | 
 |          *     an odd integer. | 
 |          */ | 
 |         int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw); | 
 |         if (iw > 0.0) | 
 |             return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv)); | 
 |         else | 
 |             return PyFloat_FromDouble(iw_is_odd ? | 
 |                                       copysign(0.0, iv) : 0.0); | 
 |     } | 
 |     if (iv == 0.0) {  /* 0**w is: 0 for w positive, 1 for w zero | 
 |                          (already dealt with above), and an error | 
 |                          if w is negative. */ | 
 |         int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw); | 
 |         if (iw < 0.0) { | 
 |             PyErr_SetString(PyExc_ZeroDivisionError, | 
 |                             "0.0 cannot be raised to a " | 
 |                             "negative power"); | 
 |             return NULL; | 
 |         } | 
 |         /* use correct sign if iw is odd */ | 
 |         return PyFloat_FromDouble(iw_is_odd ? iv : 0.0); | 
 |     } | 
 |  | 
 |     if (iv < 0.0) { | 
 |         /* Whether this is an error is a mess, and bumps into libm | 
 |          * bugs so we have to figure it out ourselves. | 
 |          */ | 
 |         if (iw != floor(iw)) { | 
 |             /* Negative numbers raised to fractional powers | 
 |              * become complex. | 
 |              */ | 
 |             return PyComplex_Type.tp_as_number->nb_power(v, w, z); | 
 |         } | 
 |         /* iw is an exact integer, albeit perhaps a very large | 
 |          * one.  Replace iv by its absolute value and remember | 
 |          * to negate the pow result if iw is odd. | 
 |          */ | 
 |         iv = -iv; | 
 |         negate_result = DOUBLE_IS_ODD_INTEGER(iw); | 
 |     } | 
 |  | 
 |     if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */ | 
 |         /* (-1) ** large_integer also ends up here.  Here's an | 
 |          * extract from the comments for the previous | 
 |          * implementation explaining why this special case is | 
 |          * necessary: | 
 |          * | 
 |          * -1 raised to an exact integer should never be exceptional. | 
 |          * Alas, some libms (chiefly glibc as of early 2003) return | 
 |          * NaN and set EDOM on pow(-1, large_int) if the int doesn't | 
 |          * happen to be representable in a *C* integer.  That's a | 
 |          * bug. | 
 |          */ | 
 |         return PyFloat_FromDouble(negate_result ? -1.0 : 1.0); | 
 |     } | 
 |  | 
 |     /* Now iv and iw are finite, iw is nonzero, and iv is | 
 |      * positive and not equal to 1.0.  We finally allow | 
 |      * the platform pow to step in and do the rest. | 
 |      */ | 
 |     errno = 0; | 
 |     PyFPE_START_PROTECT("pow", return NULL) | 
 |     ix = pow(iv, iw); | 
 |     PyFPE_END_PROTECT(ix) | 
 |     Py_ADJUST_ERANGE1(ix); | 
 |     if (negate_result) | 
 |         ix = -ix; | 
 |  | 
 |     if (errno != 0) { | 
 |         /* We don't expect any errno value other than ERANGE, but | 
 |          * the range of libm bugs appears unbounded. | 
 |          */ | 
 |         PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError : | 
 |                              PyExc_ValueError); | 
 |         return NULL; | 
 |     } | 
 |     return PyFloat_FromDouble(ix); | 
 | } | 
 |  | 
 | #undef DOUBLE_IS_ODD_INTEGER | 
 |  | 
 | static PyObject * | 
 | float_neg(PyFloatObject *v) | 
 | { | 
 |     return PyFloat_FromDouble(-v->ob_fval); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_abs(PyFloatObject *v) | 
 | { | 
 |     return PyFloat_FromDouble(fabs(v->ob_fval)); | 
 | } | 
 |  | 
 | static int | 
 | float_bool(PyFloatObject *v) | 
 | { | 
 |     return v->ob_fval != 0.0; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | float.is_integer | 
 |  | 
 | Return True if the float is an integer. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | float_is_integer_impl(PyObject *self) | 
 | /*[clinic end generated code: output=7112acf95a4d31ea input=311810d3f777e10d]*/ | 
 | { | 
 |     double x = PyFloat_AsDouble(self); | 
 |     PyObject *o; | 
 |  | 
 |     if (x == -1.0 && PyErr_Occurred()) | 
 |         return NULL; | 
 |     if (!Py_IS_FINITE(x)) | 
 |         Py_RETURN_FALSE; | 
 |     errno = 0; | 
 |     PyFPE_START_PROTECT("is_integer", return NULL) | 
 |     o = (floor(x) == x) ? Py_True : Py_False; | 
 |     PyFPE_END_PROTECT(x) | 
 |     if (errno != 0) { | 
 |         PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError : | 
 |                              PyExc_ValueError); | 
 |         return NULL; | 
 |     } | 
 |     Py_INCREF(o); | 
 |     return o; | 
 | } | 
 |  | 
 | #if 0 | 
 | static PyObject * | 
 | float_is_inf(PyObject *v) | 
 | { | 
 |     double x = PyFloat_AsDouble(v); | 
 |     if (x == -1.0 && PyErr_Occurred()) | 
 |         return NULL; | 
 |     return PyBool_FromLong((long)Py_IS_INFINITY(x)); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_is_nan(PyObject *v) | 
 | { | 
 |     double x = PyFloat_AsDouble(v); | 
 |     if (x == -1.0 && PyErr_Occurred()) | 
 |         return NULL; | 
 |     return PyBool_FromLong((long)Py_IS_NAN(x)); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_is_finite(PyObject *v) | 
 | { | 
 |     double x = PyFloat_AsDouble(v); | 
 |     if (x == -1.0 && PyErr_Occurred()) | 
 |         return NULL; | 
 |     return PyBool_FromLong((long)Py_IS_FINITE(x)); | 
 | } | 
 | #endif | 
 |  | 
 | /*[clinic input] | 
 | float.__trunc__ | 
 |  | 
 | Return the Integral closest to x between 0 and x. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | float___trunc___impl(PyObject *self) | 
 | /*[clinic end generated code: output=dd3e289dd4c6b538 input=591b9ba0d650fdff]*/ | 
 | { | 
 |     double x = PyFloat_AsDouble(self); | 
 |     double wholepart;           /* integral portion of x, rounded toward 0 */ | 
 |  | 
 |     (void)modf(x, &wholepart); | 
 |     /* Try to get out cheap if this fits in a Python int.  The attempt | 
 |      * to cast to long must be protected, as C doesn't define what | 
 |      * happens if the double is too big to fit in a long.  Some rare | 
 |      * systems raise an exception then (RISCOS was mentioned as one, | 
 |      * and someone using a non-default option on Sun also bumped into | 
 |      * that).  Note that checking for >= and <= LONG_{MIN,MAX} would | 
 |      * still be vulnerable:  if a long has more bits of precision than | 
 |      * a double, casting MIN/MAX to double may yield an approximation, | 
 |      * and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would | 
 |      * yield true from the C expression wholepart<=LONG_MAX, despite | 
 |      * that wholepart is actually greater than LONG_MAX. | 
 |      */ | 
 |     if (LONG_MIN < wholepart && wholepart < LONG_MAX) { | 
 |         const long aslong = (long)wholepart; | 
 |         return PyLong_FromLong(aslong); | 
 |     } | 
 |     return PyLong_FromDouble(wholepart); | 
 | } | 
 |  | 
 | /* double_round: rounds a finite double to the closest multiple of | 
 |    10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <= | 
 |    ndigits <= 323).  Returns a Python float, or sets a Python error and | 
 |    returns NULL on failure (OverflowError and memory errors are possible). */ | 
 |  | 
 | #ifndef PY_NO_SHORT_FLOAT_REPR | 
 | /* version of double_round that uses the correctly-rounded string<->double | 
 |    conversions from Python/dtoa.c */ | 
 |  | 
 | static PyObject * | 
 | double_round(double x, int ndigits) { | 
 |  | 
 |     double rounded; | 
 |     Py_ssize_t buflen, mybuflen=100; | 
 |     char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf; | 
 |     int decpt, sign; | 
 |     PyObject *result = NULL; | 
 |     _Py_SET_53BIT_PRECISION_HEADER; | 
 |  | 
 |     /* round to a decimal string */ | 
 |     _Py_SET_53BIT_PRECISION_START; | 
 |     buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end); | 
 |     _Py_SET_53BIT_PRECISION_END; | 
 |     if (buf == NULL) { | 
 |         PyErr_NoMemory(); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     /* Get new buffer if shortbuf is too small.  Space needed <= buf_end - | 
 |     buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0').  */ | 
 |     buflen = buf_end - buf; | 
 |     if (buflen + 8 > mybuflen) { | 
 |         mybuflen = buflen+8; | 
 |         mybuf = (char *)PyMem_Malloc(mybuflen); | 
 |         if (mybuf == NULL) { | 
 |             PyErr_NoMemory(); | 
 |             goto exit; | 
 |         } | 
 |     } | 
 |     /* copy buf to mybuf, adding exponent, sign and leading 0 */ | 
 |     PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""), | 
 |                   buf, decpt - (int)buflen); | 
 |  | 
 |     /* and convert the resulting string back to a double */ | 
 |     errno = 0; | 
 |     _Py_SET_53BIT_PRECISION_START; | 
 |     rounded = _Py_dg_strtod(mybuf, NULL); | 
 |     _Py_SET_53BIT_PRECISION_END; | 
 |     if (errno == ERANGE && fabs(rounded) >= 1.) | 
 |         PyErr_SetString(PyExc_OverflowError, | 
 |                         "rounded value too large to represent"); | 
 |     else | 
 |         result = PyFloat_FromDouble(rounded); | 
 |  | 
 |     /* done computing value;  now clean up */ | 
 |     if (mybuf != shortbuf) | 
 |         PyMem_Free(mybuf); | 
 |   exit: | 
 |     _Py_dg_freedtoa(buf); | 
 |     return result; | 
 | } | 
 |  | 
 | #else /* PY_NO_SHORT_FLOAT_REPR */ | 
 |  | 
 | /* fallback version, to be used when correctly rounded binary<->decimal | 
 |    conversions aren't available */ | 
 |  | 
 | static PyObject * | 
 | double_round(double x, int ndigits) { | 
 |     double pow1, pow2, y, z; | 
 |     if (ndigits >= 0) { | 
 |         if (ndigits > 22) { | 
 |             /* pow1 and pow2 are each safe from overflow, but | 
 |                pow1*pow2 ~= pow(10.0, ndigits) might overflow */ | 
 |             pow1 = pow(10.0, (double)(ndigits-22)); | 
 |             pow2 = 1e22; | 
 |         } | 
 |         else { | 
 |             pow1 = pow(10.0, (double)ndigits); | 
 |             pow2 = 1.0; | 
 |         } | 
 |         y = (x*pow1)*pow2; | 
 |         /* if y overflows, then rounded value is exactly x */ | 
 |         if (!Py_IS_FINITE(y)) | 
 |             return PyFloat_FromDouble(x); | 
 |     } | 
 |     else { | 
 |         pow1 = pow(10.0, (double)-ndigits); | 
 |         pow2 = 1.0; /* unused; silences a gcc compiler warning */ | 
 |         y = x / pow1; | 
 |     } | 
 |  | 
 |     z = round(y); | 
 |     if (fabs(y-z) == 0.5) | 
 |         /* halfway between two integers; use round-half-even */ | 
 |         z = 2.0*round(y/2.0); | 
 |  | 
 |     if (ndigits >= 0) | 
 |         z = (z / pow2) / pow1; | 
 |     else | 
 |         z *= pow1; | 
 |  | 
 |     /* if computation resulted in overflow, raise OverflowError */ | 
 |     if (!Py_IS_FINITE(z)) { | 
 |         PyErr_SetString(PyExc_OverflowError, | 
 |                         "overflow occurred during round"); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     return PyFloat_FromDouble(z); | 
 | } | 
 |  | 
 | #endif /* PY_NO_SHORT_FLOAT_REPR */ | 
 |  | 
 | /* round a Python float v to the closest multiple of 10**-ndigits */ | 
 |  | 
 | /*[clinic input] | 
 | float.__round__ | 
 |  | 
 |     ndigits as o_ndigits: object = NULL | 
 |     / | 
 |  | 
 | Return the Integral closest to x, rounding half toward even. | 
 |  | 
 | When an argument is passed, work like built-in round(x, ndigits). | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | float___round___impl(PyObject *self, PyObject *o_ndigits) | 
 | /*[clinic end generated code: output=374c36aaa0f13980 input=1ca2316b510293b8]*/ | 
 | { | 
 |     double x, rounded; | 
 |     Py_ssize_t ndigits; | 
 |  | 
 |     x = PyFloat_AsDouble(self); | 
 |     if (o_ndigits == NULL || o_ndigits == Py_None) { | 
 |         /* single-argument round or with None ndigits: | 
 |          * round to nearest integer */ | 
 |         rounded = round(x); | 
 |         if (fabs(x-rounded) == 0.5) | 
 |             /* halfway case: round to even */ | 
 |             rounded = 2.0*round(x/2.0); | 
 |         return PyLong_FromDouble(rounded); | 
 |     } | 
 |  | 
 |     /* interpret second argument as a Py_ssize_t; clips on overflow */ | 
 |     ndigits = PyNumber_AsSsize_t(o_ndigits, NULL); | 
 |     if (ndigits == -1 && PyErr_Occurred()) | 
 |         return NULL; | 
 |  | 
 |     /* nans and infinities round to themselves */ | 
 |     if (!Py_IS_FINITE(x)) | 
 |         return PyFloat_FromDouble(x); | 
 |  | 
 |     /* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x | 
 |        always rounds to itself.  For ndigits < NDIGITS_MIN, x always | 
 |        rounds to +-0.0.  Here 0.30103 is an upper bound for log10(2). */ | 
 | #define NDIGITS_MAX ((int)((DBL_MANT_DIG-DBL_MIN_EXP) * 0.30103)) | 
 | #define NDIGITS_MIN (-(int)((DBL_MAX_EXP + 1) * 0.30103)) | 
 |     if (ndigits > NDIGITS_MAX) | 
 |         /* return x */ | 
 |         return PyFloat_FromDouble(x); | 
 |     else if (ndigits < NDIGITS_MIN) | 
 |         /* return 0.0, but with sign of x */ | 
 |         return PyFloat_FromDouble(0.0*x); | 
 |     else | 
 |         /* finite x, and ndigits is not unreasonably large */ | 
 |         return double_round(x, (int)ndigits); | 
 | #undef NDIGITS_MAX | 
 | #undef NDIGITS_MIN | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_float(PyObject *v) | 
 | { | 
 |     if (PyFloat_CheckExact(v)) | 
 |         Py_INCREF(v); | 
 |     else | 
 |         v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval); | 
 |     return v; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | float.conjugate | 
 |  | 
 | Return self, the complex conjugate of any float. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | float_conjugate_impl(PyObject *self) | 
 | /*[clinic end generated code: output=8ca292c2479194af input=82ba6f37a9ff91dd]*/ | 
 | { | 
 |     return float_float(self); | 
 | } | 
 |  | 
 | /* turn ASCII hex characters into integer values and vice versa */ | 
 |  | 
 | static char | 
 | char_from_hex(int x) | 
 | { | 
 |     assert(0 <= x && x < 16); | 
 |     return Py_hexdigits[x]; | 
 | } | 
 |  | 
 | static int | 
 | hex_from_char(char c) { | 
 |     int x; | 
 |     switch(c) { | 
 |     case '0': | 
 |         x = 0; | 
 |         break; | 
 |     case '1': | 
 |         x = 1; | 
 |         break; | 
 |     case '2': | 
 |         x = 2; | 
 |         break; | 
 |     case '3': | 
 |         x = 3; | 
 |         break; | 
 |     case '4': | 
 |         x = 4; | 
 |         break; | 
 |     case '5': | 
 |         x = 5; | 
 |         break; | 
 |     case '6': | 
 |         x = 6; | 
 |         break; | 
 |     case '7': | 
 |         x = 7; | 
 |         break; | 
 |     case '8': | 
 |         x = 8; | 
 |         break; | 
 |     case '9': | 
 |         x = 9; | 
 |         break; | 
 |     case 'a': | 
 |     case 'A': | 
 |         x = 10; | 
 |         break; | 
 |     case 'b': | 
 |     case 'B': | 
 |         x = 11; | 
 |         break; | 
 |     case 'c': | 
 |     case 'C': | 
 |         x = 12; | 
 |         break; | 
 |     case 'd': | 
 |     case 'D': | 
 |         x = 13; | 
 |         break; | 
 |     case 'e': | 
 |     case 'E': | 
 |         x = 14; | 
 |         break; | 
 |     case 'f': | 
 |     case 'F': | 
 |         x = 15; | 
 |         break; | 
 |     default: | 
 |         x = -1; | 
 |         break; | 
 |     } | 
 |     return x; | 
 | } | 
 |  | 
 | /* convert a float to a hexadecimal string */ | 
 |  | 
 | /* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer | 
 |    of the form 4k+1. */ | 
 | #define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4 | 
 |  | 
 | /*[clinic input] | 
 | float.hex | 
 |  | 
 | Return a hexadecimal representation of a floating-point number. | 
 |  | 
 | >>> (-0.1).hex() | 
 | '-0x1.999999999999ap-4' | 
 | >>> 3.14159.hex() | 
 | '0x1.921f9f01b866ep+1' | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | float_hex_impl(PyObject *self) | 
 | /*[clinic end generated code: output=0ebc9836e4d302d4 input=bec1271a33d47e67]*/ | 
 | { | 
 |     double x, m; | 
 |     int e, shift, i, si, esign; | 
 |     /* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the | 
 |        trailing NUL byte. */ | 
 |     char s[(TOHEX_NBITS-1)/4+3]; | 
 |  | 
 |     CONVERT_TO_DOUBLE(self, x); | 
 |  | 
 |     if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) | 
 |         return float_repr((PyFloatObject *)self); | 
 |  | 
 |     if (x == 0.0) { | 
 |         if (copysign(1.0, x) == -1.0) | 
 |             return PyUnicode_FromString("-0x0.0p+0"); | 
 |         else | 
 |             return PyUnicode_FromString("0x0.0p+0"); | 
 |     } | 
 |  | 
 |     m = frexp(fabs(x), &e); | 
 |     shift = 1 - Py_MAX(DBL_MIN_EXP - e, 0); | 
 |     m = ldexp(m, shift); | 
 |     e -= shift; | 
 |  | 
 |     si = 0; | 
 |     s[si] = char_from_hex((int)m); | 
 |     si++; | 
 |     m -= (int)m; | 
 |     s[si] = '.'; | 
 |     si++; | 
 |     for (i=0; i < (TOHEX_NBITS-1)/4; i++) { | 
 |         m *= 16.0; | 
 |         s[si] = char_from_hex((int)m); | 
 |         si++; | 
 |         m -= (int)m; | 
 |     } | 
 |     s[si] = '\0'; | 
 |  | 
 |     if (e < 0) { | 
 |         esign = (int)'-'; | 
 |         e = -e; | 
 |     } | 
 |     else | 
 |         esign = (int)'+'; | 
 |  | 
 |     if (x < 0.0) | 
 |         return PyUnicode_FromFormat("-0x%sp%c%d", s, esign, e); | 
 |     else | 
 |         return PyUnicode_FromFormat("0x%sp%c%d", s, esign, e); | 
 | } | 
 |  | 
 | /* Convert a hexadecimal string to a float. */ | 
 |  | 
 | /*[clinic input] | 
 | @classmethod | 
 | float.fromhex | 
 |  | 
 |     string: object | 
 |     / | 
 |  | 
 | Create a floating-point number from a hexadecimal string. | 
 |  | 
 | >>> float.fromhex('0x1.ffffp10') | 
 | 2047.984375 | 
 | >>> float.fromhex('-0x1p-1074') | 
 | -5e-324 | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | float_fromhex(PyTypeObject *type, PyObject *string) | 
 | /*[clinic end generated code: output=46c0274d22b78e82 input=0407bebd354bca89]*/ | 
 | { | 
 |     PyObject *result; | 
 |     double x; | 
 |     long exp, top_exp, lsb, key_digit; | 
 |     const char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end; | 
 |     int half_eps, digit, round_up, negate=0; | 
 |     Py_ssize_t length, ndigits, fdigits, i; | 
 |  | 
 |     /* | 
 |      * For the sake of simplicity and correctness, we impose an artificial | 
 |      * limit on ndigits, the total number of hex digits in the coefficient | 
 |      * The limit is chosen to ensure that, writing exp for the exponent, | 
 |      * | 
 |      *   (1) if exp > LONG_MAX/2 then the value of the hex string is | 
 |      *   guaranteed to overflow (provided it's nonzero) | 
 |      * | 
 |      *   (2) if exp < LONG_MIN/2 then the value of the hex string is | 
 |      *   guaranteed to underflow to 0. | 
 |      * | 
 |      *   (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of | 
 |      *   overflow in the calculation of exp and top_exp below. | 
 |      * | 
 |      * More specifically, ndigits is assumed to satisfy the following | 
 |      * inequalities: | 
 |      * | 
 |      *   4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2 | 
 |      *   4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP | 
 |      * | 
 |      * If either of these inequalities is not satisfied, a ValueError is | 
 |      * raised.  Otherwise, write x for the value of the hex string, and | 
 |      * assume x is nonzero.  Then | 
 |      * | 
 |      *   2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits). | 
 |      * | 
 |      * Now if exp > LONG_MAX/2 then: | 
 |      * | 
 |      *   exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP) | 
 |      *                    = DBL_MAX_EXP | 
 |      * | 
 |      * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C | 
 |      * double, so overflows.  If exp < LONG_MIN/2, then | 
 |      * | 
 |      *   exp + 4*ndigits <= LONG_MIN/2 - 1 + ( | 
 |      *                      DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2) | 
 |      *                    = DBL_MIN_EXP - DBL_MANT_DIG - 1 | 
 |      * | 
 |      * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0 | 
 |      * when converted to a C double. | 
 |      * | 
 |      * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both | 
 |      * exp+4*ndigits and exp-4*ndigits are within the range of a long. | 
 |      */ | 
 |  | 
 |     s = PyUnicode_AsUTF8AndSize(string, &length); | 
 |     if (s == NULL) | 
 |         return NULL; | 
 |     s_end = s + length; | 
 |  | 
 |     /******************** | 
 |      * Parse the string * | 
 |      ********************/ | 
 |  | 
 |     /* leading whitespace */ | 
 |     while (Py_ISSPACE(*s)) | 
 |         s++; | 
 |  | 
 |     /* infinities and nans */ | 
 |     x = _Py_parse_inf_or_nan(s, (char **)&coeff_end); | 
 |     if (coeff_end != s) { | 
 |         s = coeff_end; | 
 |         goto finished; | 
 |     } | 
 |  | 
 |     /* optional sign */ | 
 |     if (*s == '-') { | 
 |         s++; | 
 |         negate = 1; | 
 |     } | 
 |     else if (*s == '+') | 
 |         s++; | 
 |  | 
 |     /* [0x] */ | 
 |     s_store = s; | 
 |     if (*s == '0') { | 
 |         s++; | 
 |         if (*s == 'x' || *s == 'X') | 
 |             s++; | 
 |         else | 
 |             s = s_store; | 
 |     } | 
 |  | 
 |     /* coefficient: <integer> [. <fraction>] */ | 
 |     coeff_start = s; | 
 |     while (hex_from_char(*s) >= 0) | 
 |         s++; | 
 |     s_store = s; | 
 |     if (*s == '.') { | 
 |         s++; | 
 |         while (hex_from_char(*s) >= 0) | 
 |             s++; | 
 |         coeff_end = s-1; | 
 |     } | 
 |     else | 
 |         coeff_end = s; | 
 |  | 
 |     /* ndigits = total # of hex digits; fdigits = # after point */ | 
 |     ndigits = coeff_end - coeff_start; | 
 |     fdigits = coeff_end - s_store; | 
 |     if (ndigits == 0) | 
 |         goto parse_error; | 
 |     if (ndigits > Py_MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2, | 
 |                          LONG_MAX/2 + 1 - DBL_MAX_EXP)/4) | 
 |         goto insane_length_error; | 
 |  | 
 |     /* [p <exponent>] */ | 
 |     if (*s == 'p' || *s == 'P') { | 
 |         s++; | 
 |         exp_start = s; | 
 |         if (*s == '-' || *s == '+') | 
 |             s++; | 
 |         if (!('0' <= *s && *s <= '9')) | 
 |             goto parse_error; | 
 |         s++; | 
 |         while ('0' <= *s && *s <= '9') | 
 |             s++; | 
 |         exp = strtol(exp_start, NULL, 10); | 
 |     } | 
 |     else | 
 |         exp = 0; | 
 |  | 
 | /* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */ | 
 | #define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ?            \ | 
 |                      coeff_end-(j) :                                    \ | 
 |                      coeff_end-1-(j))) | 
 |  | 
 |     /******************************************* | 
 |      * Compute rounded value of the hex string * | 
 |      *******************************************/ | 
 |  | 
 |     /* Discard leading zeros, and catch extreme overflow and underflow */ | 
 |     while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0) | 
 |         ndigits--; | 
 |     if (ndigits == 0 || exp < LONG_MIN/2) { | 
 |         x = 0.0; | 
 |         goto finished; | 
 |     } | 
 |     if (exp > LONG_MAX/2) | 
 |         goto overflow_error; | 
 |  | 
 |     /* Adjust exponent for fractional part. */ | 
 |     exp = exp - 4*((long)fdigits); | 
 |  | 
 |     /* top_exp = 1 more than exponent of most sig. bit of coefficient */ | 
 |     top_exp = exp + 4*((long)ndigits - 1); | 
 |     for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2) | 
 |         top_exp++; | 
 |  | 
 |     /* catch almost all nonextreme cases of overflow and underflow here */ | 
 |     if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) { | 
 |         x = 0.0; | 
 |         goto finished; | 
 |     } | 
 |     if (top_exp > DBL_MAX_EXP) | 
 |         goto overflow_error; | 
 |  | 
 |     /* lsb = exponent of least significant bit of the *rounded* value. | 
 |        This is top_exp - DBL_MANT_DIG unless result is subnormal. */ | 
 |     lsb = Py_MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG; | 
 |  | 
 |     x = 0.0; | 
 |     if (exp >= lsb) { | 
 |         /* no rounding required */ | 
 |         for (i = ndigits-1; i >= 0; i--) | 
 |             x = 16.0*x + HEX_DIGIT(i); | 
 |         x = ldexp(x, (int)(exp)); | 
 |         goto finished; | 
 |     } | 
 |     /* rounding required.  key_digit is the index of the hex digit | 
 |        containing the first bit to be rounded away. */ | 
 |     half_eps = 1 << (int)((lsb - exp - 1) % 4); | 
 |     key_digit = (lsb - exp - 1) / 4; | 
 |     for (i = ndigits-1; i > key_digit; i--) | 
 |         x = 16.0*x + HEX_DIGIT(i); | 
 |     digit = HEX_DIGIT(key_digit); | 
 |     x = 16.0*x + (double)(digit & (16-2*half_eps)); | 
 |  | 
 |     /* round-half-even: round up if bit lsb-1 is 1 and at least one of | 
 |        bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */ | 
 |     if ((digit & half_eps) != 0) { | 
 |         round_up = 0; | 
 |         if ((digit & (3*half_eps-1)) != 0 || | 
 |             (half_eps == 8 && (HEX_DIGIT(key_digit+1) & 1) != 0)) | 
 |             round_up = 1; | 
 |         else | 
 |             for (i = key_digit-1; i >= 0; i--) | 
 |                 if (HEX_DIGIT(i) != 0) { | 
 |                     round_up = 1; | 
 |                     break; | 
 |                 } | 
 |         if (round_up) { | 
 |             x += 2*half_eps; | 
 |             if (top_exp == DBL_MAX_EXP && | 
 |                 x == ldexp((double)(2*half_eps), DBL_MANT_DIG)) | 
 |                 /* overflow corner case: pre-rounded value < | 
 |                    2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */ | 
 |                 goto overflow_error; | 
 |         } | 
 |     } | 
 |     x = ldexp(x, (int)(exp+4*key_digit)); | 
 |  | 
 |   finished: | 
 |     /* optional trailing whitespace leading to the end of the string */ | 
 |     while (Py_ISSPACE(*s)) | 
 |         s++; | 
 |     if (s != s_end) | 
 |         goto parse_error; | 
 |     result = PyFloat_FromDouble(negate ? -x : x); | 
 |     if (type != &PyFloat_Type && result != NULL) { | 
 |         Py_SETREF(result, PyObject_CallFunctionObjArgs((PyObject *)type, result, NULL)); | 
 |     } | 
 |     return result; | 
 |  | 
 |   overflow_error: | 
 |     PyErr_SetString(PyExc_OverflowError, | 
 |                     "hexadecimal value too large to represent as a float"); | 
 |     return NULL; | 
 |  | 
 |   parse_error: | 
 |     PyErr_SetString(PyExc_ValueError, | 
 |                     "invalid hexadecimal floating-point string"); | 
 |     return NULL; | 
 |  | 
 |   insane_length_error: | 
 |     PyErr_SetString(PyExc_ValueError, | 
 |                     "hexadecimal string too long to convert"); | 
 |     return NULL; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | float.as_integer_ratio | 
 |  | 
 | Return integer ratio. | 
 |  | 
 | Return a pair of integers, whose ratio is exactly equal to the original float | 
 | and with a positive denominator. | 
 |  | 
 | Raise OverflowError on infinities and a ValueError on NaNs. | 
 |  | 
 | >>> (10.0).as_integer_ratio() | 
 | (10, 1) | 
 | >>> (0.0).as_integer_ratio() | 
 | (0, 1) | 
 | >>> (-.25).as_integer_ratio() | 
 | (-1, 4) | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | float_as_integer_ratio_impl(PyObject *self) | 
 | /*[clinic end generated code: output=65f25f0d8d30a712 input=e21d08b4630c2e44]*/ | 
 | { | 
 |     double self_double; | 
 |     double float_part; | 
 |     int exponent; | 
 |     int i; | 
 |  | 
 |     PyObject *py_exponent = NULL; | 
 |     PyObject *numerator = NULL; | 
 |     PyObject *denominator = NULL; | 
 |     PyObject *result_pair = NULL; | 
 |     PyNumberMethods *long_methods = PyLong_Type.tp_as_number; | 
 |  | 
 |     CONVERT_TO_DOUBLE(self, self_double); | 
 |  | 
 |     if (Py_IS_INFINITY(self_double)) { | 
 |         PyErr_SetString(PyExc_OverflowError, | 
 |                         "cannot convert Infinity to integer ratio"); | 
 |         return NULL; | 
 |     } | 
 |     if (Py_IS_NAN(self_double)) { | 
 |         PyErr_SetString(PyExc_ValueError, | 
 |                         "cannot convert NaN to integer ratio"); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     PyFPE_START_PROTECT("as_integer_ratio", goto error); | 
 |     float_part = frexp(self_double, &exponent);        /* self_double == float_part * 2**exponent exactly */ | 
 |     PyFPE_END_PROTECT(float_part); | 
 |  | 
 |     for (i=0; i<300 && float_part != floor(float_part) ; i++) { | 
 |         float_part *= 2.0; | 
 |         exponent--; | 
 |     } | 
 |     /* self == float_part * 2**exponent exactly and float_part is integral. | 
 |        If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part | 
 |        to be truncated by PyLong_FromDouble(). */ | 
 |  | 
 |     numerator = PyLong_FromDouble(float_part); | 
 |     if (numerator == NULL) | 
 |         goto error; | 
 |     denominator = PyLong_FromLong(1); | 
 |     if (denominator == NULL) | 
 |         goto error; | 
 |     py_exponent = PyLong_FromLong(Py_ABS(exponent)); | 
 |     if (py_exponent == NULL) | 
 |         goto error; | 
 |  | 
 |     /* fold in 2**exponent */ | 
 |     if (exponent > 0) { | 
 |         Py_SETREF(numerator, | 
 |                   long_methods->nb_lshift(numerator, py_exponent)); | 
 |         if (numerator == NULL) | 
 |             goto error; | 
 |     } | 
 |     else { | 
 |         Py_SETREF(denominator, | 
 |                   long_methods->nb_lshift(denominator, py_exponent)); | 
 |         if (denominator == NULL) | 
 |             goto error; | 
 |     } | 
 |  | 
 |     result_pair = PyTuple_Pack(2, numerator, denominator); | 
 |  | 
 | error: | 
 |     Py_XDECREF(py_exponent); | 
 |     Py_XDECREF(denominator); | 
 |     Py_XDECREF(numerator); | 
 |     return result_pair; | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_subtype_new(PyTypeObject *type, PyObject *x); | 
 |  | 
 | /*[clinic input] | 
 | @classmethod | 
 | float.__new__ as float_new | 
 |     x: object(c_default="_PyLong_Zero") = 0 | 
 |     / | 
 |  | 
 | Convert a string or number to a floating point number, if possible. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | float_new_impl(PyTypeObject *type, PyObject *x) | 
 | /*[clinic end generated code: output=ccf1e8dc460ba6ba input=540ee77c204ff87a]*/ | 
 | { | 
 |     if (type != &PyFloat_Type) | 
 |         return float_subtype_new(type, x); /* Wimp out */ | 
 |     /* If it's a string, but not a string subclass, use | 
 |        PyFloat_FromString. */ | 
 |     if (PyUnicode_CheckExact(x)) | 
 |         return PyFloat_FromString(x); | 
 |     return PyNumber_Float(x); | 
 | } | 
 |  | 
 | /* Wimpy, slow approach to tp_new calls for subtypes of float: | 
 |    first create a regular float from whatever arguments we got, | 
 |    then allocate a subtype instance and initialize its ob_fval | 
 |    from the regular float.  The regular float is then thrown away. | 
 | */ | 
 | static PyObject * | 
 | float_subtype_new(PyTypeObject *type, PyObject *x) | 
 | { | 
 |     PyObject *tmp, *newobj; | 
 |  | 
 |     assert(PyType_IsSubtype(type, &PyFloat_Type)); | 
 |     tmp = float_new_impl(&PyFloat_Type, x); | 
 |     if (tmp == NULL) | 
 |         return NULL; | 
 |     assert(PyFloat_Check(tmp)); | 
 |     newobj = type->tp_alloc(type, 0); | 
 |     if (newobj == NULL) { | 
 |         Py_DECREF(tmp); | 
 |         return NULL; | 
 |     } | 
 |     ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval; | 
 |     Py_DECREF(tmp); | 
 |     return newobj; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | float.__getnewargs__ | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | float___getnewargs___impl(PyObject *self) | 
 | /*[clinic end generated code: output=873258c9d206b088 input=002279d1d77891e6]*/ | 
 | { | 
 |     return Py_BuildValue("(d)", ((PyFloatObject *)self)->ob_fval); | 
 | } | 
 |  | 
 | /* this is for the benefit of the pack/unpack routines below */ | 
 |  | 
 | typedef enum { | 
 |     unknown_format, ieee_big_endian_format, ieee_little_endian_format | 
 | } float_format_type; | 
 |  | 
 | static float_format_type double_format, float_format; | 
 | static float_format_type detected_double_format, detected_float_format; | 
 |  | 
 | /*[clinic input] | 
 | @classmethod | 
 | float.__getformat__ | 
 |  | 
 |     typestr: str | 
 |         Must be 'double' or 'float'. | 
 |     / | 
 |  | 
 | You probably don't want to use this function. | 
 |  | 
 | It exists mainly to be used in Python's test suite. | 
 |  | 
 | This function returns whichever of 'unknown', 'IEEE, big-endian' or 'IEEE, | 
 | little-endian' best describes the format of floating point numbers used by the | 
 | C type named by typestr. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | float___getformat___impl(PyTypeObject *type, const char *typestr) | 
 | /*[clinic end generated code: output=2bfb987228cc9628 input=d5a52600f835ad67]*/ | 
 | { | 
 |     float_format_type r; | 
 |  | 
 |     if (strcmp(typestr, "double") == 0) { | 
 |         r = double_format; | 
 |     } | 
 |     else if (strcmp(typestr, "float") == 0) { | 
 |         r = float_format; | 
 |     } | 
 |     else { | 
 |         PyErr_SetString(PyExc_ValueError, | 
 |                         "__getformat__() argument 1 must be " | 
 |                         "'double' or 'float'"); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     switch (r) { | 
 |     case unknown_format: | 
 |         return PyUnicode_FromString("unknown"); | 
 |     case ieee_little_endian_format: | 
 |         return PyUnicode_FromString("IEEE, little-endian"); | 
 |     case ieee_big_endian_format: | 
 |         return PyUnicode_FromString("IEEE, big-endian"); | 
 |     default: | 
 |         Py_FatalError("insane float_format or double_format"); | 
 |         return NULL; | 
 |     } | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | @classmethod | 
 | float.__set_format__ | 
 |  | 
 |     typestr: str | 
 |         Must be 'double' or 'float'. | 
 |     fmt: str | 
 |         Must be one of 'unknown', 'IEEE, big-endian' or 'IEEE, little-endian', | 
 |         and in addition can only be one of the latter two if it appears to | 
 |         match the underlying C reality. | 
 |     / | 
 |  | 
 | You probably don't want to use this function. | 
 |  | 
 | It exists mainly to be used in Python's test suite. | 
 |  | 
 | Override the automatic determination of C-level floating point type. | 
 | This affects how floats are converted to and from binary strings. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | float___set_format___impl(PyTypeObject *type, const char *typestr, | 
 |                           const char *fmt) | 
 | /*[clinic end generated code: output=504460f5dc85acbd input=5306fa2b81a997e4]*/ | 
 | { | 
 |     float_format_type f; | 
 |     float_format_type detected; | 
 |     float_format_type *p; | 
 |  | 
 |     if (strcmp(typestr, "double") == 0) { | 
 |         p = &double_format; | 
 |         detected = detected_double_format; | 
 |     } | 
 |     else if (strcmp(typestr, "float") == 0) { | 
 |         p = &float_format; | 
 |         detected = detected_float_format; | 
 |     } | 
 |     else { | 
 |         PyErr_SetString(PyExc_ValueError, | 
 |                         "__setformat__() argument 1 must " | 
 |                         "be 'double' or 'float'"); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     if (strcmp(fmt, "unknown") == 0) { | 
 |         f = unknown_format; | 
 |     } | 
 |     else if (strcmp(fmt, "IEEE, little-endian") == 0) { | 
 |         f = ieee_little_endian_format; | 
 |     } | 
 |     else if (strcmp(fmt, "IEEE, big-endian") == 0) { | 
 |         f = ieee_big_endian_format; | 
 |     } | 
 |     else { | 
 |         PyErr_SetString(PyExc_ValueError, | 
 |                         "__setformat__() argument 2 must be " | 
 |                         "'unknown', 'IEEE, little-endian' or " | 
 |                         "'IEEE, big-endian'"); | 
 |         return NULL; | 
 |  | 
 |     } | 
 |  | 
 |     if (f != unknown_format && f != detected) { | 
 |         PyErr_Format(PyExc_ValueError, | 
 |                      "can only set %s format to 'unknown' or the " | 
 |                      "detected platform value", typestr); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     *p = f; | 
 |     Py_RETURN_NONE; | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_getreal(PyObject *v, void *closure) | 
 | { | 
 |     return float_float(v); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_getimag(PyObject *v, void *closure) | 
 | { | 
 |     return PyFloat_FromDouble(0.0); | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | float.__format__ | 
 |  | 
 |   format_spec: unicode | 
 |   / | 
 |  | 
 | Formats the float according to format_spec. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | float___format___impl(PyObject *self, PyObject *format_spec) | 
 | /*[clinic end generated code: output=b260e52a47eade56 input=2ece1052211fd0e6]*/ | 
 | { | 
 |     _PyUnicodeWriter writer; | 
 |     int ret; | 
 |  | 
 |     _PyUnicodeWriter_Init(&writer); | 
 |     ret = _PyFloat_FormatAdvancedWriter( | 
 |         &writer, | 
 |         self, | 
 |         format_spec, 0, PyUnicode_GET_LENGTH(format_spec)); | 
 |     if (ret == -1) { | 
 |         _PyUnicodeWriter_Dealloc(&writer); | 
 |         return NULL; | 
 |     } | 
 |     return _PyUnicodeWriter_Finish(&writer); | 
 | } | 
 |  | 
 | static PyMethodDef float_methods[] = { | 
 |     FLOAT_CONJUGATE_METHODDEF | 
 |     FLOAT___TRUNC___METHODDEF | 
 |     FLOAT___ROUND___METHODDEF | 
 |     FLOAT_AS_INTEGER_RATIO_METHODDEF | 
 |     FLOAT_FROMHEX_METHODDEF | 
 |     FLOAT_HEX_METHODDEF | 
 |     FLOAT_IS_INTEGER_METHODDEF | 
 | #if 0 | 
 |     {"is_inf",          (PyCFunction)float_is_inf,      METH_NOARGS, | 
 |      "Return True if the float is positive or negative infinite."}, | 
 |     {"is_finite",       (PyCFunction)float_is_finite,   METH_NOARGS, | 
 |      "Return True if the float is finite, neither infinite nor NaN."}, | 
 |     {"is_nan",          (PyCFunction)float_is_nan,      METH_NOARGS, | 
 |      "Return True if the float is not a number (NaN)."}, | 
 | #endif | 
 |     FLOAT___GETNEWARGS___METHODDEF | 
 |     FLOAT___GETFORMAT___METHODDEF | 
 |     FLOAT___SET_FORMAT___METHODDEF | 
 |     FLOAT___FORMAT___METHODDEF | 
 |     {NULL,              NULL}           /* sentinel */ | 
 | }; | 
 |  | 
 | static PyGetSetDef float_getset[] = { | 
 |     {"real", | 
 |      float_getreal, (setter)NULL, | 
 |      "the real part of a complex number", | 
 |      NULL}, | 
 |     {"imag", | 
 |      float_getimag, (setter)NULL, | 
 |      "the imaginary part of a complex number", | 
 |      NULL}, | 
 |     {NULL}  /* Sentinel */ | 
 | }; | 
 |  | 
 |  | 
 | static PyNumberMethods float_as_number = { | 
 |     float_add,          /* nb_add */ | 
 |     float_sub,          /* nb_subtract */ | 
 |     float_mul,          /* nb_multiply */ | 
 |     float_rem,          /* nb_remainder */ | 
 |     float_divmod,       /* nb_divmod */ | 
 |     float_pow,          /* nb_power */ | 
 |     (unaryfunc)float_neg, /* nb_negative */ | 
 |     float_float,        /* nb_positive */ | 
 |     (unaryfunc)float_abs, /* nb_absolute */ | 
 |     (inquiry)float_bool, /* nb_bool */ | 
 |     0,                  /* nb_invert */ | 
 |     0,                  /* nb_lshift */ | 
 |     0,                  /* nb_rshift */ | 
 |     0,                  /* nb_and */ | 
 |     0,                  /* nb_xor */ | 
 |     0,                  /* nb_or */ | 
 |     float___trunc___impl, /* nb_int */ | 
 |     0,                  /* nb_reserved */ | 
 |     float_float,        /* nb_float */ | 
 |     0,                  /* nb_inplace_add */ | 
 |     0,                  /* nb_inplace_subtract */ | 
 |     0,                  /* nb_inplace_multiply */ | 
 |     0,                  /* nb_inplace_remainder */ | 
 |     0,                  /* nb_inplace_power */ | 
 |     0,                  /* nb_inplace_lshift */ | 
 |     0,                  /* nb_inplace_rshift */ | 
 |     0,                  /* nb_inplace_and */ | 
 |     0,                  /* nb_inplace_xor */ | 
 |     0,                  /* nb_inplace_or */ | 
 |     float_floor_div,    /* nb_floor_divide */ | 
 |     float_div,          /* nb_true_divide */ | 
 |     0,                  /* nb_inplace_floor_divide */ | 
 |     0,                  /* nb_inplace_true_divide */ | 
 | }; | 
 |  | 
 | PyTypeObject PyFloat_Type = { | 
 |     PyVarObject_HEAD_INIT(&PyType_Type, 0) | 
 |     "float", | 
 |     sizeof(PyFloatObject), | 
 |     0, | 
 |     (destructor)float_dealloc,                  /* tp_dealloc */ | 
 |     0,                                          /* tp_print */ | 
 |     0,                                          /* tp_getattr */ | 
 |     0,                                          /* tp_setattr */ | 
 |     0,                                          /* tp_reserved */ | 
 |     (reprfunc)float_repr,                       /* tp_repr */ | 
 |     &float_as_number,                           /* tp_as_number */ | 
 |     0,                                          /* tp_as_sequence */ | 
 |     0,                                          /* tp_as_mapping */ | 
 |     (hashfunc)float_hash,                       /* tp_hash */ | 
 |     0,                                          /* tp_call */ | 
 |     (reprfunc)float_repr,                       /* tp_str */ | 
 |     PyObject_GenericGetAttr,                    /* tp_getattro */ | 
 |     0,                                          /* tp_setattro */ | 
 |     0,                                          /* tp_as_buffer */ | 
 |     Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,   /* tp_flags */ | 
 |     float_new__doc__,                           /* tp_doc */ | 
 |     0,                                          /* tp_traverse */ | 
 |     0,                                          /* tp_clear */ | 
 |     float_richcompare,                          /* tp_richcompare */ | 
 |     0,                                          /* tp_weaklistoffset */ | 
 |     0,                                          /* tp_iter */ | 
 |     0,                                          /* tp_iternext */ | 
 |     float_methods,                              /* tp_methods */ | 
 |     0,                                          /* tp_members */ | 
 |     float_getset,                               /* tp_getset */ | 
 |     0,                                          /* tp_base */ | 
 |     0,                                          /* tp_dict */ | 
 |     0,                                          /* tp_descr_get */ | 
 |     0,                                          /* tp_descr_set */ | 
 |     0,                                          /* tp_dictoffset */ | 
 |     0,                                          /* tp_init */ | 
 |     0,                                          /* tp_alloc */ | 
 |     float_new,                                  /* tp_new */ | 
 | }; | 
 |  | 
 | int | 
 | _PyFloat_Init(void) | 
 | { | 
 |     /* We attempt to determine if this machine is using IEEE | 
 |        floating point formats by peering at the bits of some | 
 |        carefully chosen values.  If it looks like we are on an | 
 |        IEEE platform, the float packing/unpacking routines can | 
 |        just copy bits, if not they resort to arithmetic & shifts | 
 |        and masks.  The shifts & masks approach works on all finite | 
 |        values, but what happens to infinities, NaNs and signed | 
 |        zeroes on packing is an accident, and attempting to unpack | 
 |        a NaN or an infinity will raise an exception. | 
 |  | 
 |        Note that if we're on some whacked-out platform which uses | 
 |        IEEE formats but isn't strictly little-endian or big- | 
 |        endian, we will fall back to the portable shifts & masks | 
 |        method. */ | 
 |  | 
 | #if SIZEOF_DOUBLE == 8 | 
 |     { | 
 |         double x = 9006104071832581.0; | 
 |         if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0) | 
 |             detected_double_format = ieee_big_endian_format; | 
 |         else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0) | 
 |             detected_double_format = ieee_little_endian_format; | 
 |         else | 
 |             detected_double_format = unknown_format; | 
 |     } | 
 | #else | 
 |     detected_double_format = unknown_format; | 
 | #endif | 
 |  | 
 | #if SIZEOF_FLOAT == 4 | 
 |     { | 
 |         float y = 16711938.0; | 
 |         if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0) | 
 |             detected_float_format = ieee_big_endian_format; | 
 |         else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0) | 
 |             detected_float_format = ieee_little_endian_format; | 
 |         else | 
 |             detected_float_format = unknown_format; | 
 |     } | 
 | #else | 
 |     detected_float_format = unknown_format; | 
 | #endif | 
 |  | 
 |     double_format = detected_double_format; | 
 |     float_format = detected_float_format; | 
 |  | 
 |     /* Init float info */ | 
 |     if (FloatInfoType.tp_name == NULL) { | 
 |         if (PyStructSequence_InitType2(&FloatInfoType, &floatinfo_desc) < 0) | 
 |             return 0; | 
 |     } | 
 |     return 1; | 
 | } | 
 |  | 
 | int | 
 | PyFloat_ClearFreeList(void) | 
 | { | 
 |     PyFloatObject *f = free_list, *next; | 
 |     int i = numfree; | 
 |     while (f) { | 
 |         next = (PyFloatObject*) Py_TYPE(f); | 
 |         PyObject_FREE(f); | 
 |         f = next; | 
 |     } | 
 |     free_list = NULL; | 
 |     numfree = 0; | 
 |     return i; | 
 | } | 
 |  | 
 | void | 
 | PyFloat_Fini(void) | 
 | { | 
 |     (void)PyFloat_ClearFreeList(); | 
 | } | 
 |  | 
 | /* Print summary info about the state of the optimized allocator */ | 
 | void | 
 | _PyFloat_DebugMallocStats(FILE *out) | 
 | { | 
 |     _PyDebugAllocatorStats(out, | 
 |                            "free PyFloatObject", | 
 |                            numfree, sizeof(PyFloatObject)); | 
 | } | 
 |  | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 |  * _PyFloat_{Pack,Unpack}{2,4,8}.  See floatobject.h. | 
 |  * To match the NPY_HALF_ROUND_TIES_TO_EVEN behavior in: | 
 |  * https://github.com/numpy/numpy/blob/master/numpy/core/src/npymath/halffloat.c | 
 |  * We use: | 
 |  *       bits = (unsigned short)f;    Note the truncation | 
 |  *       if ((f - bits > 0.5) || (f - bits == 0.5 && bits % 2)) { | 
 |  *           bits++; | 
 |  *       } | 
 |  */ | 
 |  | 
 | int | 
 | _PyFloat_Pack2(double x, unsigned char *p, int le) | 
 | { | 
 |     unsigned char sign; | 
 |     int e; | 
 |     double f; | 
 |     unsigned short bits; | 
 |     int incr = 1; | 
 |  | 
 |     if (x == 0.0) { | 
 |         sign = (copysign(1.0, x) == -1.0); | 
 |         e = 0; | 
 |         bits = 0; | 
 |     } | 
 |     else if (Py_IS_INFINITY(x)) { | 
 |         sign = (x < 0.0); | 
 |         e = 0x1f; | 
 |         bits = 0; | 
 |     } | 
 |     else if (Py_IS_NAN(x)) { | 
 |         /* There are 2046 distinct half-precision NaNs (1022 signaling and | 
 |            1024 quiet), but there are only two quiet NaNs that don't arise by | 
 |            quieting a signaling NaN; we get those by setting the topmost bit | 
 |            of the fraction field and clearing all other fraction bits. We | 
 |            choose the one with the appropriate sign. */ | 
 |         sign = (copysign(1.0, x) == -1.0); | 
 |         e = 0x1f; | 
 |         bits = 512; | 
 |     } | 
 |     else { | 
 |         sign = (x < 0.0); | 
 |         if (sign) { | 
 |             x = -x; | 
 |         } | 
 |  | 
 |         f = frexp(x, &e); | 
 |         if (f < 0.5 || f >= 1.0) { | 
 |             PyErr_SetString(PyExc_SystemError, | 
 |                             "frexp() result out of range"); | 
 |             return -1; | 
 |         } | 
 |  | 
 |         /* Normalize f to be in the range [1.0, 2.0) */ | 
 |         f *= 2.0; | 
 |         e--; | 
 |  | 
 |         if (e >= 16) { | 
 |             goto Overflow; | 
 |         } | 
 |         else if (e < -25) { | 
 |             /* |x| < 2**-25. Underflow to zero. */ | 
 |             f = 0.0; | 
 |             e = 0; | 
 |         } | 
 |         else if (e < -14) { | 
 |             /* |x| < 2**-14. Gradual underflow */ | 
 |             f = ldexp(f, 14 + e); | 
 |             e = 0; | 
 |         } | 
 |         else /* if (!(e == 0 && f == 0.0)) */ { | 
 |             e += 15; | 
 |             f -= 1.0; /* Get rid of leading 1 */ | 
 |         } | 
 |  | 
 |         f *= 1024.0; /* 2**10 */ | 
 |         /* Round to even */ | 
 |         bits = (unsigned short)f; /* Note the truncation */ | 
 |         assert(bits < 1024); | 
 |         assert(e < 31); | 
 |         if ((f - bits > 0.5) || ((f - bits == 0.5) && (bits % 2 == 1))) { | 
 |             ++bits; | 
 |             if (bits == 1024) { | 
 |                 /* The carry propagated out of a string of 10 1 bits. */ | 
 |                 bits = 0; | 
 |                 ++e; | 
 |                 if (e == 31) | 
 |                     goto Overflow; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     bits |= (e << 10) | (sign << 15); | 
 |  | 
 |     /* Write out result. */ | 
 |     if (le) { | 
 |         p += 1; | 
 |         incr = -1; | 
 |     } | 
 |  | 
 |     /* First byte */ | 
 |     *p = (unsigned char)((bits >> 8) & 0xFF); | 
 |     p += incr; | 
 |  | 
 |     /* Second byte */ | 
 |     *p = (unsigned char)(bits & 0xFF); | 
 |  | 
 |     return 0; | 
 |  | 
 |   Overflow: | 
 |     PyErr_SetString(PyExc_OverflowError, | 
 |                     "float too large to pack with e format"); | 
 |     return -1; | 
 | } | 
 |  | 
 | int | 
 | _PyFloat_Pack4(double x, unsigned char *p, int le) | 
 | { | 
 |     if (float_format == unknown_format) { | 
 |         unsigned char sign; | 
 |         int e; | 
 |         double f; | 
 |         unsigned int fbits; | 
 |         int incr = 1; | 
 |  | 
 |         if (le) { | 
 |             p += 3; | 
 |             incr = -1; | 
 |         } | 
 |  | 
 |         if (x < 0) { | 
 |             sign = 1; | 
 |             x = -x; | 
 |         } | 
 |         else | 
 |             sign = 0; | 
 |  | 
 |         f = frexp(x, &e); | 
 |  | 
 |         /* Normalize f to be in the range [1.0, 2.0) */ | 
 |         if (0.5 <= f && f < 1.0) { | 
 |             f *= 2.0; | 
 |             e--; | 
 |         } | 
 |         else if (f == 0.0) | 
 |             e = 0; | 
 |         else { | 
 |             PyErr_SetString(PyExc_SystemError, | 
 |                             "frexp() result out of range"); | 
 |             return -1; | 
 |         } | 
 |  | 
 |         if (e >= 128) | 
 |             goto Overflow; | 
 |         else if (e < -126) { | 
 |             /* Gradual underflow */ | 
 |             f = ldexp(f, 126 + e); | 
 |             e = 0; | 
 |         } | 
 |         else if (!(e == 0 && f == 0.0)) { | 
 |             e += 127; | 
 |             f -= 1.0; /* Get rid of leading 1 */ | 
 |         } | 
 |  | 
 |         f *= 8388608.0; /* 2**23 */ | 
 |         fbits = (unsigned int)(f + 0.5); /* Round */ | 
 |         assert(fbits <= 8388608); | 
 |         if (fbits >> 23) { | 
 |             /* The carry propagated out of a string of 23 1 bits. */ | 
 |             fbits = 0; | 
 |             ++e; | 
 |             if (e >= 255) | 
 |                 goto Overflow; | 
 |         } | 
 |  | 
 |         /* First byte */ | 
 |         *p = (sign << 7) | (e >> 1); | 
 |         p += incr; | 
 |  | 
 |         /* Second byte */ | 
 |         *p = (char) (((e & 1) << 7) | (fbits >> 16)); | 
 |         p += incr; | 
 |  | 
 |         /* Third byte */ | 
 |         *p = (fbits >> 8) & 0xFF; | 
 |         p += incr; | 
 |  | 
 |         /* Fourth byte */ | 
 |         *p = fbits & 0xFF; | 
 |  | 
 |         /* Done */ | 
 |         return 0; | 
 |  | 
 |     } | 
 |     else { | 
 |         float y = (float)x; | 
 |         const unsigned char *s = (unsigned char*)&y; | 
 |         int i, incr = 1; | 
 |  | 
 |         if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x)) | 
 |             goto Overflow; | 
 |  | 
 |         if ((float_format == ieee_little_endian_format && !le) | 
 |             || (float_format == ieee_big_endian_format && le)) { | 
 |             p += 3; | 
 |             incr = -1; | 
 |         } | 
 |  | 
 |         for (i = 0; i < 4; i++) { | 
 |             *p = *s++; | 
 |             p += incr; | 
 |         } | 
 |         return 0; | 
 |     } | 
 |   Overflow: | 
 |     PyErr_SetString(PyExc_OverflowError, | 
 |                     "float too large to pack with f format"); | 
 |     return -1; | 
 | } | 
 |  | 
 | int | 
 | _PyFloat_Pack8(double x, unsigned char *p, int le) | 
 | { | 
 |     if (double_format == unknown_format) { | 
 |         unsigned char sign; | 
 |         int e; | 
 |         double f; | 
 |         unsigned int fhi, flo; | 
 |         int incr = 1; | 
 |  | 
 |         if (le) { | 
 |             p += 7; | 
 |             incr = -1; | 
 |         } | 
 |  | 
 |         if (x < 0) { | 
 |             sign = 1; | 
 |             x = -x; | 
 |         } | 
 |         else | 
 |             sign = 0; | 
 |  | 
 |         f = frexp(x, &e); | 
 |  | 
 |         /* Normalize f to be in the range [1.0, 2.0) */ | 
 |         if (0.5 <= f && f < 1.0) { | 
 |             f *= 2.0; | 
 |             e--; | 
 |         } | 
 |         else if (f == 0.0) | 
 |             e = 0; | 
 |         else { | 
 |             PyErr_SetString(PyExc_SystemError, | 
 |                             "frexp() result out of range"); | 
 |             return -1; | 
 |         } | 
 |  | 
 |         if (e >= 1024) | 
 |             goto Overflow; | 
 |         else if (e < -1022) { | 
 |             /* Gradual underflow */ | 
 |             f = ldexp(f, 1022 + e); | 
 |             e = 0; | 
 |         } | 
 |         else if (!(e == 0 && f == 0.0)) { | 
 |             e += 1023; | 
 |             f -= 1.0; /* Get rid of leading 1 */ | 
 |         } | 
 |  | 
 |         /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */ | 
 |         f *= 268435456.0; /* 2**28 */ | 
 |         fhi = (unsigned int)f; /* Truncate */ | 
 |         assert(fhi < 268435456); | 
 |  | 
 |         f -= (double)fhi; | 
 |         f *= 16777216.0; /* 2**24 */ | 
 |         flo = (unsigned int)(f + 0.5); /* Round */ | 
 |         assert(flo <= 16777216); | 
 |         if (flo >> 24) { | 
 |             /* The carry propagated out of a string of 24 1 bits. */ | 
 |             flo = 0; | 
 |             ++fhi; | 
 |             if (fhi >> 28) { | 
 |                 /* And it also progagated out of the next 28 bits. */ | 
 |                 fhi = 0; | 
 |                 ++e; | 
 |                 if (e >= 2047) | 
 |                     goto Overflow; | 
 |             } | 
 |         } | 
 |  | 
 |         /* First byte */ | 
 |         *p = (sign << 7) | (e >> 4); | 
 |         p += incr; | 
 |  | 
 |         /* Second byte */ | 
 |         *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24)); | 
 |         p += incr; | 
 |  | 
 |         /* Third byte */ | 
 |         *p = (fhi >> 16) & 0xFF; | 
 |         p += incr; | 
 |  | 
 |         /* Fourth byte */ | 
 |         *p = (fhi >> 8) & 0xFF; | 
 |         p += incr; | 
 |  | 
 |         /* Fifth byte */ | 
 |         *p = fhi & 0xFF; | 
 |         p += incr; | 
 |  | 
 |         /* Sixth byte */ | 
 |         *p = (flo >> 16) & 0xFF; | 
 |         p += incr; | 
 |  | 
 |         /* Seventh byte */ | 
 |         *p = (flo >> 8) & 0xFF; | 
 |         p += incr; | 
 |  | 
 |         /* Eighth byte */ | 
 |         *p = flo & 0xFF; | 
 |         /* p += incr; */ | 
 |  | 
 |         /* Done */ | 
 |         return 0; | 
 |  | 
 |       Overflow: | 
 |         PyErr_SetString(PyExc_OverflowError, | 
 |                         "float too large to pack with d format"); | 
 |         return -1; | 
 |     } | 
 |     else { | 
 |         const unsigned char *s = (unsigned char*)&x; | 
 |         int i, incr = 1; | 
 |  | 
 |         if ((double_format == ieee_little_endian_format && !le) | 
 |             || (double_format == ieee_big_endian_format && le)) { | 
 |             p += 7; | 
 |             incr = -1; | 
 |         } | 
 |  | 
 |         for (i = 0; i < 8; i++) { | 
 |             *p = *s++; | 
 |             p += incr; | 
 |         } | 
 |         return 0; | 
 |     } | 
 | } | 
 |  | 
 | double | 
 | _PyFloat_Unpack2(const unsigned char *p, int le) | 
 | { | 
 |     unsigned char sign; | 
 |     int e; | 
 |     unsigned int f; | 
 |     double x; | 
 |     int incr = 1; | 
 |  | 
 |     if (le) { | 
 |         p += 1; | 
 |         incr = -1; | 
 |     } | 
 |  | 
 |     /* First byte */ | 
 |     sign = (*p >> 7) & 1; | 
 |     e = (*p & 0x7C) >> 2; | 
 |     f = (*p & 0x03) << 8; | 
 |     p += incr; | 
 |  | 
 |     /* Second byte */ | 
 |     f |= *p; | 
 |  | 
 |     if (e == 0x1f) { | 
 | #ifdef PY_NO_SHORT_FLOAT_REPR | 
 |         if (f == 0) { | 
 |             /* Infinity */ | 
 |             return sign ? -Py_HUGE_VAL : Py_HUGE_VAL; | 
 |         } | 
 |         else { | 
 |             /* NaN */ | 
 | #ifdef Py_NAN | 
 |             return sign ? -Py_NAN : Py_NAN; | 
 | #else | 
 |             PyErr_SetString( | 
 |                 PyExc_ValueError, | 
 |                 "can't unpack IEEE 754 NaN " | 
 |                 "on platform that does not support NaNs"); | 
 |             return -1; | 
 | #endif  /* #ifdef Py_NAN */ | 
 |         } | 
 | #else | 
 |         if (f == 0) { | 
 |             /* Infinity */ | 
 |             return _Py_dg_infinity(sign); | 
 |         } | 
 |         else { | 
 |             /* NaN */ | 
 |             return _Py_dg_stdnan(sign); | 
 |         } | 
 | #endif  /* #ifdef PY_NO_SHORT_FLOAT_REPR */ | 
 |     } | 
 |  | 
 |     x = (double)f / 1024.0; | 
 |  | 
 |     if (e == 0) { | 
 |         e = -14; | 
 |     } | 
 |     else { | 
 |         x += 1.0; | 
 |         e -= 15; | 
 |     } | 
 |     x = ldexp(x, e); | 
 |  | 
 |     if (sign) | 
 |         x = -x; | 
 |  | 
 |     return x; | 
 | } | 
 |  | 
 | double | 
 | _PyFloat_Unpack4(const unsigned char *p, int le) | 
 | { | 
 |     if (float_format == unknown_format) { | 
 |         unsigned char sign; | 
 |         int e; | 
 |         unsigned int f; | 
 |         double x; | 
 |         int incr = 1; | 
 |  | 
 |         if (le) { | 
 |             p += 3; | 
 |             incr = -1; | 
 |         } | 
 |  | 
 |         /* First byte */ | 
 |         sign = (*p >> 7) & 1; | 
 |         e = (*p & 0x7F) << 1; | 
 |         p += incr; | 
 |  | 
 |         /* Second byte */ | 
 |         e |= (*p >> 7) & 1; | 
 |         f = (*p & 0x7F) << 16; | 
 |         p += incr; | 
 |  | 
 |         if (e == 255) { | 
 |             PyErr_SetString( | 
 |                 PyExc_ValueError, | 
 |                 "can't unpack IEEE 754 special value " | 
 |                 "on non-IEEE platform"); | 
 |             return -1; | 
 |         } | 
 |  | 
 |         /* Third byte */ | 
 |         f |= *p << 8; | 
 |         p += incr; | 
 |  | 
 |         /* Fourth byte */ | 
 |         f |= *p; | 
 |  | 
 |         x = (double)f / 8388608.0; | 
 |  | 
 |         /* XXX This sadly ignores Inf/NaN issues */ | 
 |         if (e == 0) | 
 |             e = -126; | 
 |         else { | 
 |             x += 1.0; | 
 |             e -= 127; | 
 |         } | 
 |         x = ldexp(x, e); | 
 |  | 
 |         if (sign) | 
 |             x = -x; | 
 |  | 
 |         return x; | 
 |     } | 
 |     else { | 
 |         float x; | 
 |  | 
 |         if ((float_format == ieee_little_endian_format && !le) | 
 |             || (float_format == ieee_big_endian_format && le)) { | 
 |             char buf[4]; | 
 |             char *d = &buf[3]; | 
 |             int i; | 
 |  | 
 |             for (i = 0; i < 4; i++) { | 
 |                 *d-- = *p++; | 
 |             } | 
 |             memcpy(&x, buf, 4); | 
 |         } | 
 |         else { | 
 |             memcpy(&x, p, 4); | 
 |         } | 
 |  | 
 |         return x; | 
 |     } | 
 | } | 
 |  | 
 | double | 
 | _PyFloat_Unpack8(const unsigned char *p, int le) | 
 | { | 
 |     if (double_format == unknown_format) { | 
 |         unsigned char sign; | 
 |         int e; | 
 |         unsigned int fhi, flo; | 
 |         double x; | 
 |         int incr = 1; | 
 |  | 
 |         if (le) { | 
 |             p += 7; | 
 |             incr = -1; | 
 |         } | 
 |  | 
 |         /* First byte */ | 
 |         sign = (*p >> 7) & 1; | 
 |         e = (*p & 0x7F) << 4; | 
 |  | 
 |         p += incr; | 
 |  | 
 |         /* Second byte */ | 
 |         e |= (*p >> 4) & 0xF; | 
 |         fhi = (*p & 0xF) << 24; | 
 |         p += incr; | 
 |  | 
 |         if (e == 2047) { | 
 |             PyErr_SetString( | 
 |                 PyExc_ValueError, | 
 |                 "can't unpack IEEE 754 special value " | 
 |                 "on non-IEEE platform"); | 
 |             return -1.0; | 
 |         } | 
 |  | 
 |         /* Third byte */ | 
 |         fhi |= *p << 16; | 
 |         p += incr; | 
 |  | 
 |         /* Fourth byte */ | 
 |         fhi |= *p  << 8; | 
 |         p += incr; | 
 |  | 
 |         /* Fifth byte */ | 
 |         fhi |= *p; | 
 |         p += incr; | 
 |  | 
 |         /* Sixth byte */ | 
 |         flo = *p << 16; | 
 |         p += incr; | 
 |  | 
 |         /* Seventh byte */ | 
 |         flo |= *p << 8; | 
 |         p += incr; | 
 |  | 
 |         /* Eighth byte */ | 
 |         flo |= *p; | 
 |  | 
 |         x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */ | 
 |         x /= 268435456.0; /* 2**28 */ | 
 |  | 
 |         if (e == 0) | 
 |             e = -1022; | 
 |         else { | 
 |             x += 1.0; | 
 |             e -= 1023; | 
 |         } | 
 |         x = ldexp(x, e); | 
 |  | 
 |         if (sign) | 
 |             x = -x; | 
 |  | 
 |         return x; | 
 |     } | 
 |     else { | 
 |         double x; | 
 |  | 
 |         if ((double_format == ieee_little_endian_format && !le) | 
 |             || (double_format == ieee_big_endian_format && le)) { | 
 |             char buf[8]; | 
 |             char *d = &buf[7]; | 
 |             int i; | 
 |  | 
 |             for (i = 0; i < 8; i++) { | 
 |                 *d-- = *p++; | 
 |             } | 
 |             memcpy(&x, buf, 8); | 
 |         } | 
 |         else { | 
 |             memcpy(&x, p, 8); | 
 |         } | 
 |  | 
 |         return x; | 
 |     } | 
 | } |