| """Bisection algorithms.""" | 
 |  | 
 | def insort_right(a, x, lo=0, hi=None): | 
 |     """Insert item x in list a, and keep it sorted assuming a is sorted. | 
 |  | 
 |     If x is already in a, insert it to the right of the rightmost x. | 
 |  | 
 |     Optional args lo (default 0) and hi (default len(a)) bound the | 
 |     slice of a to be searched. | 
 |     """ | 
 |  | 
 |     if lo < 0: | 
 |         raise ValueError('lo must be non-negative') | 
 |     if hi is None: | 
 |         hi = len(a) | 
 |     while lo < hi: | 
 |         mid = (lo+hi)//2 | 
 |         if x < a[mid]: hi = mid | 
 |         else: lo = mid+1 | 
 |     a.insert(lo, x) | 
 |  | 
 | insort = insort_right   # backward compatibility | 
 |  | 
 | def bisect_right(a, x, lo=0, hi=None): | 
 |     """Return the index where to insert item x in list a, assuming a is sorted. | 
 |  | 
 |     The return value i is such that all e in a[:i] have e <= x, and all e in | 
 |     a[i:] have e > x.  So if x already appears in the list, a.insert(x) will | 
 |     insert just after the rightmost x already there. | 
 |  | 
 |     Optional args lo (default 0) and hi (default len(a)) bound the | 
 |     slice of a to be searched. | 
 |     """ | 
 |  | 
 |     if lo < 0: | 
 |         raise ValueError('lo must be non-negative') | 
 |     if hi is None: | 
 |         hi = len(a) | 
 |     while lo < hi: | 
 |         mid = (lo+hi)//2 | 
 |         if x < a[mid]: hi = mid | 
 |         else: lo = mid+1 | 
 |     return lo | 
 |  | 
 | bisect = bisect_right   # backward compatibility | 
 |  | 
 | def insort_left(a, x, lo=0, hi=None): | 
 |     """Insert item x in list a, and keep it sorted assuming a is sorted. | 
 |  | 
 |     If x is already in a, insert it to the left of the leftmost x. | 
 |  | 
 |     Optional args lo (default 0) and hi (default len(a)) bound the | 
 |     slice of a to be searched. | 
 |     """ | 
 |  | 
 |     if lo < 0: | 
 |         raise ValueError('lo must be non-negative') | 
 |     if hi is None: | 
 |         hi = len(a) | 
 |     while lo < hi: | 
 |         mid = (lo+hi)//2 | 
 |         if a[mid] < x: lo = mid+1 | 
 |         else: hi = mid | 
 |     a.insert(lo, x) | 
 |  | 
 |  | 
 | def bisect_left(a, x, lo=0, hi=None): | 
 |     """Return the index where to insert item x in list a, assuming a is sorted. | 
 |  | 
 |     The return value i is such that all e in a[:i] have e < x, and all e in | 
 |     a[i:] have e >= x.  So if x already appears in the list, a.insert(x) will | 
 |     insert just before the leftmost x already there. | 
 |  | 
 |     Optional args lo (default 0) and hi (default len(a)) bound the | 
 |     slice of a to be searched. | 
 |     """ | 
 |  | 
 |     if lo < 0: | 
 |         raise ValueError('lo must be non-negative') | 
 |     if hi is None: | 
 |         hi = len(a) | 
 |     while lo < hi: | 
 |         mid = (lo+hi)//2 | 
 |         if a[mid] < x: lo = mid+1 | 
 |         else: hi = mid | 
 |     return lo | 
 |  | 
 | # Overwrite above definitions with a fast C implementation | 
 | try: | 
 |     from _bisect import * | 
 | except ImportError: | 
 |     pass |