| /*********************************************************** |
| Copyright 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, |
| The Netherlands. |
| |
| All Rights Reserved |
| |
| Permission to use, copy, modify, and distribute this software and its |
| documentation for any purpose and without fee is hereby granted, |
| provided that the above copyright notice appear in all copies and that |
| both that copyright notice and this permission notice appear in |
| supporting documentation, and that the names of Stichting Mathematisch |
| Centrum or CWI or Corporation for National Research Initiatives or |
| CNRI not be used in advertising or publicity pertaining to |
| distribution of the software without specific, written prior |
| permission. |
| |
| While CWI is the initial source for this software, a modified version |
| is made available by the Corporation for National Research Initiatives |
| (CNRI) at the Internet address ftp://ftp.python.org. |
| |
| STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH |
| REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF |
| MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH |
| CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL |
| DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR |
| PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER |
| TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR |
| PERFORMANCE OF THIS SOFTWARE. |
| |
| ******************************************************************/ |
| |
| /* List object implementation */ |
| |
| #include "Python.h" |
| |
| #ifdef STDC_HEADERS |
| #include <stddef.h> |
| #else |
| #include <sys/types.h> /* For size_t */ |
| #endif |
| |
| #define ROUNDUP(n, PyTryBlock) \ |
| ((((n)+(PyTryBlock)-1)/(PyTryBlock))*(PyTryBlock)) |
| |
| static int |
| roundupsize(n) |
| int n; |
| { |
| if (n < 500) |
| return ROUNDUP(n, 10); |
| else |
| return ROUNDUP(n, 100); |
| } |
| |
| #define NRESIZE(var, type, nitems) PyMem_RESIZE(var, type, roundupsize(nitems)) |
| |
| PyObject * |
| PyList_New(size) |
| int size; |
| { |
| int i; |
| PyListObject *op; |
| size_t nbytes; |
| if (size < 0) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| nbytes = size * sizeof(PyObject *); |
| /* Check for overflow */ |
| if (nbytes / sizeof(PyObject *) != (size_t)size) { |
| return PyErr_NoMemory(); |
| } |
| op = (PyListObject *) malloc(sizeof(PyListObject)); |
| if (op == NULL) { |
| return PyErr_NoMemory(); |
| } |
| if (size <= 0) { |
| op->ob_item = NULL; |
| } |
| else { |
| op->ob_item = (PyObject **) malloc(nbytes); |
| if (op->ob_item == NULL) { |
| free((ANY *)op); |
| return PyErr_NoMemory(); |
| } |
| } |
| op->ob_type = &PyList_Type; |
| op->ob_size = size; |
| for (i = 0; i < size; i++) |
| op->ob_item[i] = NULL; |
| _Py_NewReference((PyObject *)op); |
| return (PyObject *) op; |
| } |
| |
| int |
| PyList_Size(op) |
| PyObject *op; |
| { |
| if (!PyList_Check(op)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| else |
| return ((PyListObject *)op) -> ob_size; |
| } |
| |
| static PyObject *indexerr; |
| |
| PyObject * |
| PyList_GetItem(op, i) |
| PyObject *op; |
| int i; |
| { |
| if (!PyList_Check(op)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| if (i < 0 || i >= ((PyListObject *)op) -> ob_size) { |
| if (indexerr == NULL) |
| indexerr = PyString_FromString( |
| "list index out of range"); |
| PyErr_SetObject(PyExc_IndexError, indexerr); |
| return NULL; |
| } |
| return ((PyListObject *)op) -> ob_item[i]; |
| } |
| |
| int |
| PyList_SetItem(op, i, newitem) |
| register PyObject *op; |
| register int i; |
| register PyObject *newitem; |
| { |
| register PyObject *olditem; |
| register PyObject **p; |
| if (!PyList_Check(op)) { |
| Py_XDECREF(newitem); |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| if (i < 0 || i >= ((PyListObject *)op) -> ob_size) { |
| Py_XDECREF(newitem); |
| PyErr_SetString(PyExc_IndexError, |
| "list assignment index out of range"); |
| return -1; |
| } |
| p = ((PyListObject *)op) -> ob_item + i; |
| olditem = *p; |
| *p = newitem; |
| Py_XDECREF(olditem); |
| return 0; |
| } |
| |
| static int |
| ins1(self, where, v) |
| PyListObject *self; |
| int where; |
| PyObject *v; |
| { |
| int i; |
| PyObject **items; |
| if (v == NULL) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| items = self->ob_item; |
| NRESIZE(items, PyObject *, self->ob_size+1); |
| if (items == NULL) { |
| PyErr_NoMemory(); |
| return -1; |
| } |
| if (where < 0) |
| where = 0; |
| if (where > self->ob_size) |
| where = self->ob_size; |
| for (i = self->ob_size; --i >= where; ) |
| items[i+1] = items[i]; |
| Py_INCREF(v); |
| items[where] = v; |
| self->ob_item = items; |
| self->ob_size++; |
| return 0; |
| } |
| |
| int |
| PyList_Insert(op, where, newitem) |
| PyObject *op; |
| int where; |
| PyObject *newitem; |
| { |
| if (!PyList_Check(op)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| return ins1((PyListObject *)op, where, newitem); |
| } |
| |
| int |
| PyList_Append(op, newitem) |
| PyObject *op; |
| PyObject *newitem; |
| { |
| if (!PyList_Check(op)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| return ins1((PyListObject *)op, |
| (int) ((PyListObject *)op)->ob_size, newitem); |
| } |
| |
| /* Methods */ |
| |
| static void |
| list_dealloc(op) |
| PyListObject *op; |
| { |
| int i; |
| Py_TRASHCAN_SAFE_BEGIN(op) |
| if (op->ob_item != NULL) { |
| /* Do it backwards, for Christian Tismer. |
| There's a simple test case where somehow this reduces |
| thrashing when a *very* large list is created and |
| immediately deleted. */ |
| i = op->ob_size; |
| while (--i >= 0) { |
| Py_XDECREF(op->ob_item[i]); |
| } |
| free((ANY *)op->ob_item); |
| } |
| free((ANY *)op); |
| Py_TRASHCAN_SAFE_END(op) |
| } |
| |
| static int |
| list_print(op, fp, flags) |
| PyListObject *op; |
| FILE *fp; |
| int flags; |
| { |
| int i; |
| |
| i = Py_ReprEnter((PyObject*)op); |
| if (i != 0) { |
| if (i < 0) |
| return i; |
| fprintf(fp, "[...]"); |
| return 0; |
| } |
| fprintf(fp, "["); |
| for (i = 0; i < op->ob_size; i++) { |
| if (i > 0) |
| fprintf(fp, ", "); |
| if (PyObject_Print(op->ob_item[i], fp, 0) != 0) { |
| Py_ReprLeave((PyObject *)op); |
| return -1; |
| } |
| } |
| fprintf(fp, "]"); |
| Py_ReprLeave((PyObject *)op); |
| return 0; |
| } |
| |
| static PyObject * |
| list_repr(v) |
| PyListObject *v; |
| { |
| PyObject *s, *comma; |
| int i; |
| |
| i = Py_ReprEnter((PyObject*)v); |
| if (i != 0) { |
| if (i > 0) |
| return PyString_FromString("[...]"); |
| return NULL; |
| } |
| s = PyString_FromString("["); |
| comma = PyString_FromString(", "); |
| for (i = 0; i < v->ob_size && s != NULL; i++) { |
| if (i > 0) |
| PyString_Concat(&s, comma); |
| PyString_ConcatAndDel(&s, PyObject_Repr(v->ob_item[i])); |
| } |
| Py_XDECREF(comma); |
| PyString_ConcatAndDel(&s, PyString_FromString("]")); |
| Py_ReprLeave((PyObject *)v); |
| return s; |
| } |
| |
| static int |
| list_compare(v, w) |
| PyListObject *v, *w; |
| { |
| int i; |
| for (i = 0; i < v->ob_size && i < w->ob_size; i++) { |
| int cmp = PyObject_Compare(v->ob_item[i], w->ob_item[i]); |
| if (cmp != 0) |
| return cmp; |
| } |
| return v->ob_size - w->ob_size; |
| } |
| |
| static int |
| list_length(a) |
| PyListObject *a; |
| { |
| return a->ob_size; |
| } |
| |
| |
| |
| static int |
| list_contains(a, el) |
| PyListObject *a; |
| PyObject *el; |
| { |
| int i, cmp; |
| |
| for (i = 0; i < a->ob_size; ++i) { |
| cmp = PyObject_Compare(el, PyList_GET_ITEM(a, i)); |
| if (cmp == 0) |
| return 1; |
| if (PyErr_Occurred()) |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| static PyObject * |
| list_item(a, i) |
| PyListObject *a; |
| int i; |
| { |
| if (i < 0 || i >= a->ob_size) { |
| if (indexerr == NULL) |
| indexerr = PyString_FromString( |
| "list index out of range"); |
| PyErr_SetObject(PyExc_IndexError, indexerr); |
| return NULL; |
| } |
| Py_INCREF(a->ob_item[i]); |
| return a->ob_item[i]; |
| } |
| |
| static PyObject * |
| list_slice(a, ilow, ihigh) |
| PyListObject *a; |
| int ilow, ihigh; |
| { |
| PyListObject *np; |
| int i; |
| if (ilow < 0) |
| ilow = 0; |
| else if (ilow > a->ob_size) |
| ilow = a->ob_size; |
| if (ihigh < ilow) |
| ihigh = ilow; |
| else if (ihigh > a->ob_size) |
| ihigh = a->ob_size; |
| np = (PyListObject *) PyList_New(ihigh - ilow); |
| if (np == NULL) |
| return NULL; |
| for (i = ilow; i < ihigh; i++) { |
| PyObject *v = a->ob_item[i]; |
| Py_INCREF(v); |
| np->ob_item[i - ilow] = v; |
| } |
| return (PyObject *)np; |
| } |
| |
| PyObject * |
| PyList_GetSlice(a, ilow, ihigh) |
| PyObject *a; |
| int ilow, ihigh; |
| { |
| if (!PyList_Check(a)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| return list_slice((PyListObject *)a, ilow, ihigh); |
| } |
| |
| static PyObject * |
| list_concat(a, bb) |
| PyListObject *a; |
| PyObject *bb; |
| { |
| int size; |
| int i; |
| PyListObject *np; |
| if (!PyList_Check(bb)) { |
| PyErr_BadArgument(); |
| return NULL; |
| } |
| #define b ((PyListObject *)bb) |
| size = a->ob_size + b->ob_size; |
| np = (PyListObject *) PyList_New(size); |
| if (np == NULL) { |
| return NULL; |
| } |
| for (i = 0; i < a->ob_size; i++) { |
| PyObject *v = a->ob_item[i]; |
| Py_INCREF(v); |
| np->ob_item[i] = v; |
| } |
| for (i = 0; i < b->ob_size; i++) { |
| PyObject *v = b->ob_item[i]; |
| Py_INCREF(v); |
| np->ob_item[i + a->ob_size] = v; |
| } |
| return (PyObject *)np; |
| #undef b |
| } |
| |
| static PyObject * |
| list_repeat(a, n) |
| PyListObject *a; |
| int n; |
| { |
| int i, j; |
| int size; |
| PyListObject *np; |
| PyObject **p; |
| if (n < 0) |
| n = 0; |
| size = a->ob_size * n; |
| np = (PyListObject *) PyList_New(size); |
| if (np == NULL) |
| return NULL; |
| p = np->ob_item; |
| for (i = 0; i < n; i++) { |
| for (j = 0; j < a->ob_size; j++) { |
| *p = a->ob_item[j]; |
| Py_INCREF(*p); |
| p++; |
| } |
| } |
| return (PyObject *) np; |
| } |
| |
| static int |
| list_ass_slice(a, ilow, ihigh, v) |
| PyListObject *a; |
| int ilow, ihigh; |
| PyObject *v; |
| { |
| /* Because [X]DECREF can recursively invoke list operations on |
| this list, we must postpone all [X]DECREF activity until |
| after the list is back in its canonical shape. Therefore |
| we must allocate an additional array, 'recycle', into which |
| we temporarily copy the items that are deleted from the |
| list. :-( */ |
| PyObject **recycle, **p; |
| PyObject **item; |
| int n; /* Size of replacement list */ |
| int d; /* Change in size */ |
| int k; /* Loop index */ |
| #define b ((PyListObject *)v) |
| if (v == NULL) |
| n = 0; |
| else if (PyList_Check(v)) { |
| n = b->ob_size; |
| if (a == b) { |
| /* Special case "a[i:j] = a" -- copy b first */ |
| int ret; |
| v = list_slice(b, 0, n); |
| ret = list_ass_slice(a, ilow, ihigh, v); |
| Py_DECREF(v); |
| return ret; |
| } |
| } |
| else { |
| PyErr_BadArgument(); |
| return -1; |
| } |
| if (ilow < 0) |
| ilow = 0; |
| else if (ilow > a->ob_size) |
| ilow = a->ob_size; |
| if (ihigh < ilow) |
| ihigh = ilow; |
| else if (ihigh > a->ob_size) |
| ihigh = a->ob_size; |
| item = a->ob_item; |
| d = n - (ihigh-ilow); |
| if (ihigh > ilow) |
| p = recycle = PyMem_NEW(PyObject *, (ihigh-ilow)); |
| else |
| p = recycle = NULL; |
| if (d <= 0) { /* Delete -d items; recycle ihigh-ilow items */ |
| for (k = ilow; k < ihigh; k++) |
| *p++ = item[k]; |
| if (d < 0) { |
| for (/*k = ihigh*/; k < a->ob_size; k++) |
| item[k+d] = item[k]; |
| a->ob_size += d; |
| NRESIZE(item, PyObject *, a->ob_size); /* Can't fail */ |
| a->ob_item = item; |
| } |
| } |
| else { /* Insert d items; recycle ihigh-ilow items */ |
| NRESIZE(item, PyObject *, a->ob_size + d); |
| if (item == NULL) { |
| PyMem_XDEL(recycle); |
| PyErr_NoMemory(); |
| return -1; |
| } |
| for (k = a->ob_size; --k >= ihigh; ) |
| item[k+d] = item[k]; |
| for (/*k = ihigh-1*/; k >= ilow; --k) |
| *p++ = item[k]; |
| a->ob_item = item; |
| a->ob_size += d; |
| } |
| for (k = 0; k < n; k++, ilow++) { |
| PyObject *w = b->ob_item[k]; |
| Py_XINCREF(w); |
| item[ilow] = w; |
| } |
| if (recycle) { |
| while (--p >= recycle) |
| Py_XDECREF(*p); |
| PyMem_DEL(recycle); |
| } |
| return 0; |
| #undef b |
| } |
| |
| int |
| PyList_SetSlice(a, ilow, ihigh, v) |
| PyObject *a; |
| int ilow, ihigh; |
| PyObject *v; |
| { |
| if (!PyList_Check(a)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| return list_ass_slice((PyListObject *)a, ilow, ihigh, v); |
| } |
| |
| static int |
| list_ass_item(a, i, v) |
| PyListObject *a; |
| int i; |
| PyObject *v; |
| { |
| PyObject *old_value; |
| if (i < 0 || i >= a->ob_size) { |
| PyErr_SetString(PyExc_IndexError, |
| "list assignment index out of range"); |
| return -1; |
| } |
| if (v == NULL) |
| return list_ass_slice(a, i, i+1, v); |
| Py_INCREF(v); |
| old_value = a->ob_item[i]; |
| a->ob_item[i] = v; |
| Py_DECREF(old_value); |
| return 0; |
| } |
| |
| static PyObject * |
| ins(self, where, v) |
| PyListObject *self; |
| int where; |
| PyObject *v; |
| { |
| if (ins1(self, where, v) != 0) |
| return NULL; |
| Py_INCREF(Py_None); |
| return Py_None; |
| } |
| |
| static PyObject * |
| listinsert(self, args) |
| PyListObject *self; |
| PyObject *args; |
| { |
| int i; |
| PyObject *v; |
| if (!PyArg_ParseTuple(args, "iO:insert", &i, &v)) |
| return NULL; |
| return ins(self, i, v); |
| } |
| |
| /* Define NO_STRICT_LIST_APPEND to enable multi-argument append() */ |
| |
| #ifndef NO_STRICT_LIST_APPEND |
| #define PyArg_ParseTuple_Compat1 PyArg_ParseTuple |
| #else |
| #define PyArg_ParseTuple_Compat1(args, format, ret) \ |
| ( \ |
| PyTuple_GET_SIZE(args) > 1 ? (*ret = args, 1) : \ |
| PyTuple_GET_SIZE(args) == 1 ? (*ret = PyTuple_GET_ITEM(args, 0), 1) : \ |
| PyArg_ParseTuple(args, format, ret) \ |
| ) |
| #endif |
| |
| |
| static PyObject * |
| listappend(self, args) |
| PyListObject *self; |
| PyObject *args; |
| { |
| PyObject *v; |
| if (!PyArg_ParseTuple_Compat1(args, "O:append", &v)) |
| return NULL; |
| return ins(self, (int) self->ob_size, v); |
| } |
| |
| static PyObject * |
| listextend(self, args) |
| PyListObject *self; |
| PyObject *args; |
| { |
| PyObject *b = NULL, *res = NULL; |
| PyObject **items; |
| int selflen = PyList_GET_SIZE(self); |
| int blen; |
| register int i; |
| |
| if (!PyArg_ParseTuple(args, "O:extend", &b)) |
| return NULL; |
| |
| if (!PyList_Check(b)) { |
| PyErr_SetString(PyExc_TypeError, |
| "list.extend() argument must be a list"); |
| return NULL; |
| } |
| if (PyList_GET_SIZE(b) == 0) { |
| /* short circuit when b is empty */ |
| Py_INCREF(Py_None); |
| return Py_None; |
| } |
| if (self == (PyListObject*)b) { |
| /* as in list_ass_slice() we must special case the |
| * situation: a.extend(a) |
| * |
| * XXX: I think this way ought to be faster than using |
| * list_slice() the way list_ass_slice() does. |
| */ |
| b = PyList_New(selflen); |
| if (!b) |
| return NULL; |
| for (i = 0; i < selflen; i++) { |
| PyObject *o = PyList_GET_ITEM(self, i); |
| Py_INCREF(o); |
| PyList_SET_ITEM(b, i, o); |
| } |
| } |
| else |
| /* we want b to have the same refcount semantics for the |
| * Py_XDECREF() in the finally clause regardless of which |
| * branch in the above conditional we took. |
| */ |
| Py_INCREF(b); |
| |
| blen = PyList_GET_SIZE(b); |
| /* resize a using idiom */ |
| items = self->ob_item; |
| NRESIZE(items, PyObject*, selflen + blen); |
| if (items == NULL ) { |
| PyErr_NoMemory(); |
| goto finally; |
| } |
| self->ob_item = items; |
| |
| /* populate the end self with b's items */ |
| for (i = 0; i < blen; i++) { |
| PyObject *o = PyList_GET_ITEM(b, i); |
| Py_INCREF(o); |
| PyList_SET_ITEM(self, self->ob_size++, o); |
| } |
| res = Py_None; |
| Py_INCREF(res); |
| finally: |
| Py_XDECREF(b); |
| return res; |
| } |
| |
| |
| static PyObject * |
| listpop(self, args) |
| PyListObject *self; |
| PyObject *args; |
| { |
| int i = -1; |
| PyObject *v; |
| if (!PyArg_ParseTuple(args, "|i:pop", &i)) |
| return NULL; |
| if (self->ob_size == 0) { |
| /* Special-case most common failure cause */ |
| PyErr_SetString(PyExc_IndexError, "pop from empty list"); |
| return NULL; |
| } |
| if (i < 0) |
| i += self->ob_size; |
| if (i < 0 || i >= self->ob_size) { |
| PyErr_SetString(PyExc_IndexError, "pop index out of range"); |
| return NULL; |
| } |
| v = self->ob_item[i]; |
| Py_INCREF(v); |
| if (list_ass_slice(self, i, i+1, (PyObject *)NULL) != 0) { |
| Py_DECREF(v); |
| return NULL; |
| } |
| return v; |
| } |
| |
| /* New quicksort implementation for arrays of object pointers. |
| Thanks to discussions with Tim Peters. */ |
| |
| /* CMPERROR is returned by our comparison function when an error |
| occurred. This is the largest negative integer (0x80000000 on a |
| 32-bit system). */ |
| #define CMPERROR ( (int) ((unsigned int)1 << (8*sizeof(int) - 1)) ) |
| |
| /* Comparison function. Takes care of calling a user-supplied |
| comparison function (any callable Python object). Calls the |
| standard comparison function, PyObject_Compare(), if the user- |
| supplied function is NULL. */ |
| |
| static int |
| docompare(x, y, compare) |
| PyObject *x; |
| PyObject *y; |
| PyObject *compare; |
| { |
| PyObject *args, *res; |
| int i; |
| |
| if (compare == NULL) { |
| i = PyObject_Compare(x, y); |
| if (i && PyErr_Occurred()) |
| i = CMPERROR; |
| return i; |
| } |
| |
| args = Py_BuildValue("(OO)", x, y); |
| if (args == NULL) |
| return CMPERROR; |
| res = PyEval_CallObject(compare, args); |
| Py_DECREF(args); |
| if (res == NULL) |
| return CMPERROR; |
| if (!PyInt_Check(res)) { |
| Py_DECREF(res); |
| PyErr_SetString(PyExc_TypeError, |
| "comparison function must return int"); |
| return CMPERROR; |
| } |
| i = PyInt_AsLong(res); |
| Py_DECREF(res); |
| if (i < 0) |
| return -1; |
| if (i > 0) |
| return 1; |
| return 0; |
| } |
| |
| /* MINSIZE is the smallest array that will get a full-blown samplesort |
| treatment; smaller arrays are sorted using binary insertion. It must |
| be at least 7 for the samplesort implementation to work. Binary |
| insertion does fewer compares, but can suffer O(N**2) data movement. |
| The more expensive compares, the larger MINSIZE should be. */ |
| #define MINSIZE 100 |
| |
| /* MINPARTITIONSIZE is the smallest array slice samplesort will bother to |
| partition; smaller slices are passed to binarysort. It must be at |
| least 2, and no larger than MINSIZE. Setting it higher reduces the # |
| of compares slowly, but increases the amount of data movement quickly. |
| The value here was chosen assuming a compare costs ~25x more than |
| swapping a pair of memory-resident pointers -- but under that assumption, |
| changing the value by a few dozen more or less has aggregate effect |
| under 1%. So the value is crucial, but not touchy <wink>. */ |
| #define MINPARTITIONSIZE 40 |
| |
| /* MAXMERGE is the largest number of elements we'll always merge into |
| a known-to-be sorted chunk via binary insertion, regardless of the |
| size of that chunk. Given a chunk of N sorted elements, and a group |
| of K unknowns, the largest K for which it's better to do insertion |
| (than a full-blown sort) is a complicated function of N and K mostly |
| involving the expected number of compares and data moves under each |
| approach, and the relative cost of those operations on a specific |
| architecure. The fixed value here is conservative, and should be a |
| clear win regardless of architecture or N. */ |
| #define MAXMERGE 15 |
| |
| /* STACKSIZE is the size of our work stack. A rough estimate is that |
| this allows us to sort arrays of size N where |
| N / ln(N) = MINPARTITIONSIZE * 2**STACKSIZE, so 60 is more than enough |
| for arrays of size 2**64. Because we push the biggest partition |
| first, the worst case occurs when all subarrays are always partitioned |
| exactly in two. */ |
| #define STACKSIZE 60 |
| |
| |
| #define SETK(X,Y) if ((k = docompare(X,Y,compare))==CMPERROR) goto fail |
| |
| /* binarysort is the best method for sorting small arrays: it does |
| few compares, but can do data movement quadratic in the number of |
| elements. |
| [lo, hi) is a contiguous slice of a list, and is sorted via |
| binary insertion. |
| On entry, must have lo <= start <= hi, and that [lo, start) is already |
| sorted (pass start == lo if you don't know!). |
| If docompare complains (returns CMPERROR) return -1, else 0. |
| Even in case of error, the output slice will be some permutation of |
| the input (nothing is lost or duplicated). |
| */ |
| |
| static int |
| binarysort(lo, hi, start, compare) |
| PyObject **lo; |
| PyObject **hi; |
| PyObject **start; |
| PyObject *compare;/* Comparison function object, or NULL for default */ |
| { |
| /* assert lo <= start <= hi |
| assert [lo, start) is sorted */ |
| register int k; |
| register PyObject **l, **p, **r; |
| register PyObject *pivot; |
| |
| if (lo == start) |
| ++start; |
| for (; start < hi; ++start) { |
| /* set l to where *start belongs */ |
| l = lo; |
| r = start; |
| pivot = *r; |
| do { |
| p = l + ((r - l) >> 1); |
| SETK(pivot, *p); |
| if (k < 0) |
| r = p; |
| else |
| l = p + 1; |
| } while (l < r); |
| /* Pivot should go at l -- slide over to make room. |
| Caution: using memmove is much slower under MSVC 5; |
| we're not usually moving many slots. */ |
| for (p = start; p > l; --p) |
| *p = *(p-1); |
| *l = pivot; |
| } |
| return 0; |
| |
| fail: |
| return -1; |
| } |
| |
| /* samplesortslice is the sorting workhorse. |
| [lo, hi) is a contiguous slice of a list, to be sorted in place. |
| On entry, must have lo <= hi, |
| If docompare complains (returns CMPERROR) return -1, else 0. |
| Even in case of error, the output slice will be some permutation of |
| the input (nothing is lost or duplicated). |
| |
| samplesort is basically quicksort on steroids: a power of 2 close |
| to n/ln(n) is computed, and that many elements (less 1) are picked at |
| random from the array and sorted. These 2**k - 1 elements are then |
| used as preselected pivots for an equal number of quicksort |
| partitioning steps, partitioning the slice into 2**k chunks each of |
| size about ln(n). These small final chunks are then usually handled |
| by binarysort. Note that when k=1, this is roughly the same as an |
| ordinary quicksort using a random pivot, and when k=2 this is roughly |
| a median-of-3 quicksort. From that view, using k ~= lg(n/ln(n)) makes |
| this a "median of n/ln(n)" quicksort. You can also view it as a kind |
| of bucket sort, where 2**k-1 bucket boundaries are picked dynamically. |
| |
| The large number of samples makes a quadratic-time case almost |
| impossible, and asymptotically drives the average-case number of |
| compares from quicksort's 2 N ln N (or 12/7 N ln N for the median-of- |
| 3 variant) down to N lg N. |
| |
| We also play lots of low-level tricks to cut the number of compares. |
| |
| Very obscure: To avoid using extra memory, the PPs are stored in the |
| array and shuffled around as partitioning proceeds. At the start of a |
| partitioning step, we'll have 2**m-1 (for some m) PPs in sorted order, |
| adjacent (either on the left or the right!) to a chunk of X elements |
| that are to be partitioned: P X or X P. In either case we need to |
| shuffle things *in place* so that the 2**(m-1) smaller PPs are on the |
| left, followed by the PP to be used for this step (that's the middle |
| of the PPs), followed by X, followed by the 2**(m-1) larger PPs: |
| P X or X P -> Psmall pivot X Plarge |
| and the order of the PPs must not be altered. It can take a while |
| to realize this isn't trivial! It can take even longer <wink> to |
| understand why the simple code below works, using only 2**(m-1) swaps. |
| The key is that the order of the X elements isn't necessarily |
| preserved: X can end up as some cyclic permutation of its original |
| order. That's OK, because X is unsorted anyway. If the order of X |
| had to be preserved too, the simplest method I know of using O(1) |
| scratch storage requires len(X) + 2**(m-1) swaps, spread over 2 passes. |
| Since len(X) is typically several times larger than 2**(m-1), that |
| would slow things down. |
| */ |
| |
| struct SamplesortStackNode { |
| /* Represents a slice of the array, from (& including) lo up |
| to (but excluding) hi. "extra" additional & adjacent elements |
| are pre-selected pivots (PPs), spanning [lo-extra, lo) if |
| extra > 0, or [hi, hi-extra) if extra < 0. The PPs are |
| already sorted, but nothing is known about the other elements |
| in [lo, hi). |extra| is always one less than a power of 2. |
| When extra is 0, we're out of PPs, and the slice must be |
| sorted by some other means. */ |
| PyObject **lo; |
| PyObject **hi; |
| int extra; |
| }; |
| |
| /* The number of PPs we want is 2**k - 1, where 2**k is as close to |
| N / ln(N) as possible. So k ~= lg(N / ln(N)). Calling libm routines |
| is undesirable, so cutoff values are canned in the "cutoff" table |
| below: cutoff[i] is the smallest N such that k == CUTOFFBASE + i. */ |
| #define CUTOFFBASE 4 |
| static long cutoff[] = { |
| 43, /* smallest N such that k == 4 */ |
| 106, /* etc */ |
| 250, |
| 576, |
| 1298, |
| 2885, |
| 6339, |
| 13805, |
| 29843, |
| 64116, |
| 137030, |
| 291554, |
| 617916, |
| 1305130, |
| 2748295, |
| 5771662, |
| 12091672, |
| 25276798, |
| 52734615, |
| 109820537, |
| 228324027, |
| 473977813, |
| 982548444, /* smallest N such that k == 26 */ |
| 2034159050 /* largest N that fits in signed 32-bit; k == 27 */ |
| }; |
| |
| static int |
| samplesortslice(lo, hi, compare) |
| PyObject **lo; |
| PyObject **hi; |
| PyObject *compare;/* Comparison function object, or NULL for default */ |
| { |
| register PyObject **l, **r; |
| register PyObject *tmp, *pivot; |
| register int k; |
| int n, extra, top, extraOnRight; |
| struct SamplesortStackNode stack[STACKSIZE]; |
| |
| /* assert lo <= hi */ |
| n = hi - lo; |
| |
| /* ---------------------------------------------------------- |
| * Special cases |
| * --------------------------------------------------------*/ |
| if (n < 2) |
| return 0; |
| |
| /* Set r to the largest value such that [lo,r) is sorted. |
| This catches the already-sorted case, the all-the-same |
| case, and the appended-a-few-elements-to-a-sorted-list case. |
| If the array is unsorted, we're very likely to get out of |
| the loop fast, so the test is cheap if it doesn't pay off. |
| */ |
| /* assert lo < hi */ |
| for (r = lo+1; r < hi; ++r) { |
| SETK(*r, *(r-1)); |
| if (k < 0) |
| break; |
| } |
| /* [lo,r) is sorted, [r,hi) unknown. Get out cheap if there are |
| few unknowns, or few elements in total. */ |
| if (hi - r <= MAXMERGE || n < MINSIZE) |
| return binarysort(lo, hi, r, compare); |
| |
| /* Check for the array already being reverse-sorted. Typical |
| benchmark-driven silliness <wink>. */ |
| /* assert lo < hi */ |
| for (r = lo+1; r < hi; ++r) { |
| SETK(*(r-1), *r); |
| if (k < 0) |
| break; |
| } |
| if (hi - r <= MAXMERGE) { |
| /* Reverse the reversed prefix, then insert the tail */ |
| PyObject **originalr = r; |
| l = lo; |
| do { |
| --r; |
| tmp = *l; *l = *r; *r = tmp; |
| ++l; |
| } while (l < r); |
| return binarysort(lo, hi, originalr, compare); |
| } |
| |
| /* ---------------------------------------------------------- |
| * Normal case setup: a large array without obvious pattern. |
| * --------------------------------------------------------*/ |
| |
| /* extra := a power of 2 ~= n/ln(n), less 1. |
| First find the smallest extra s.t. n < cutoff[extra] */ |
| for (extra = 0; |
| extra < sizeof(cutoff) / sizeof(cutoff[0]); |
| ++extra) { |
| if (n < cutoff[extra]) |
| break; |
| /* note that if we fall out of the loop, the value of |
| extra still makes *sense*, but may be smaller than |
| we would like (but the array has more than ~= 2**31 |
| elements in this case!) */ |
| } |
| /* Now k == extra - 1 + CUTOFFBASE. The smallest value k can |
| have is CUTOFFBASE-1, so |
| assert MINSIZE >= 2**(CUTOFFBASE-1) - 1 */ |
| extra = (1 << (extra - 1 + CUTOFFBASE)) - 1; |
| /* assert extra > 0 and n >= extra */ |
| |
| /* Swap that many values to the start of the array. The |
| selection of elements is pseudo-random, but the same on |
| every run (this is intentional! timing algorithm changes is |
| a pain if timing varies across runs). */ |
| { |
| unsigned int seed = n / extra; /* arbitrary */ |
| unsigned int i; |
| for (i = 0; i < (unsigned)extra; ++i) { |
| /* j := random int in [i, n) */ |
| unsigned int j; |
| seed = seed * 69069 + 7; |
| j = i + seed % (n - i); |
| tmp = lo[i]; lo[i] = lo[j]; lo[j] = tmp; |
| } |
| } |
| |
| /* Recursively sort the preselected pivots. */ |
| if (samplesortslice(lo, lo + extra, compare) < 0) |
| goto fail; |
| |
| top = 0; /* index of available stack slot */ |
| lo += extra; /* point to first unknown */ |
| extraOnRight = 0; /* the PPs are at the left end */ |
| |
| /* ---------------------------------------------------------- |
| * Partition [lo, hi), and repeat until out of work. |
| * --------------------------------------------------------*/ |
| for (;;) { |
| /* assert lo <= hi, so n >= 0 */ |
| n = hi - lo; |
| |
| /* We may not want, or may not be able, to partition: |
| If n is small, it's quicker to insert. |
| If extra is 0, we're out of pivots, and *must* use |
| another method. |
| */ |
| if (n < MINPARTITIONSIZE || extra == 0) { |
| if (n >= MINSIZE) { |
| /* assert extra == 0 |
| This is rare, since the average size |
| of a final block is only about |
| ln(original n). */ |
| if (samplesortslice(lo, hi, compare) < 0) |
| goto fail; |
| } |
| else { |
| /* Binary insertion should be quicker, |
| and we can take advantage of the PPs |
| already being sorted. */ |
| if (extraOnRight && extra) { |
| /* swap the PPs to the left end */ |
| k = extra; |
| do { |
| tmp = *lo; |
| *lo = *hi; |
| *hi = tmp; |
| ++lo; ++hi; |
| } while (--k); |
| } |
| if (binarysort(lo - extra, hi, lo, |
| compare) < 0) |
| goto fail; |
| } |
| |
| /* Find another slice to work on. */ |
| if (--top < 0) |
| break; /* no more -- done! */ |
| lo = stack[top].lo; |
| hi = stack[top].hi; |
| extra = stack[top].extra; |
| extraOnRight = 0; |
| if (extra < 0) { |
| extraOnRight = 1; |
| extra = -extra; |
| } |
| continue; |
| } |
| |
| /* Pretend the PPs are indexed 0, 1, ..., extra-1. |
| Then our preselected pivot is at (extra-1)/2, and we |
| want to move the PPs before that to the left end of |
| the slice, and the PPs after that to the right end. |
| The following section changes extra, lo, hi, and the |
| slice such that: |
| [lo-extra, lo) contains the smaller PPs. |
| *lo == our PP. |
| (lo, hi) contains the unknown elements. |
| [hi, hi+extra) contains the larger PPs. |
| */ |
| k = extra >>= 1; /* num PPs to move */ |
| if (extraOnRight) { |
| /* Swap the smaller PPs to the left end. |
| Note that this loop actually moves k+1 items: |
| the last is our PP */ |
| do { |
| tmp = *lo; *lo = *hi; *hi = tmp; |
| ++lo; ++hi; |
| } while (k--); |
| } |
| else { |
| /* Swap the larger PPs to the right end. */ |
| while (k--) { |
| --lo; --hi; |
| tmp = *lo; *lo = *hi; *hi = tmp; |
| } |
| } |
| --lo; /* *lo is now our PP */ |
| pivot = *lo; |
| |
| /* Now an almost-ordinary quicksort partition step. |
| Note that most of the time is spent here! |
| Only odd thing is that we partition into < and >=, |
| instead of the usual <= and >=. This helps when |
| there are lots of duplicates of different values, |
| because it eventually tends to make subfiles |
| "pure" (all duplicates), and we special-case for |
| duplicates later. */ |
| l = lo + 1; |
| r = hi - 1; |
| /* assert lo < l < r < hi (small n weeded out above) */ |
| |
| do { |
| /* slide l right, looking for key >= pivot */ |
| do { |
| SETK(*l, pivot); |
| if (k < 0) |
| ++l; |
| else |
| break; |
| } while (l < r); |
| |
| /* slide r left, looking for key < pivot */ |
| while (l < r) { |
| register PyObject *rval = *r--; |
| SETK(rval, pivot); |
| if (k < 0) { |
| /* swap and advance */ |
| r[1] = *l; |
| *l++ = rval; |
| break; |
| } |
| } |
| |
| } while (l < r); |
| |
| /* assert lo < r <= l < hi |
| assert r == l or r+1 == l |
| everything to the left of l is < pivot, and |
| everything to the right of r is >= pivot */ |
| |
| if (l == r) { |
| SETK(*r, pivot); |
| if (k < 0) |
| ++l; |
| else |
| --r; |
| } |
| /* assert lo <= r and r+1 == l and l <= hi |
| assert r == lo or a[r] < pivot |
| assert a[lo] is pivot |
| assert l == hi or a[l] >= pivot |
| Swap the pivot into "the middle", so we can henceforth |
| ignore it. |
| */ |
| *lo = *r; |
| *r = pivot; |
| |
| /* The following is true now, & will be preserved: |
| All in [lo,r) are < pivot |
| All in [r,l) == pivot (& so can be ignored) |
| All in [l,hi) are >= pivot */ |
| |
| /* Check for duplicates of the pivot. One compare is |
| wasted if there are no duplicates, but can win big |
| when there are. |
| Tricky: we're sticking to "<" compares, so deduce |
| equality indirectly. We know pivot <= *l, so they're |
| equal iff not pivot < *l. |
| */ |
| while (l < hi) { |
| /* pivot <= *l known */ |
| SETK(pivot, *l); |
| if (k < 0) |
| break; |
| else |
| /* <= and not < implies == */ |
| ++l; |
| } |
| |
| /* assert lo <= r < l <= hi |
| Partitions are [lo, r) and [l, hi) */ |
| |
| /* push fattest first; remember we still have extra PPs |
| to the left of the left chunk and to the right of |
| the right chunk! */ |
| /* assert top < STACKSIZE */ |
| if (r - lo <= hi - l) { |
| /* second is bigger */ |
| stack[top].lo = l; |
| stack[top].hi = hi; |
| stack[top].extra = -extra; |
| hi = r; |
| extraOnRight = 0; |
| } |
| else { |
| /* first is bigger */ |
| stack[top].lo = lo; |
| stack[top].hi = r; |
| stack[top].extra = extra; |
| lo = l; |
| extraOnRight = 1; |
| } |
| ++top; |
| |
| } /* end of partitioning loop */ |
| |
| return 0; |
| |
| fail: |
| return -1; |
| } |
| |
| #undef SETK |
| |
| staticforward PyTypeObject immutable_list_type; |
| |
| static PyObject * |
| listsort(self, args) |
| PyListObject *self; |
| PyObject *args; |
| { |
| int err; |
| PyObject *compare = NULL; |
| |
| if (args != NULL) { |
| if (!PyArg_ParseTuple(args, "|O:sort", &compare)) |
| return NULL; |
| } |
| self->ob_type = &immutable_list_type; |
| err = samplesortslice(self->ob_item, |
| self->ob_item + self->ob_size, |
| compare); |
| self->ob_type = &PyList_Type; |
| if (err < 0) |
| return NULL; |
| Py_INCREF(Py_None); |
| return Py_None; |
| } |
| |
| int |
| PyList_Sort(v) |
| PyObject *v; |
| { |
| if (v == NULL || !PyList_Check(v)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| v = listsort((PyListObject *)v, (PyObject *)NULL); |
| if (v == NULL) |
| return -1; |
| Py_DECREF(v); |
| return 0; |
| } |
| |
| static PyObject * |
| listreverse(self, args) |
| PyListObject *self; |
| PyObject *args; |
| { |
| register PyObject **p, **q; |
| register PyObject *tmp; |
| |
| if (!PyArg_ParseTuple(args, ":reverse")) |
| return NULL; |
| |
| if (self->ob_size > 1) { |
| for (p = self->ob_item, q = self->ob_item + self->ob_size - 1; |
| p < q; p++, q--) { |
| tmp = *p; |
| *p = *q; |
| *q = tmp; |
| } |
| } |
| |
| Py_INCREF(Py_None); |
| return Py_None; |
| } |
| |
| int |
| PyList_Reverse(v) |
| PyObject *v; |
| { |
| if (v == NULL || !PyList_Check(v)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| v = listreverse((PyListObject *)v, (PyObject *)NULL); |
| if (v == NULL) |
| return -1; |
| Py_DECREF(v); |
| return 0; |
| } |
| |
| PyObject * |
| PyList_AsTuple(v) |
| PyObject *v; |
| { |
| PyObject *w; |
| PyObject **p; |
| int n; |
| if (v == NULL || !PyList_Check(v)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| n = ((PyListObject *)v)->ob_size; |
| w = PyTuple_New(n); |
| if (w == NULL) |
| return NULL; |
| p = ((PyTupleObject *)w)->ob_item; |
| memcpy((ANY *)p, |
| (ANY *)((PyListObject *)v)->ob_item, |
| n*sizeof(PyObject *)); |
| while (--n >= 0) { |
| Py_INCREF(*p); |
| p++; |
| } |
| return w; |
| } |
| |
| static PyObject * |
| listindex(self, args) |
| PyListObject *self; |
| PyObject *args; |
| { |
| int i; |
| PyObject *v; |
| |
| if (!PyArg_ParseTuple_Compat1(args, "O:index", &v)) |
| return NULL; |
| for (i = 0; i < self->ob_size; i++) { |
| if (PyObject_Compare(self->ob_item[i], v) == 0) |
| return PyInt_FromLong((long)i); |
| if (PyErr_Occurred()) |
| return NULL; |
| } |
| PyErr_SetString(PyExc_ValueError, "list.index(x): x not in list"); |
| return NULL; |
| } |
| |
| static PyObject * |
| listcount(self, args) |
| PyListObject *self; |
| PyObject *args; |
| { |
| int count = 0; |
| int i; |
| PyObject *v; |
| |
| if (!PyArg_ParseTuple_Compat1(args, "O:count", &v)) |
| return NULL; |
| for (i = 0; i < self->ob_size; i++) { |
| if (PyObject_Compare(self->ob_item[i], v) == 0) |
| count++; |
| if (PyErr_Occurred()) |
| return NULL; |
| } |
| return PyInt_FromLong((long)count); |
| } |
| |
| static PyObject * |
| listremove(self, args) |
| PyListObject *self; |
| PyObject *args; |
| { |
| int i; |
| PyObject *v; |
| |
| if (!PyArg_ParseTuple_Compat1(args, "O:remove", &v)) |
| return NULL; |
| for (i = 0; i < self->ob_size; i++) { |
| if (PyObject_Compare(self->ob_item[i], v) == 0) { |
| if (list_ass_slice(self, i, i+1, |
| (PyObject *)NULL) != 0) |
| return NULL; |
| Py_INCREF(Py_None); |
| return Py_None; |
| } |
| if (PyErr_Occurred()) |
| return NULL; |
| } |
| PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list"); |
| return NULL; |
| } |
| |
| static char append_doc[] = |
| "L.append(object) -- append object to end"; |
| static char extend_doc[] = |
| "L.extend(list) -- extend list by appending list elements"; |
| static char insert_doc[] = |
| "L.insert(index, object) -- insert object before index"; |
| static char pop_doc[] = |
| "L.pop([index]) -> item -- remove and return item at index (default last)"; |
| static char remove_doc[] = |
| "L.remove(value) -- remove first occurrence of value"; |
| static char index_doc[] = |
| "L.index(value) -> integer -- return index of first occurrence of value"; |
| static char count_doc[] = |
| "L.count(value) -> integer -- return number of occurrences of value"; |
| static char reverse_doc[] = |
| "L.reverse() -- reverse *IN PLACE*"; |
| static char sort_doc[] = |
| "L.sort([cmpfunc]) -- sort *IN PLACE*; if given, cmpfunc(x, y) -> -1, 0, 1"; |
| |
| static PyMethodDef list_methods[] = { |
| {"append", (PyCFunction)listappend, 1, append_doc}, |
| {"insert", (PyCFunction)listinsert, 1, insert_doc}, |
| {"extend", (PyCFunction)listextend, 1, extend_doc}, |
| {"pop", (PyCFunction)listpop, 1, pop_doc}, |
| {"remove", (PyCFunction)listremove, 1, remove_doc}, |
| {"index", (PyCFunction)listindex, 1, index_doc}, |
| {"count", (PyCFunction)listcount, 1, count_doc}, |
| {"reverse", (PyCFunction)listreverse, 1, reverse_doc}, |
| {"sort", (PyCFunction)listsort, 1, sort_doc}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| static PyObject * |
| list_getattr(f, name) |
| PyListObject *f; |
| char *name; |
| { |
| return Py_FindMethod(list_methods, (PyObject *)f, name); |
| } |
| |
| static PySequenceMethods list_as_sequence = { |
| (inquiry)list_length, /*sq_length*/ |
| (binaryfunc)list_concat, /*sq_concat*/ |
| (intargfunc)list_repeat, /*sq_repeat*/ |
| (intargfunc)list_item, /*sq_item*/ |
| (intintargfunc)list_slice, /*sq_slice*/ |
| (intobjargproc)list_ass_item, /*sq_ass_item*/ |
| (intintobjargproc)list_ass_slice, /*sq_ass_slice*/ |
| (objobjproc)list_contains, /*sq_contains*/ |
| }; |
| |
| PyTypeObject PyList_Type = { |
| PyObject_HEAD_INIT(&PyType_Type) |
| 0, |
| "list", |
| sizeof(PyListObject), |
| 0, |
| (destructor)list_dealloc, /*tp_dealloc*/ |
| (printfunc)list_print, /*tp_print*/ |
| (getattrfunc)list_getattr, /*tp_getattr*/ |
| 0, /*tp_setattr*/ |
| (cmpfunc)list_compare, /*tp_compare*/ |
| (reprfunc)list_repr, /*tp_repr*/ |
| 0, /*tp_as_number*/ |
| &list_as_sequence, /*tp_as_sequence*/ |
| 0, /*tp_as_mapping*/ |
| }; |
| |
| |
| /* During a sort, we really can't have anyone modifying the list; it could |
| cause core dumps. Thus, we substitute a dummy type that raises an |
| explanatory exception when a modifying operation is used. Caveat: |
| comparisons may behave differently; but I guess it's a bad idea anyway to |
| compare a list that's being sorted... */ |
| |
| static PyObject * |
| immutable_list_op(/*No args!*/) |
| { |
| PyErr_SetString(PyExc_TypeError, |
| "a list cannot be modified while it is being sorted"); |
| return NULL; |
| } |
| |
| static PyMethodDef immutable_list_methods[] = { |
| {"append", (PyCFunction)immutable_list_op}, |
| {"insert", (PyCFunction)immutable_list_op}, |
| {"remove", (PyCFunction)immutable_list_op}, |
| {"index", (PyCFunction)listindex}, |
| {"count", (PyCFunction)listcount}, |
| {"reverse", (PyCFunction)immutable_list_op}, |
| {"sort", (PyCFunction)immutable_list_op}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| static PyObject * |
| immutable_list_getattr(f, name) |
| PyListObject *f; |
| char *name; |
| { |
| return Py_FindMethod(immutable_list_methods, (PyObject *)f, name); |
| } |
| |
| static int |
| immutable_list_ass(/*No args!*/) |
| { |
| immutable_list_op(); |
| return -1; |
| } |
| |
| static PySequenceMethods immutable_list_as_sequence = { |
| (inquiry)list_length, /*sq_length*/ |
| (binaryfunc)list_concat, /*sq_concat*/ |
| (intargfunc)list_repeat, /*sq_repeat*/ |
| (intargfunc)list_item, /*sq_item*/ |
| (intintargfunc)list_slice, /*sq_slice*/ |
| (intobjargproc)immutable_list_ass, /*sq_ass_item*/ |
| (intintobjargproc)immutable_list_ass, /*sq_ass_slice*/ |
| }; |
| |
| static PyTypeObject immutable_list_type = { |
| PyObject_HEAD_INIT(&PyType_Type) |
| 0, |
| "list (immutable, during sort)", |
| sizeof(PyListObject), |
| 0, |
| 0, /*tp_dealloc*/ /* Cannot happen */ |
| (printfunc)list_print, /*tp_print*/ |
| (getattrfunc)immutable_list_getattr, /*tp_getattr*/ |
| 0, /*tp_setattr*/ |
| 0, /*tp_compare*/ /* Won't be called */ |
| (reprfunc)list_repr, /*tp_repr*/ |
| 0, /*tp_as_number*/ |
| &immutable_list_as_sequence, /*tp_as_sequence*/ |
| 0, /*tp_as_mapping*/ |
| }; |
| |