| /* Peephole optimizations for bytecode compiler. */ |
| |
| #include "Python.h" |
| |
| #include "Python-ast.h" |
| #include "node.h" |
| #include "pyarena.h" |
| #include "ast.h" |
| #include "code.h" |
| #include "compile.h" |
| #include "symtable.h" |
| #include "opcode.h" |
| |
| #define GETARG(arr, i) ((int)((arr[i+2]<<8) + arr[i+1])) |
| #define UNCONDITIONAL_JUMP(op) (op==JUMP_ABSOLUTE || op==JUMP_FORWARD) |
| #define CONDITIONAL_JUMP(op) (op==POP_JUMP_IF_FALSE || op==POP_JUMP_IF_TRUE \ |
| || op==JUMP_IF_FALSE_OR_POP || op==JUMP_IF_TRUE_OR_POP) |
| #define ABSOLUTE_JUMP(op) (op==JUMP_ABSOLUTE || op==CONTINUE_LOOP \ |
| || op==POP_JUMP_IF_FALSE || op==POP_JUMP_IF_TRUE \ |
| || op==JUMP_IF_FALSE_OR_POP || op==JUMP_IF_TRUE_OR_POP) |
| #define JUMPS_ON_TRUE(op) (op==POP_JUMP_IF_TRUE || op==JUMP_IF_TRUE_OR_POP) |
| #define GETJUMPTGT(arr, i) (GETARG(arr,i) + (ABSOLUTE_JUMP(arr[i]) ? 0 : i+3)) |
| #define SETARG(arr, i, val) arr[i+2] = val>>8; arr[i+1] = val & 255 |
| #define CODESIZE(op) (HAS_ARG(op) ? 3 : 1) |
| #define ISBASICBLOCK(blocks, start, bytes) \ |
| (blocks[start]==blocks[start+bytes-1]) |
| |
| /* Replace LOAD_CONST c1. LOAD_CONST c2 ... LOAD_CONST cn BUILD_TUPLE n |
| with LOAD_CONST (c1, c2, ... cn). |
| The consts table must still be in list form so that the |
| new constant (c1, c2, ... cn) can be appended. |
| Called with codestr pointing to the first LOAD_CONST. |
| Bails out with no change if one or more of the LOAD_CONSTs is missing. |
| Also works for BUILD_LIST and BUILT_SET when followed by an "in" or "not in" |
| test; for BUILD_SET it assembles a frozenset rather than a tuple. |
| */ |
| static int |
| tuple_of_constants(unsigned char *codestr, Py_ssize_t n, PyObject *consts) |
| { |
| PyObject *newconst, *constant; |
| Py_ssize_t i, arg, len_consts; |
| |
| /* Pre-conditions */ |
| assert(PyList_CheckExact(consts)); |
| assert(codestr[n*3] == BUILD_TUPLE || codestr[n*3] == BUILD_LIST || codestr[n*3] == BUILD_SET); |
| assert(GETARG(codestr, (n*3)) == n); |
| for (i=0 ; i<n ; i++) |
| assert(codestr[i*3] == LOAD_CONST); |
| |
| /* Buildup new tuple of constants */ |
| newconst = PyTuple_New(n); |
| if (newconst == NULL) |
| return 0; |
| len_consts = PyList_GET_SIZE(consts); |
| for (i=0 ; i<n ; i++) { |
| arg = GETARG(codestr, (i*3)); |
| assert(arg < len_consts); |
| constant = PyList_GET_ITEM(consts, arg); |
| Py_INCREF(constant); |
| PyTuple_SET_ITEM(newconst, i, constant); |
| } |
| |
| /* If it's a BUILD_SET, use the PyTuple we just built to create a |
| PyFrozenSet, and use that as the constant instead: */ |
| if (codestr[n*3] == BUILD_SET) { |
| PyObject *tuple = newconst; |
| newconst = PyFrozenSet_New(tuple); |
| Py_DECREF(tuple); |
| if (newconst == NULL) |
| return 0; |
| } |
| |
| /* Append folded constant onto consts */ |
| if (PyList_Append(consts, newconst)) { |
| Py_DECREF(newconst); |
| return 0; |
| } |
| Py_DECREF(newconst); |
| |
| /* Write NOPs over old LOAD_CONSTS and |
| add a new LOAD_CONST newconst on top of the BUILD_TUPLE n */ |
| memset(codestr, NOP, n*3); |
| codestr[n*3] = LOAD_CONST; |
| SETARG(codestr, (n*3), len_consts); |
| return 1; |
| } |
| |
| /* Replace LOAD_CONST c1. LOAD_CONST c2 BINOP |
| with LOAD_CONST binop(c1,c2) |
| The consts table must still be in list form so that the |
| new constant can be appended. |
| Called with codestr pointing to the first LOAD_CONST. |
| Abandons the transformation if the folding fails (i.e. 1+'a'). |
| If the new constant is a sequence, only folds when the size |
| is below a threshold value. That keeps pyc files from |
| becoming large in the presence of code like: (None,)*1000. |
| */ |
| static int |
| fold_binops_on_constants(unsigned char *codestr, PyObject *consts) |
| { |
| PyObject *newconst, *v, *w; |
| Py_ssize_t len_consts, size; |
| int opcode; |
| |
| /* Pre-conditions */ |
| assert(PyList_CheckExact(consts)); |
| assert(codestr[0] == LOAD_CONST); |
| assert(codestr[3] == LOAD_CONST); |
| |
| /* Create new constant */ |
| v = PyList_GET_ITEM(consts, GETARG(codestr, 0)); |
| w = PyList_GET_ITEM(consts, GETARG(codestr, 3)); |
| opcode = codestr[6]; |
| switch (opcode) { |
| case BINARY_POWER: |
| newconst = PyNumber_Power(v, w, Py_None); |
| break; |
| case BINARY_MULTIPLY: |
| newconst = PyNumber_Multiply(v, w); |
| break; |
| case BINARY_TRUE_DIVIDE: |
| newconst = PyNumber_TrueDivide(v, w); |
| break; |
| case BINARY_FLOOR_DIVIDE: |
| newconst = PyNumber_FloorDivide(v, w); |
| break; |
| case BINARY_MODULO: |
| newconst = PyNumber_Remainder(v, w); |
| break; |
| case BINARY_ADD: |
| newconst = PyNumber_Add(v, w); |
| break; |
| case BINARY_SUBTRACT: |
| newconst = PyNumber_Subtract(v, w); |
| break; |
| case BINARY_SUBSCR: |
| newconst = PyObject_GetItem(v, w); |
| break; |
| case BINARY_LSHIFT: |
| newconst = PyNumber_Lshift(v, w); |
| break; |
| case BINARY_RSHIFT: |
| newconst = PyNumber_Rshift(v, w); |
| break; |
| case BINARY_AND: |
| newconst = PyNumber_And(v, w); |
| break; |
| case BINARY_XOR: |
| newconst = PyNumber_Xor(v, w); |
| break; |
| case BINARY_OR: |
| newconst = PyNumber_Or(v, w); |
| break; |
| default: |
| /* Called with an unknown opcode */ |
| PyErr_Format(PyExc_SystemError, |
| "unexpected binary operation %d on a constant", |
| opcode); |
| return 0; |
| } |
| if (newconst == NULL) { |
| PyErr_Clear(); |
| return 0; |
| } |
| size = PyObject_Size(newconst); |
| if (size == -1) |
| PyErr_Clear(); |
| else if (size > 20) { |
| Py_DECREF(newconst); |
| return 0; |
| } |
| |
| /* Append folded constant into consts table */ |
| len_consts = PyList_GET_SIZE(consts); |
| if (PyList_Append(consts, newconst)) { |
| Py_DECREF(newconst); |
| return 0; |
| } |
| Py_DECREF(newconst); |
| |
| /* Write NOP NOP NOP NOP LOAD_CONST newconst */ |
| memset(codestr, NOP, 4); |
| codestr[4] = LOAD_CONST; |
| SETARG(codestr, 4, len_consts); |
| return 1; |
| } |
| |
| static int |
| fold_unaryops_on_constants(unsigned char *codestr, PyObject *consts) |
| { |
| PyObject *newconst=NULL, *v; |
| Py_ssize_t len_consts; |
| int opcode; |
| |
| /* Pre-conditions */ |
| assert(PyList_CheckExact(consts)); |
| assert(codestr[0] == LOAD_CONST); |
| |
| /* Create new constant */ |
| v = PyList_GET_ITEM(consts, GETARG(codestr, 0)); |
| opcode = codestr[3]; |
| switch (opcode) { |
| case UNARY_NEGATIVE: |
| /* Preserve the sign of -0.0 */ |
| if (PyObject_IsTrue(v) == 1) |
| newconst = PyNumber_Negative(v); |
| break; |
| case UNARY_INVERT: |
| newconst = PyNumber_Invert(v); |
| break; |
| case UNARY_POSITIVE: |
| newconst = PyNumber_Positive(v); |
| break; |
| default: |
| /* Called with an unknown opcode */ |
| PyErr_Format(PyExc_SystemError, |
| "unexpected unary operation %d on a constant", |
| opcode); |
| return 0; |
| } |
| if (newconst == NULL) { |
| PyErr_Clear(); |
| return 0; |
| } |
| |
| /* Append folded constant into consts table */ |
| len_consts = PyList_GET_SIZE(consts); |
| if (PyList_Append(consts, newconst)) { |
| Py_DECREF(newconst); |
| return 0; |
| } |
| Py_DECREF(newconst); |
| |
| /* Write NOP LOAD_CONST newconst */ |
| codestr[0] = NOP; |
| codestr[1] = LOAD_CONST; |
| SETARG(codestr, 1, len_consts); |
| return 1; |
| } |
| |
| static unsigned int * |
| markblocks(unsigned char *code, Py_ssize_t len) |
| { |
| unsigned int *blocks = (unsigned int *)PyMem_Malloc(len*sizeof(int)); |
| int i,j, opcode, blockcnt = 0; |
| |
| if (blocks == NULL) { |
| PyErr_NoMemory(); |
| return NULL; |
| } |
| memset(blocks, 0, len*sizeof(int)); |
| |
| /* Mark labels in the first pass */ |
| for (i=0 ; i<len ; i+=CODESIZE(opcode)) { |
| opcode = code[i]; |
| switch (opcode) { |
| case FOR_ITER: |
| case JUMP_FORWARD: |
| case JUMP_IF_FALSE_OR_POP: |
| case JUMP_IF_TRUE_OR_POP: |
| case POP_JUMP_IF_FALSE: |
| case POP_JUMP_IF_TRUE: |
| case JUMP_ABSOLUTE: |
| case CONTINUE_LOOP: |
| case SETUP_LOOP: |
| case SETUP_EXCEPT: |
| case SETUP_FINALLY: |
| case SETUP_WITH: |
| j = GETJUMPTGT(code, i); |
| blocks[j] = 1; |
| break; |
| } |
| } |
| /* Build block numbers in the second pass */ |
| for (i=0 ; i<len ; i++) { |
| blockcnt += blocks[i]; /* increment blockcnt over labels */ |
| blocks[i] = blockcnt; |
| } |
| return blocks; |
| } |
| |
| /* Helper to replace LOAD_NAME None/True/False with LOAD_CONST |
| Returns: 0 if no change, 1 if change, -1 if error */ |
| static int |
| load_global(unsigned char *codestr, Py_ssize_t i, char *name, PyObject *consts) |
| { |
| Py_ssize_t j; |
| PyObject *obj; |
| if (name == NULL) |
| return 0; |
| if (strcmp(name, "None") == 0) |
| obj = Py_None; |
| else if (strcmp(name, "True") == 0) |
| obj = Py_True; |
| else if (strcmp(name, "False") == 0) |
| obj = Py_False; |
| else |
| return 0; |
| for (j = 0; j < PyList_GET_SIZE(consts); j++) { |
| if (PyList_GET_ITEM(consts, j) == obj) |
| break; |
| } |
| if (j == PyList_GET_SIZE(consts)) { |
| if (PyList_Append(consts, obj) < 0) |
| return -1; |
| } |
| assert(PyList_GET_ITEM(consts, j) == obj); |
| codestr[i] = LOAD_CONST; |
| SETARG(codestr, i, j); |
| return 1; |
| } |
| |
| /* Perform basic peephole optimizations to components of a code object. |
| The consts object should still be in list form to allow new constants |
| to be appended. |
| |
| To keep the optimizer simple, it bails out (does nothing) for code that |
| has a length over 32,700, and does not calculate extended arguments. |
| That allows us to avoid overflow and sign issues. Likewise, it bails when |
| the lineno table has complex encoding for gaps >= 255. EXTENDED_ARG can |
| appear before MAKE_FUNCTION; in this case both opcodes are skipped. |
| EXTENDED_ARG preceding any other opcode causes the optimizer to bail. |
| |
| Optimizations are restricted to simple transformations occuring within a |
| single basic block. All transformations keep the code size the same or |
| smaller. For those that reduce size, the gaps are initially filled with |
| NOPs. Later those NOPs are removed and the jump addresses retargeted in |
| a single pass. Line numbering is adjusted accordingly. */ |
| |
| PyObject * |
| PyCode_Optimize(PyObject *code, PyObject* consts, PyObject *names, |
| PyObject *lineno_obj) |
| { |
| Py_ssize_t i, j, codelen; |
| int nops, h, adj; |
| int tgt, tgttgt, opcode; |
| unsigned char *codestr = NULL; |
| unsigned char *lineno; |
| int *addrmap = NULL; |
| int new_line, cum_orig_line, last_line, tabsiz; |
| int cumlc=0, lastlc=0; /* Count runs of consecutive LOAD_CONSTs */ |
| unsigned int *blocks = NULL; |
| char *name; |
| |
| /* Bail out if an exception is set */ |
| if (PyErr_Occurred()) |
| goto exitError; |
| |
| /* Bypass optimization when the lineno table is too complex */ |
| assert(PyBytes_Check(lineno_obj)); |
| lineno = (unsigned char*)PyBytes_AS_STRING(lineno_obj); |
| tabsiz = PyBytes_GET_SIZE(lineno_obj); |
| if (memchr(lineno, 255, tabsiz) != NULL) |
| goto exitUnchanged; |
| |
| /* Avoid situations where jump retargeting could overflow */ |
| assert(PyBytes_Check(code)); |
| codelen = PyBytes_GET_SIZE(code); |
| if (codelen > 32700) |
| goto exitUnchanged; |
| |
| /* Make a modifiable copy of the code string */ |
| codestr = (unsigned char *)PyMem_Malloc(codelen); |
| if (codestr == NULL) |
| goto exitError; |
| codestr = (unsigned char *)memcpy(codestr, |
| PyBytes_AS_STRING(code), codelen); |
| |
| /* Verify that RETURN_VALUE terminates the codestring. This allows |
| the various transformation patterns to look ahead several |
| instructions without additional checks to make sure they are not |
| looking beyond the end of the code string. |
| */ |
| if (codestr[codelen-1] != RETURN_VALUE) |
| goto exitUnchanged; |
| |
| /* Mapping to new jump targets after NOPs are removed */ |
| addrmap = (int *)PyMem_Malloc(codelen * sizeof(int)); |
| if (addrmap == NULL) |
| goto exitError; |
| |
| blocks = markblocks(codestr, codelen); |
| if (blocks == NULL) |
| goto exitError; |
| assert(PyList_Check(consts)); |
| |
| for (i=0 ; i<codelen ; i += CODESIZE(codestr[i])) { |
| reoptimize_current: |
| opcode = codestr[i]; |
| |
| lastlc = cumlc; |
| cumlc = 0; |
| |
| switch (opcode) { |
| /* Replace UNARY_NOT POP_JUMP_IF_FALSE |
| with POP_JUMP_IF_TRUE */ |
| case UNARY_NOT: |
| if (codestr[i+1] != POP_JUMP_IF_FALSE |
| || !ISBASICBLOCK(blocks,i,4)) |
| continue; |
| j = GETARG(codestr, i+1); |
| codestr[i] = POP_JUMP_IF_TRUE; |
| SETARG(codestr, i, j); |
| codestr[i+3] = NOP; |
| goto reoptimize_current; |
| |
| /* not a is b --> a is not b |
| not a in b --> a not in b |
| not a is not b --> a is b |
| not a not in b --> a in b |
| */ |
| case COMPARE_OP: |
| j = GETARG(codestr, i); |
| if (j < 6 || j > 9 || |
| codestr[i+3] != UNARY_NOT || |
| !ISBASICBLOCK(blocks,i,4)) |
| continue; |
| SETARG(codestr, i, (j^1)); |
| codestr[i+3] = NOP; |
| break; |
| |
| /* Replace LOAD_GLOBAL/LOAD_NAME None/True/False |
| with LOAD_CONST None/True/False */ |
| case LOAD_NAME: |
| case LOAD_GLOBAL: |
| j = GETARG(codestr, i); |
| name = _PyUnicode_AsString(PyTuple_GET_ITEM(names, j)); |
| h = load_global(codestr, i, name, consts); |
| if (h < 0) |
| goto exitError; |
| else if (h == 0) |
| continue; |
| cumlc = lastlc + 1; |
| break; |
| |
| /* Skip over LOAD_CONST trueconst |
| POP_JUMP_IF_FALSE xx. This improves |
| "while 1" performance. */ |
| case LOAD_CONST: |
| cumlc = lastlc + 1; |
| j = GETARG(codestr, i); |
| if (codestr[i+3] != POP_JUMP_IF_FALSE || |
| !ISBASICBLOCK(blocks,i,6) || |
| !PyObject_IsTrue(PyList_GET_ITEM(consts, j))) |
| continue; |
| memset(codestr+i, NOP, 6); |
| cumlc = 0; |
| break; |
| |
| /* Try to fold tuples of constants (includes a case for lists and sets |
| which are only used for "in" and "not in" tests). |
| Skip over BUILD_SEQN 1 UNPACK_SEQN 1. |
| Replace BUILD_SEQN 2 UNPACK_SEQN 2 with ROT2. |
| Replace BUILD_SEQN 3 UNPACK_SEQN 3 with ROT3 ROT2. */ |
| case BUILD_TUPLE: |
| case BUILD_LIST: |
| case BUILD_SET: |
| j = GETARG(codestr, i); |
| h = i - 3 * j; |
| if (h >= 0 && |
| j <= lastlc && |
| ((opcode == BUILD_TUPLE && |
| ISBASICBLOCK(blocks, h, 3*(j+1))) || |
| ((opcode == BUILD_LIST || opcode == BUILD_SET) && |
| codestr[i+3]==COMPARE_OP && |
| ISBASICBLOCK(blocks, h, 3*(j+2)) && |
| (GETARG(codestr,i+3)==6 || |
| GETARG(codestr,i+3)==7))) && |
| tuple_of_constants(&codestr[h], j, consts)) { |
| assert(codestr[i] == LOAD_CONST); |
| cumlc = 1; |
| break; |
| } |
| if (codestr[i+3] != UNPACK_SEQUENCE || |
| !ISBASICBLOCK(blocks,i,6) || |
| j != GETARG(codestr, i+3)) |
| continue; |
| if (j == 1) { |
| memset(codestr+i, NOP, 6); |
| } else if (j == 2) { |
| codestr[i] = ROT_TWO; |
| memset(codestr+i+1, NOP, 5); |
| } else if (j == 3) { |
| codestr[i] = ROT_THREE; |
| codestr[i+1] = ROT_TWO; |
| memset(codestr+i+2, NOP, 4); |
| } |
| break; |
| |
| /* Fold binary ops on constants. |
| LOAD_CONST c1 LOAD_CONST c2 BINOP --> LOAD_CONST binop(c1,c2) */ |
| case BINARY_POWER: |
| case BINARY_MULTIPLY: |
| case BINARY_TRUE_DIVIDE: |
| case BINARY_FLOOR_DIVIDE: |
| case BINARY_MODULO: |
| case BINARY_ADD: |
| case BINARY_SUBTRACT: |
| case BINARY_SUBSCR: |
| case BINARY_LSHIFT: |
| case BINARY_RSHIFT: |
| case BINARY_AND: |
| case BINARY_XOR: |
| case BINARY_OR: |
| if (lastlc >= 2 && |
| ISBASICBLOCK(blocks, i-6, 7) && |
| fold_binops_on_constants(&codestr[i-6], consts)) { |
| i -= 2; |
| assert(codestr[i] == LOAD_CONST); |
| cumlc = 1; |
| } |
| break; |
| |
| /* Fold unary ops on constants. |
| LOAD_CONST c1 UNARY_OP --> LOAD_CONST unary_op(c) */ |
| case UNARY_NEGATIVE: |
| case UNARY_INVERT: |
| case UNARY_POSITIVE: |
| if (lastlc >= 1 && |
| ISBASICBLOCK(blocks, i-3, 4) && |
| fold_unaryops_on_constants(&codestr[i-3], consts)) { |
| i -= 2; |
| assert(codestr[i] == LOAD_CONST); |
| cumlc = 1; |
| } |
| break; |
| |
| /* Simplify conditional jump to conditional jump where the |
| result of the first test implies the success of a similar |
| test or the failure of the opposite test. |
| Arises in code like: |
| "if a and b:" |
| "if a or b:" |
| "a and b or c" |
| "(a and b) and c" |
| x:JUMP_IF_FALSE_OR_POP y y:JUMP_IF_FALSE_OR_POP z |
| --> x:JUMP_IF_FALSE_OR_POP z |
| x:JUMP_IF_FALSE_OR_POP y y:JUMP_IF_TRUE_OR_POP z |
| --> x:POP_JUMP_IF_FALSE y+3 |
| where y+3 is the instruction following the second test. |
| */ |
| case JUMP_IF_FALSE_OR_POP: |
| case JUMP_IF_TRUE_OR_POP: |
| tgt = GETJUMPTGT(codestr, i); |
| j = codestr[tgt]; |
| if (CONDITIONAL_JUMP(j)) { |
| /* NOTE: all possible jumps here are |
| absolute! */ |
| if (JUMPS_ON_TRUE(j) == JUMPS_ON_TRUE(opcode)) { |
| /* The second jump will be |
| taken iff the first is. */ |
| tgttgt = GETJUMPTGT(codestr, tgt); |
| /* The current opcode inherits |
| its target's stack behaviour */ |
| codestr[i] = j; |
| SETARG(codestr, i, tgttgt); |
| goto reoptimize_current; |
| } else { |
| /* The second jump is not taken |
| if the first is (so jump past |
| it), and all conditional |
| jumps pop their argument when |
| they're not taken (so change |
| the first jump to pop its |
| argument when it's taken). */ |
| if (JUMPS_ON_TRUE(opcode)) |
| codestr[i] = POP_JUMP_IF_TRUE; |
| else |
| codestr[i] = POP_JUMP_IF_FALSE; |
| SETARG(codestr, i, (tgt + 3)); |
| goto reoptimize_current; |
| } |
| } |
| /* Intentional fallthrough */ |
| |
| /* Replace jumps to unconditional jumps */ |
| case POP_JUMP_IF_FALSE: |
| case POP_JUMP_IF_TRUE: |
| case FOR_ITER: |
| case JUMP_FORWARD: |
| case JUMP_ABSOLUTE: |
| case CONTINUE_LOOP: |
| case SETUP_LOOP: |
| case SETUP_EXCEPT: |
| case SETUP_FINALLY: |
| case SETUP_WITH: |
| tgt = GETJUMPTGT(codestr, i); |
| /* Replace JUMP_* to a RETURN into just a RETURN */ |
| if (UNCONDITIONAL_JUMP(opcode) && |
| codestr[tgt] == RETURN_VALUE) { |
| codestr[i] = RETURN_VALUE; |
| memset(codestr+i+1, NOP, 2); |
| continue; |
| } |
| if (!UNCONDITIONAL_JUMP(codestr[tgt])) |
| continue; |
| tgttgt = GETJUMPTGT(codestr, tgt); |
| if (opcode == JUMP_FORWARD) /* JMP_ABS can go backwards */ |
| opcode = JUMP_ABSOLUTE; |
| if (!ABSOLUTE_JUMP(opcode)) |
| tgttgt -= i + 3; /* Calc relative jump addr */ |
| if (tgttgt < 0) /* No backward relative jumps */ |
| continue; |
| codestr[i] = opcode; |
| SETARG(codestr, i, tgttgt); |
| break; |
| |
| case EXTENDED_ARG: |
| if (codestr[i+3] != MAKE_FUNCTION) |
| goto exitUnchanged; |
| /* don't visit MAKE_FUNCTION as GETARG will be wrong */ |
| i += 3; |
| break; |
| |
| /* Replace RETURN LOAD_CONST None RETURN with just RETURN */ |
| /* Remove unreachable JUMPs after RETURN */ |
| case RETURN_VALUE: |
| if (i+4 >= codelen) |
| continue; |
| if (codestr[i+4] == RETURN_VALUE && |
| ISBASICBLOCK(blocks,i,5)) |
| memset(codestr+i+1, NOP, 4); |
| else if (UNCONDITIONAL_JUMP(codestr[i+1]) && |
| ISBASICBLOCK(blocks,i,4)) |
| memset(codestr+i+1, NOP, 3); |
| break; |
| } |
| } |
| |
| /* Fixup linenotab */ |
| for (i=0, nops=0 ; i<codelen ; i += CODESIZE(codestr[i])) { |
| addrmap[i] = i - nops; |
| if (codestr[i] == NOP) |
| nops++; |
| } |
| cum_orig_line = 0; |
| last_line = 0; |
| for (i=0 ; i < tabsiz ; i+=2) { |
| cum_orig_line += lineno[i]; |
| new_line = addrmap[cum_orig_line]; |
| assert (new_line - last_line < 255); |
| lineno[i] =((unsigned char)(new_line - last_line)); |
| last_line = new_line; |
| } |
| |
| /* Remove NOPs and fixup jump targets */ |
| for (i=0, h=0 ; i<codelen ; ) { |
| opcode = codestr[i]; |
| switch (opcode) { |
| case NOP: |
| i++; |
| continue; |
| |
| case JUMP_ABSOLUTE: |
| case CONTINUE_LOOP: |
| case POP_JUMP_IF_FALSE: |
| case POP_JUMP_IF_TRUE: |
| case JUMP_IF_FALSE_OR_POP: |
| case JUMP_IF_TRUE_OR_POP: |
| j = addrmap[GETARG(codestr, i)]; |
| SETARG(codestr, i, j); |
| break; |
| |
| case FOR_ITER: |
| case JUMP_FORWARD: |
| case SETUP_LOOP: |
| case SETUP_EXCEPT: |
| case SETUP_FINALLY: |
| case SETUP_WITH: |
| j = addrmap[GETARG(codestr, i) + i + 3] - addrmap[i] - 3; |
| SETARG(codestr, i, j); |
| break; |
| } |
| adj = CODESIZE(opcode); |
| while (adj--) |
| codestr[h++] = codestr[i++]; |
| } |
| assert(h + nops == codelen); |
| |
| code = PyBytes_FromStringAndSize((char *)codestr, h); |
| PyMem_Free(addrmap); |
| PyMem_Free(codestr); |
| PyMem_Free(blocks); |
| return code; |
| |
| exitError: |
| code = NULL; |
| |
| exitUnchanged: |
| if (blocks != NULL) |
| PyMem_Free(blocks); |
| if (addrmap != NULL) |
| PyMem_Free(addrmap); |
| if (codestr != NULL) |
| PyMem_Free(codestr); |
| Py_XINCREF(code); |
| return code; |
| } |