| /* Complex math module */ |
| |
| /* much code borrowed from mathmodule.c */ |
| |
| #include "Python.h" |
| |
| #include "mymath.h" |
| |
| #ifdef i860 |
| /* Cray APP has bogus definition of HUGE_VAL in <math.h> */ |
| #undef HUGE_VAL |
| #endif |
| |
| #ifdef HUGE_VAL |
| #define CHECK(x) if (errno != 0) ; \ |
| else if (-HUGE_VAL <= (x) && (x) <= HUGE_VAL) ; \ |
| else errno = ERANGE |
| #else |
| #define CHECK(x) /* Don't know how to check */ |
| #endif |
| |
| #ifndef M_PI |
| #define M_PI (3.141592653589793239) |
| #endif |
| |
| /* First, the C functions that do the real work */ |
| |
| /* constants */ |
| static Py_complex c_1 = {1., 0.}; |
| static Py_complex c_half = {0.5, 0.}; |
| static Py_complex c_i = {0., 1.}; |
| static Py_complex c_i2 = {0., 0.5}; |
| #if 0 |
| static Py_complex c_mi = {0., -1.}; |
| static Py_complex c_pi2 = {M_PI/2., 0.}; |
| #endif |
| |
| /* forward declarations */ |
| staticforward Py_complex c_log(); |
| staticforward Py_complex c_prodi(); |
| staticforward Py_complex c_sqrt(); |
| |
| |
| static Py_complex c_acos(x) |
| Py_complex x; |
| { |
| return c_neg(c_prodi(c_log(c_sum(x,c_prod(c_i, |
| c_sqrt(c_diff(c_1,c_prod(x,x)))))))); |
| } |
| |
| static char c_acos_doc [] = |
| "acos(x)\n\ |
| \n\ |
| Return the arc cosine of x."; |
| |
| |
| static Py_complex c_acosh(x) |
| Py_complex x; |
| { |
| Py_complex z; |
| z = c_sqrt(c_half); |
| z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x,c_1)), |
| c_sqrt(c_diff(x,c_1))))); |
| return c_sum(z, z); |
| } |
| |
| static char c_acosh_doc [] = |
| "acosh(x)\n\ |
| \n\ |
| Return the hyperbolic arccosine of x."; |
| |
| |
| static Py_complex c_asin(x) |
| Py_complex x; |
| { |
| Py_complex z; |
| z = c_sqrt(c_half); |
| z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x,c_i)), |
| c_sqrt(c_diff(x,c_i))))); |
| return c_sum(z, z); |
| } |
| |
| static char c_asin_doc [] = |
| "asin(x)\n\ |
| \n\ |
| Return the arc sine of x."; |
| |
| |
| static Py_complex c_asinh(x) |
| Py_complex x; |
| { |
| /* Break up long expression for WATCOM */ |
| Py_complex z; |
| z = c_sum(c_1,c_prod(x, x)); |
| return c_log(c_sum(c_sqrt(z), x)); |
| } |
| |
| static char c_asinh_doc [] = |
| "asinh(x)\n\ |
| \n\ |
| Return the hyperbolic arc sine of x."; |
| |
| |
| static Py_complex c_atan(x) |
| Py_complex x; |
| { |
| return c_prod(c_i2,c_log(c_quot(c_sum(c_i,x),c_diff(c_i,x)))); |
| } |
| |
| static char c_atan_doc [] = |
| "atan(x)\n\ |
| \n\ |
| Return the arc tangent of x."; |
| |
| |
| static Py_complex c_atanh(x) |
| Py_complex x; |
| { |
| return c_prod(c_half,c_log(c_quot(c_sum(c_1,x),c_diff(c_1,x)))); |
| } |
| |
| static char c_atanh_doc [] = |
| "atanh(x)\n\ |
| \n\ |
| Return the hyperbolic arc tangent of x."; |
| |
| |
| static Py_complex c_cos(x) |
| Py_complex x; |
| { |
| Py_complex r; |
| r.real = cos(x.real)*cosh(x.imag); |
| r.imag = -sin(x.real)*sinh(x.imag); |
| return r; |
| } |
| |
| static char c_cos_doc [] = |
| "cos(x)\n\ |
| \n\ |
| Return the cosine of x."; |
| |
| |
| static Py_complex c_cosh(x) |
| Py_complex x; |
| { |
| Py_complex r; |
| r.real = cos(x.imag)*cosh(x.real); |
| r.imag = sin(x.imag)*sinh(x.real); |
| return r; |
| } |
| |
| static char c_cosh_doc [] = |
| "cosh(x)\n\ |
| \n\ |
| Return the hyperbolic cosine of x."; |
| |
| |
| static Py_complex c_exp(x) |
| Py_complex x; |
| { |
| Py_complex r; |
| double l = exp(x.real); |
| r.real = l*cos(x.imag); |
| r.imag = l*sin(x.imag); |
| return r; |
| } |
| |
| static char c_exp_doc [] = |
| "exp(x)\n\ |
| \n\ |
| Return the exponential value e**x."; |
| |
| |
| static Py_complex c_log(x) |
| Py_complex x; |
| { |
| Py_complex r; |
| double l = hypot(x.real,x.imag); |
| r.imag = atan2(x.imag, x.real); |
| r.real = log(l); |
| return r; |
| } |
| |
| static char c_log_doc [] = |
| "log(x)\n\ |
| \n\ |
| Return the natural logarithm of x."; |
| |
| |
| static Py_complex c_log10(x) |
| Py_complex x; |
| { |
| Py_complex r; |
| double l = hypot(x.real,x.imag); |
| r.imag = atan2(x.imag, x.real)/log(10.); |
| r.real = log10(l); |
| return r; |
| } |
| |
| static char c_log10_doc [] = |
| "log10(x)\n\ |
| \n\ |
| Return the base-10 logarithm of x."; |
| |
| |
| /* internal function not available from Python */ |
| static Py_complex c_prodi(x) |
| Py_complex x; |
| { |
| Py_complex r; |
| r.real = -x.imag; |
| r.imag = x.real; |
| return r; |
| } |
| |
| |
| static Py_complex c_sin(x) |
| Py_complex x; |
| { |
| Py_complex r; |
| r.real = sin(x.real)*cosh(x.imag); |
| r.imag = cos(x.real)*sinh(x.imag); |
| return r; |
| } |
| |
| static char c_sin_doc [] = |
| "sin(x)\n\ |
| \n\ |
| Return the sine of x."; |
| |
| |
| static Py_complex c_sinh(x) |
| Py_complex x; |
| { |
| Py_complex r; |
| r.real = cos(x.imag)*sinh(x.real); |
| r.imag = sin(x.imag)*cosh(x.real); |
| return r; |
| } |
| |
| static char c_sinh_doc [] = |
| "sinh(x)\n\ |
| \n\ |
| Return the hyperbolic sine of x."; |
| |
| |
| static Py_complex c_sqrt(x) |
| Py_complex x; |
| { |
| Py_complex r; |
| double s,d; |
| if (x.real == 0. && x.imag == 0.) |
| r = x; |
| else { |
| s = sqrt(0.5*(fabs(x.real) + hypot(x.real,x.imag))); |
| d = 0.5*x.imag/s; |
| if (x.real > 0.) { |
| r.real = s; |
| r.imag = d; |
| } |
| else if (x.imag >= 0.) { |
| r.real = d; |
| r.imag = s; |
| } |
| else { |
| r.real = -d; |
| r.imag = -s; |
| } |
| } |
| return r; |
| } |
| |
| static char c_sqrt_doc [] = |
| "sqrt(x)\n\ |
| \n\ |
| Return the square root of x."; |
| |
| |
| static Py_complex c_tan(x) |
| Py_complex x; |
| { |
| Py_complex r; |
| double sr,cr,shi,chi; |
| double rs,is,rc,ic; |
| double d; |
| sr = sin(x.real); |
| cr = cos(x.real); |
| shi = sinh(x.imag); |
| chi = cosh(x.imag); |
| rs = sr*chi; |
| is = cr*shi; |
| rc = cr*chi; |
| ic = -sr*shi; |
| d = rc*rc + ic*ic; |
| r.real = (rs*rc+is*ic)/d; |
| r.imag = (is*rc-rs*ic)/d; |
| return r; |
| } |
| |
| static char c_tan_doc [] = |
| "tan(x)\n\ |
| \n\ |
| Return the tangent of x."; |
| |
| |
| static Py_complex c_tanh(x) |
| Py_complex x; |
| { |
| Py_complex r; |
| double si,ci,shr,chr; |
| double rs,is,rc,ic; |
| double d; |
| si = sin(x.imag); |
| ci = cos(x.imag); |
| shr = sinh(x.real); |
| chr = cosh(x.real); |
| rs = ci*shr; |
| is = si*chr; |
| rc = ci*chr; |
| ic = si*shr; |
| d = rc*rc + ic*ic; |
| r.real = (rs*rc+is*ic)/d; |
| r.imag = (is*rc-rs*ic)/d; |
| return r; |
| } |
| |
| static char c_tanh_doc [] = |
| "tanh(x)\n\ |
| \n\ |
| Return the hyperbolic tangent of x."; |
| |
| |
| /* And now the glue to make them available from Python: */ |
| |
| static PyObject * |
| math_error() |
| { |
| if (errno == EDOM) |
| PyErr_SetString(PyExc_ValueError, "math domain error"); |
| else if (errno == ERANGE) |
| PyErr_SetString(PyExc_OverflowError, "math range error"); |
| else /* Unexpected math error */ |
| PyErr_SetFromErrno(PyExc_ValueError); |
| return NULL; |
| } |
| |
| static PyObject * |
| math_1(args, func) |
| PyObject *args; |
| Py_complex (*func) Py_FPROTO((Py_complex)); |
| { |
| Py_complex x; |
| if (!PyArg_ParseTuple(args, "D", &x)) |
| return NULL; |
| errno = 0; |
| PyFPE_START_PROTECT("complex function", return 0) |
| x = (*func)(x); |
| PyFPE_END_PROTECT(x) |
| CHECK(x.real); |
| CHECK(x.imag); |
| if (errno != 0) |
| return math_error(); |
| else |
| return PyComplex_FromCComplex(x); |
| } |
| |
| #define FUNC1(stubname, func) \ |
| static PyObject * stubname(self, args) PyObject *self, *args; { \ |
| return math_1(args, func); \ |
| } |
| |
| FUNC1(cmath_acos, c_acos) |
| FUNC1(cmath_acosh, c_acosh) |
| FUNC1(cmath_asin, c_asin) |
| FUNC1(cmath_asinh, c_asinh) |
| FUNC1(cmath_atan, c_atan) |
| FUNC1(cmath_atanh, c_atanh) |
| FUNC1(cmath_cos, c_cos) |
| FUNC1(cmath_cosh, c_cosh) |
| FUNC1(cmath_exp, c_exp) |
| FUNC1(cmath_log, c_log) |
| FUNC1(cmath_log10, c_log10) |
| FUNC1(cmath_sin, c_sin) |
| FUNC1(cmath_sinh, c_sinh) |
| FUNC1(cmath_sqrt, c_sqrt) |
| FUNC1(cmath_tan, c_tan) |
| FUNC1(cmath_tanh, c_tanh) |
| |
| |
| static char module_doc [] = |
| "This module is always available. It provides access to mathematical\n\ |
| functions for complex numbers."; |
| |
| |
| static PyMethodDef cmath_methods[] = { |
| {"acos", cmath_acos, 1, c_acos_doc}, |
| {"acosh", cmath_acosh, 1, c_acosh_doc}, |
| {"asin", cmath_asin, 1, c_asin_doc}, |
| {"asinh", cmath_asinh, 1, c_asinh_doc}, |
| {"atan", cmath_atan, 1, c_atan_doc}, |
| {"atanh", cmath_atanh, 1, c_atanh_doc}, |
| {"cos", cmath_cos, 1, c_cos_doc}, |
| {"cosh", cmath_cosh, 1, c_cosh_doc}, |
| {"exp", cmath_exp, 1, c_exp_doc}, |
| {"log", cmath_log, 1, c_log_doc}, |
| {"log10", cmath_log10, 1, c_log10_doc}, |
| {"sin", cmath_sin, 1, c_sin_doc}, |
| {"sinh", cmath_sinh, 1, c_sinh_doc}, |
| {"sqrt", cmath_sqrt, 1, c_sqrt_doc}, |
| {"tan", cmath_tan, 1, c_tan_doc}, |
| {"tanh", cmath_tanh, 1, c_tanh_doc}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| DL_EXPORT(void) |
| initcmath() |
| { |
| PyObject *m, *d, *v; |
| |
| m = Py_InitModule3("cmath", cmath_methods, module_doc); |
| d = PyModule_GetDict(m); |
| PyDict_SetItemString(d, "pi", |
| v = PyFloat_FromDouble(atan(1.0) * 4.0)); |
| Py_DECREF(v); |
| PyDict_SetItemString(d, "e", v = PyFloat_FromDouble(exp(1.0))); |
| Py_DECREF(v); |
| } |