| |
| /* This code implemented by Dag.Gruneau@elsa.preseco.comm.se */ |
| /* Fast NonRecursiveMutex support by Yakov Markovitch, markovitch@iso.ru */ |
| /* Eliminated some memory leaks, gsw@agere.com */ |
| |
| #include <windows.h> |
| #include <limits.h> |
| #ifdef HAVE_PROCESS_H |
| #include <process.h> |
| #endif |
| |
| /* options */ |
| #ifndef _PY_USE_CV_LOCKS |
| #define _PY_USE_CV_LOCKS 1 /* use locks based on cond vars */ |
| #endif |
| |
| /* Now, define a non-recursive mutex using either condition variables |
| * and critical sections (fast) or using operating system mutexes |
| * (slow) |
| */ |
| |
| #if _PY_USE_CV_LOCKS |
| |
| #include "condvar.h" |
| |
| typedef struct _NRMUTEX |
| { |
| PyMUTEX_T cs; |
| PyCOND_T cv; |
| int locked; |
| } NRMUTEX; |
| typedef NRMUTEX *PNRMUTEX; |
| |
| PNRMUTEX |
| AllocNonRecursiveMutex() |
| { |
| PNRMUTEX m = (PNRMUTEX)PyMem_RawMalloc(sizeof(NRMUTEX)); |
| if (!m) |
| return NULL; |
| if (PyCOND_INIT(&m->cv)) |
| goto fail; |
| if (PyMUTEX_INIT(&m->cs)) { |
| PyCOND_FINI(&m->cv); |
| goto fail; |
| } |
| m->locked = 0; |
| return m; |
| fail: |
| PyMem_RawFree(m); |
| return NULL; |
| } |
| |
| VOID |
| FreeNonRecursiveMutex(PNRMUTEX mutex) |
| { |
| if (mutex) { |
| PyCOND_FINI(&mutex->cv); |
| PyMUTEX_FINI(&mutex->cs); |
| PyMem_RawFree(mutex); |
| } |
| } |
| |
| DWORD |
| EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds) |
| { |
| DWORD result = WAIT_OBJECT_0; |
| if (PyMUTEX_LOCK(&mutex->cs)) |
| return WAIT_FAILED; |
| if (milliseconds == INFINITE) { |
| while (mutex->locked) { |
| if (PyCOND_WAIT(&mutex->cv, &mutex->cs)) { |
| result = WAIT_FAILED; |
| break; |
| } |
| } |
| } else if (milliseconds != 0) { |
| /* wait at least until the target */ |
| DWORD now, target = GetTickCount() + milliseconds; |
| while (mutex->locked) { |
| if (PyCOND_TIMEDWAIT(&mutex->cv, &mutex->cs, milliseconds*1000) < 0) { |
| result = WAIT_FAILED; |
| break; |
| } |
| now = GetTickCount(); |
| if (target <= now) |
| break; |
| milliseconds = target-now; |
| } |
| } |
| if (!mutex->locked) { |
| mutex->locked = 1; |
| result = WAIT_OBJECT_0; |
| } else if (result == WAIT_OBJECT_0) |
| result = WAIT_TIMEOUT; |
| /* else, it is WAIT_FAILED */ |
| PyMUTEX_UNLOCK(&mutex->cs); /* must ignore result here */ |
| return result; |
| } |
| |
| BOOL |
| LeaveNonRecursiveMutex(PNRMUTEX mutex) |
| { |
| BOOL result; |
| if (PyMUTEX_LOCK(&mutex->cs)) |
| return FALSE; |
| mutex->locked = 0; |
| result = PyCOND_SIGNAL(&mutex->cv); |
| result &= PyMUTEX_UNLOCK(&mutex->cs); |
| return result; |
| } |
| |
| #else /* if ! _PY_USE_CV_LOCKS */ |
| |
| /* NR-locks based on a kernel mutex */ |
| #define PNRMUTEX HANDLE |
| |
| PNRMUTEX |
| AllocNonRecursiveMutex() |
| { |
| return CreateSemaphore(NULL, 1, 1, NULL); |
| } |
| |
| VOID |
| FreeNonRecursiveMutex(PNRMUTEX mutex) |
| { |
| /* No in-use check */ |
| CloseHandle(mutex); |
| } |
| |
| DWORD |
| EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds) |
| { |
| return WaitForSingleObjectEx(mutex, milliseconds, FALSE); |
| } |
| |
| BOOL |
| LeaveNonRecursiveMutex(PNRMUTEX mutex) |
| { |
| return ReleaseSemaphore(mutex, 1, NULL); |
| } |
| #endif /* _PY_USE_CV_LOCKS */ |
| |
| long PyThread_get_thread_ident(void); |
| |
| /* |
| * Initialization of the C package, should not be needed. |
| */ |
| static void |
| PyThread__init_thread(void) |
| { |
| } |
| |
| /* |
| * Thread support. |
| */ |
| |
| typedef struct { |
| void (*func)(void*); |
| void *arg; |
| } callobj; |
| |
| /* thunker to call adapt between the function type used by the system's |
| thread start function and the internally used one. */ |
| #if defined(MS_WINCE) |
| static DWORD WINAPI |
| #else |
| static unsigned __stdcall |
| #endif |
| bootstrap(void *call) |
| { |
| callobj *obj = (callobj*)call; |
| void (*func)(void*) = obj->func; |
| void *arg = obj->arg; |
| HeapFree(GetProcessHeap(), 0, obj); |
| func(arg); |
| return 0; |
| } |
| |
| long |
| PyThread_start_new_thread(void (*func)(void *), void *arg) |
| { |
| HANDLE hThread; |
| unsigned threadID; |
| callobj *obj; |
| |
| dprintf(("%ld: PyThread_start_new_thread called\n", |
| PyThread_get_thread_ident())); |
| if (!initialized) |
| PyThread_init_thread(); |
| |
| obj = (callobj*)HeapAlloc(GetProcessHeap(), 0, sizeof(*obj)); |
| if (!obj) |
| return -1; |
| obj->func = func; |
| obj->arg = arg; |
| #if defined(MS_WINCE) |
| hThread = CreateThread(NULL, |
| Py_SAFE_DOWNCAST(_pythread_stacksize, Py_ssize_t, SIZE_T), |
| bootstrap, obj, 0, &threadID); |
| #else |
| hThread = (HANDLE)_beginthreadex(0, |
| Py_SAFE_DOWNCAST(_pythread_stacksize, |
| Py_ssize_t, unsigned int), |
| bootstrap, obj, |
| 0, &threadID); |
| #endif |
| if (hThread == 0) { |
| #if defined(MS_WINCE) |
| /* Save error in variable, to prevent PyThread_get_thread_ident |
| from clobbering it. */ |
| unsigned e = GetLastError(); |
| dprintf(("%ld: PyThread_start_new_thread failed, win32 error code %u\n", |
| PyThread_get_thread_ident(), e)); |
| #else |
| /* I've seen errno == EAGAIN here, which means "there are |
| * too many threads". |
| */ |
| int e = errno; |
| dprintf(("%ld: PyThread_start_new_thread failed, errno %d\n", |
| PyThread_get_thread_ident(), e)); |
| #endif |
| threadID = (unsigned)-1; |
| HeapFree(GetProcessHeap(), 0, obj); |
| } |
| else { |
| dprintf(("%ld: PyThread_start_new_thread succeeded: %p\n", |
| PyThread_get_thread_ident(), (void*)hThread)); |
| CloseHandle(hThread); |
| } |
| return (long) threadID; |
| } |
| |
| /* |
| * Return the thread Id instead of an handle. The Id is said to uniquely identify the |
| * thread in the system |
| */ |
| long |
| PyThread_get_thread_ident(void) |
| { |
| if (!initialized) |
| PyThread_init_thread(); |
| |
| return GetCurrentThreadId(); |
| } |
| |
| void |
| PyThread_exit_thread(void) |
| { |
| dprintf(("%ld: PyThread_exit_thread called\n", PyThread_get_thread_ident())); |
| if (!initialized) |
| exit(0); |
| #if defined(MS_WINCE) |
| ExitThread(0); |
| #else |
| _endthreadex(0); |
| #endif |
| } |
| |
| /* |
| * Lock support. It has too be implemented as semaphores. |
| * I [Dag] tried to implement it with mutex but I could find a way to |
| * tell whether a thread already own the lock or not. |
| */ |
| PyThread_type_lock |
| PyThread_allocate_lock(void) |
| { |
| PNRMUTEX aLock; |
| |
| dprintf(("PyThread_allocate_lock called\n")); |
| if (!initialized) |
| PyThread_init_thread(); |
| |
| aLock = AllocNonRecursiveMutex() ; |
| |
| dprintf(("%ld: PyThread_allocate_lock() -> %p\n", PyThread_get_thread_ident(), aLock)); |
| |
| return (PyThread_type_lock) aLock; |
| } |
| |
| void |
| PyThread_free_lock(PyThread_type_lock aLock) |
| { |
| dprintf(("%ld: PyThread_free_lock(%p) called\n", PyThread_get_thread_ident(),aLock)); |
| |
| FreeNonRecursiveMutex(aLock) ; |
| } |
| |
| /* |
| * Return 1 on success if the lock was acquired |
| * |
| * and 0 if the lock was not acquired. This means a 0 is returned |
| * if the lock has already been acquired by this thread! |
| */ |
| PyLockStatus |
| PyThread_acquire_lock_timed(PyThread_type_lock aLock, |
| PY_TIMEOUT_T microseconds, int intr_flag) |
| { |
| /* Fow now, intr_flag does nothing on Windows, and lock acquires are |
| * uninterruptible. */ |
| PyLockStatus success; |
| PY_TIMEOUT_T milliseconds; |
| |
| if (microseconds >= 0) { |
| milliseconds = microseconds / 1000; |
| if (microseconds % 1000 > 0) |
| ++milliseconds; |
| if ((DWORD) milliseconds != milliseconds) |
| Py_FatalError("Timeout too large for a DWORD, " |
| "please check PY_TIMEOUT_MAX"); |
| } |
| else |
| milliseconds = INFINITE; |
| |
| dprintf(("%ld: PyThread_acquire_lock_timed(%p, %lld) called\n", |
| PyThread_get_thread_ident(), aLock, microseconds)); |
| |
| if (aLock && EnterNonRecursiveMutex((PNRMUTEX)aLock, |
| (DWORD)milliseconds) == WAIT_OBJECT_0) { |
| success = PY_LOCK_ACQUIRED; |
| } |
| else { |
| success = PY_LOCK_FAILURE; |
| } |
| |
| dprintf(("%ld: PyThread_acquire_lock(%p, %lld) -> %d\n", |
| PyThread_get_thread_ident(), aLock, microseconds, success)); |
| |
| return success; |
| } |
| int |
| PyThread_acquire_lock(PyThread_type_lock aLock, int waitflag) |
| { |
| return PyThread_acquire_lock_timed(aLock, waitflag ? -1 : 0, 0); |
| } |
| |
| void |
| PyThread_release_lock(PyThread_type_lock aLock) |
| { |
| dprintf(("%ld: PyThread_release_lock(%p) called\n", PyThread_get_thread_ident(),aLock)); |
| |
| if (!(aLock && LeaveNonRecursiveMutex((PNRMUTEX) aLock))) |
| dprintf(("%ld: Could not PyThread_release_lock(%p) error: %ld\n", PyThread_get_thread_ident(), aLock, GetLastError())); |
| } |
| |
| /* minimum/maximum thread stack sizes supported */ |
| #define THREAD_MIN_STACKSIZE 0x8000 /* 32kB */ |
| #define THREAD_MAX_STACKSIZE 0x10000000 /* 256MB */ |
| |
| /* set the thread stack size. |
| * Return 0 if size is valid, -1 otherwise. |
| */ |
| static int |
| _pythread_nt_set_stacksize(size_t size) |
| { |
| /* set to default */ |
| if (size == 0) { |
| _pythread_stacksize = 0; |
| return 0; |
| } |
| |
| /* valid range? */ |
| if (size >= THREAD_MIN_STACKSIZE && size < THREAD_MAX_STACKSIZE) { |
| _pythread_stacksize = size; |
| return 0; |
| } |
| |
| return -1; |
| } |
| |
| #define THREAD_SET_STACKSIZE(x) _pythread_nt_set_stacksize(x) |
| |
| |
| /* use native Windows TLS functions */ |
| #define Py_HAVE_NATIVE_TLS |
| |
| #ifdef Py_HAVE_NATIVE_TLS |
| int |
| PyThread_create_key(void) |
| { |
| DWORD result= TlsAlloc(); |
| if (result == TLS_OUT_OF_INDEXES) |
| return -1; |
| return (int)result; |
| } |
| |
| void |
| PyThread_delete_key(int key) |
| { |
| TlsFree(key); |
| } |
| |
| /* We must be careful to emulate the strange semantics implemented in thread.c, |
| * where the value is only set if it hasn't been set before. |
| */ |
| int |
| PyThread_set_key_value(int key, void *value) |
| { |
| BOOL ok; |
| void *oldvalue; |
| |
| assert(value != NULL); |
| oldvalue = TlsGetValue(key); |
| if (oldvalue != NULL) |
| /* ignore value if already set */ |
| return 0; |
| ok = TlsSetValue(key, value); |
| if (!ok) |
| return -1; |
| return 0; |
| } |
| |
| void * |
| PyThread_get_key_value(int key) |
| { |
| /* because TLS is used in the Py_END_ALLOW_THREAD macro, |
| * it is necessary to preserve the windows error state, because |
| * it is assumed to be preserved across the call to the macro. |
| * Ideally, the macro should be fixed, but it is simpler to |
| * do it here. |
| */ |
| DWORD error = GetLastError(); |
| void *result = TlsGetValue(key); |
| SetLastError(error); |
| return result; |
| } |
| |
| void |
| PyThread_delete_key_value(int key) |
| { |
| /* NULL is used as "key missing", and it is also the default |
| * given by TlsGetValue() if nothing has been set yet. |
| */ |
| TlsSetValue(key, NULL); |
| } |
| |
| /* reinitialization of TLS is not necessary after fork when using |
| * the native TLS functions. And forking isn't supported on Windows either. |
| */ |
| void |
| PyThread_ReInitTLS(void) |
| {} |
| |
| #endif |