| |
| /* Generic object operations; and implementation of None */ |
| |
| #include "Python.h" |
| #include "frameobject.h" |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| #ifdef Py_REF_DEBUG |
| Py_ssize_t _Py_RefTotal; |
| |
| Py_ssize_t |
| _Py_GetRefTotal(void) |
| { |
| PyObject *o; |
| Py_ssize_t total = _Py_RefTotal; |
| /* ignore the references to the dummy object of the dicts and sets |
| because they are not reliable and not useful (now that the |
| hash table code is well-tested) */ |
| o = _PyDict_Dummy(); |
| if (o != NULL) |
| total -= o->ob_refcnt; |
| o = _PySet_Dummy(); |
| if (o != NULL) |
| total -= o->ob_refcnt; |
| return total; |
| } |
| #endif /* Py_REF_DEBUG */ |
| |
| /* Object allocation routines used by NEWOBJ and NEWVAROBJ macros. |
| These are used by the individual routines for object creation. |
| Do not call them otherwise, they do not initialize the object! */ |
| |
| #ifdef Py_TRACE_REFS |
| /* Head of circular doubly-linked list of all objects. These are linked |
| * together via the _ob_prev and _ob_next members of a PyObject, which |
| * exist only in a Py_TRACE_REFS build. |
| */ |
| static PyObject refchain = {&refchain, &refchain}; |
| |
| /* Insert op at the front of the list of all objects. If force is true, |
| * op is added even if _ob_prev and _ob_next are non-NULL already. If |
| * force is false amd _ob_prev or _ob_next are non-NULL, do nothing. |
| * force should be true if and only if op points to freshly allocated, |
| * uninitialized memory, or you've unlinked op from the list and are |
| * relinking it into the front. |
| * Note that objects are normally added to the list via _Py_NewReference, |
| * which is called by PyObject_Init. Not all objects are initialized that |
| * way, though; exceptions include statically allocated type objects, and |
| * statically allocated singletons (like Py_True and Py_None). |
| */ |
| void |
| _Py_AddToAllObjects(PyObject *op, int force) |
| { |
| #ifdef Py_DEBUG |
| if (!force) { |
| /* If it's initialized memory, op must be in or out of |
| * the list unambiguously. |
| */ |
| assert((op->_ob_prev == NULL) == (op->_ob_next == NULL)); |
| } |
| #endif |
| if (force || op->_ob_prev == NULL) { |
| op->_ob_next = refchain._ob_next; |
| op->_ob_prev = &refchain; |
| refchain._ob_next->_ob_prev = op; |
| refchain._ob_next = op; |
| } |
| } |
| #endif /* Py_TRACE_REFS */ |
| |
| #ifdef COUNT_ALLOCS |
| static PyTypeObject *type_list; |
| /* All types are added to type_list, at least when |
| they get one object created. That makes them |
| immortal, which unfortunately contributes to |
| garbage itself. If unlist_types_without_objects |
| is set, they will be removed from the type_list |
| once the last object is deallocated. */ |
| static int unlist_types_without_objects; |
| extern Py_ssize_t tuple_zero_allocs, fast_tuple_allocs; |
| extern Py_ssize_t quick_int_allocs, quick_neg_int_allocs; |
| extern Py_ssize_t null_strings, one_strings; |
| void |
| dump_counts(FILE* f) |
| { |
| PyTypeObject *tp; |
| |
| for (tp = type_list; tp; tp = tp->tp_next) |
| fprintf(f, "%s alloc'd: %" PY_FORMAT_SIZE_T "d, " |
| "freed: %" PY_FORMAT_SIZE_T "d, " |
| "max in use: %" PY_FORMAT_SIZE_T "d\n", |
| tp->tp_name, tp->tp_allocs, tp->tp_frees, |
| tp->tp_maxalloc); |
| fprintf(f, "fast tuple allocs: %" PY_FORMAT_SIZE_T "d, " |
| "empty: %" PY_FORMAT_SIZE_T "d\n", |
| fast_tuple_allocs, tuple_zero_allocs); |
| fprintf(f, "fast int allocs: pos: %" PY_FORMAT_SIZE_T "d, " |
| "neg: %" PY_FORMAT_SIZE_T "d\n", |
| quick_int_allocs, quick_neg_int_allocs); |
| fprintf(f, "null strings: %" PY_FORMAT_SIZE_T "d, " |
| "1-strings: %" PY_FORMAT_SIZE_T "d\n", |
| null_strings, one_strings); |
| } |
| |
| PyObject * |
| get_counts(void) |
| { |
| PyTypeObject *tp; |
| PyObject *result; |
| PyObject *v; |
| |
| result = PyList_New(0); |
| if (result == NULL) |
| return NULL; |
| for (tp = type_list; tp; tp = tp->tp_next) { |
| v = Py_BuildValue("(snnn)", tp->tp_name, tp->tp_allocs, |
| tp->tp_frees, tp->tp_maxalloc); |
| if (v == NULL) { |
| Py_DECREF(result); |
| return NULL; |
| } |
| if (PyList_Append(result, v) < 0) { |
| Py_DECREF(v); |
| Py_DECREF(result); |
| return NULL; |
| } |
| Py_DECREF(v); |
| } |
| return result; |
| } |
| |
| void |
| inc_count(PyTypeObject *tp) |
| { |
| if (tp->tp_next == NULL && tp->tp_prev == NULL) { |
| /* first time; insert in linked list */ |
| if (tp->tp_next != NULL) /* sanity check */ |
| Py_FatalError("XXX inc_count sanity check"); |
| if (type_list) |
| type_list->tp_prev = tp; |
| tp->tp_next = type_list; |
| /* Note that as of Python 2.2, heap-allocated type objects |
| * can go away, but this code requires that they stay alive |
| * until program exit. That's why we're careful with |
| * refcounts here. type_list gets a new reference to tp, |
| * while ownership of the reference type_list used to hold |
| * (if any) was transferred to tp->tp_next in the line above. |
| * tp is thus effectively immortal after this. |
| */ |
| Py_INCREF(tp); |
| type_list = tp; |
| #ifdef Py_TRACE_REFS |
| /* Also insert in the doubly-linked list of all objects, |
| * if not already there. |
| */ |
| _Py_AddToAllObjects((PyObject *)tp, 0); |
| #endif |
| } |
| tp->tp_allocs++; |
| if (tp->tp_allocs - tp->tp_frees > tp->tp_maxalloc) |
| tp->tp_maxalloc = tp->tp_allocs - tp->tp_frees; |
| } |
| |
| void dec_count(PyTypeObject *tp) |
| { |
| tp->tp_frees++; |
| if (unlist_types_without_objects && |
| tp->tp_allocs == tp->tp_frees) { |
| /* unlink the type from type_list */ |
| if (tp->tp_prev) |
| tp->tp_prev->tp_next = tp->tp_next; |
| else |
| type_list = tp->tp_next; |
| if (tp->tp_next) |
| tp->tp_next->tp_prev = tp->tp_prev; |
| tp->tp_next = tp->tp_prev = NULL; |
| Py_DECREF(tp); |
| } |
| } |
| |
| #endif |
| |
| #ifdef Py_REF_DEBUG |
| /* Log a fatal error; doesn't return. */ |
| void |
| _Py_NegativeRefcount(const char *fname, int lineno, PyObject *op) |
| { |
| char buf[300]; |
| |
| PyOS_snprintf(buf, sizeof(buf), |
| "%s:%i object at %p has negative ref count " |
| "%" PY_FORMAT_SIZE_T "d", |
| fname, lineno, op, op->ob_refcnt); |
| Py_FatalError(buf); |
| } |
| |
| #endif /* Py_REF_DEBUG */ |
| |
| void |
| Py_IncRef(PyObject *o) |
| { |
| Py_XINCREF(o); |
| } |
| |
| void |
| Py_DecRef(PyObject *o) |
| { |
| Py_XDECREF(o); |
| } |
| |
| PyObject * |
| PyObject_Init(PyObject *op, PyTypeObject *tp) |
| { |
| if (op == NULL) |
| return PyErr_NoMemory(); |
| /* Any changes should be reflected in PyObject_INIT (objimpl.h) */ |
| Py_TYPE(op) = tp; |
| _Py_NewReference(op); |
| return op; |
| } |
| |
| PyVarObject * |
| PyObject_InitVar(PyVarObject *op, PyTypeObject *tp, Py_ssize_t size) |
| { |
| if (op == NULL) |
| return (PyVarObject *) PyErr_NoMemory(); |
| /* Any changes should be reflected in PyObject_INIT_VAR */ |
| op->ob_size = size; |
| Py_TYPE(op) = tp; |
| _Py_NewReference((PyObject *)op); |
| return op; |
| } |
| |
| PyObject * |
| _PyObject_New(PyTypeObject *tp) |
| { |
| PyObject *op; |
| op = (PyObject *) PyObject_MALLOC(_PyObject_SIZE(tp)); |
| if (op == NULL) |
| return PyErr_NoMemory(); |
| return PyObject_INIT(op, tp); |
| } |
| |
| PyVarObject * |
| _PyObject_NewVar(PyTypeObject *tp, Py_ssize_t nitems) |
| { |
| PyVarObject *op; |
| const size_t size = _PyObject_VAR_SIZE(tp, nitems); |
| op = (PyVarObject *) PyObject_MALLOC(size); |
| if (op == NULL) |
| return (PyVarObject *)PyErr_NoMemory(); |
| return PyObject_INIT_VAR(op, tp, nitems); |
| } |
| |
| void |
| PyObject_CallFinalizer(PyObject *self) |
| { |
| PyTypeObject *tp = Py_TYPE(self); |
| |
| /* The former could happen on heaptypes created from the C API, e.g. |
| PyType_FromSpec(). */ |
| if (!PyType_HasFeature(tp, Py_TPFLAGS_HAVE_FINALIZE) || |
| tp->tp_finalize == NULL) |
| return; |
| /* tp_finalize should only be called once. */ |
| if (PyType_IS_GC(tp) && _PyGC_FINALIZED(self)) |
| return; |
| |
| tp->tp_finalize(self); |
| if (PyType_IS_GC(tp)) |
| _PyGC_SET_FINALIZED(self, 1); |
| } |
| |
| int |
| PyObject_CallFinalizerFromDealloc(PyObject *self) |
| { |
| Py_ssize_t refcnt; |
| |
| /* Temporarily resurrect the object. */ |
| if (self->ob_refcnt != 0) { |
| Py_FatalError("PyObject_CallFinalizerFromDealloc called on " |
| "object with a non-zero refcount"); |
| } |
| self->ob_refcnt = 1; |
| |
| PyObject_CallFinalizer(self); |
| |
| /* Undo the temporary resurrection; can't use DECREF here, it would |
| * cause a recursive call. |
| */ |
| assert(self->ob_refcnt > 0); |
| if (--self->ob_refcnt == 0) |
| return 0; /* this is the normal path out */ |
| |
| /* tp_finalize resurrected it! Make it look like the original Py_DECREF |
| * never happened. |
| */ |
| refcnt = self->ob_refcnt; |
| _Py_NewReference(self); |
| self->ob_refcnt = refcnt; |
| |
| if (PyType_IS_GC(Py_TYPE(self))) { |
| assert(_PyGC_REFS(self) != _PyGC_REFS_UNTRACKED); |
| } |
| /* If Py_REF_DEBUG, _Py_NewReference bumped _Py_RefTotal, so |
| * we need to undo that. */ |
| _Py_DEC_REFTOTAL; |
| /* If Py_TRACE_REFS, _Py_NewReference re-added self to the object |
| * chain, so no more to do there. |
| * If COUNT_ALLOCS, the original decref bumped tp_frees, and |
| * _Py_NewReference bumped tp_allocs: both of those need to be |
| * undone. |
| */ |
| #ifdef COUNT_ALLOCS |
| --Py_TYPE(self)->tp_frees; |
| --Py_TYPE(self)->tp_allocs; |
| #endif |
| return -1; |
| } |
| |
| int |
| PyObject_Print(PyObject *op, FILE *fp, int flags) |
| { |
| int ret = 0; |
| if (PyErr_CheckSignals()) |
| return -1; |
| #ifdef USE_STACKCHECK |
| if (PyOS_CheckStack()) { |
| PyErr_SetString(PyExc_MemoryError, "stack overflow"); |
| return -1; |
| } |
| #endif |
| clearerr(fp); /* Clear any previous error condition */ |
| if (op == NULL) { |
| Py_BEGIN_ALLOW_THREADS |
| fprintf(fp, "<nil>"); |
| Py_END_ALLOW_THREADS |
| } |
| else { |
| if (op->ob_refcnt <= 0) |
| /* XXX(twouters) cast refcount to long until %zd is |
| universally available */ |
| Py_BEGIN_ALLOW_THREADS |
| fprintf(fp, "<refcnt %ld at %p>", |
| (long)op->ob_refcnt, op); |
| Py_END_ALLOW_THREADS |
| else { |
| PyObject *s; |
| if (flags & Py_PRINT_RAW) |
| s = PyObject_Str(op); |
| else |
| s = PyObject_Repr(op); |
| if (s == NULL) |
| ret = -1; |
| else if (PyBytes_Check(s)) { |
| fwrite(PyBytes_AS_STRING(s), 1, |
| PyBytes_GET_SIZE(s), fp); |
| } |
| else if (PyUnicode_Check(s)) { |
| PyObject *t; |
| t = PyUnicode_AsEncodedString(s, "utf-8", "backslashreplace"); |
| if (t == NULL) |
| ret = 0; |
| else { |
| fwrite(PyBytes_AS_STRING(t), 1, |
| PyBytes_GET_SIZE(t), fp); |
| Py_DECREF(t); |
| } |
| } |
| else { |
| PyErr_Format(PyExc_TypeError, |
| "str() or repr() returned '%.100s'", |
| s->ob_type->tp_name); |
| ret = -1; |
| } |
| Py_XDECREF(s); |
| } |
| } |
| if (ret == 0) { |
| if (ferror(fp)) { |
| PyErr_SetFromErrno(PyExc_IOError); |
| clearerr(fp); |
| ret = -1; |
| } |
| } |
| return ret; |
| } |
| |
| /* For debugging convenience. Set a breakpoint here and call it from your DLL */ |
| void |
| _Py_BreakPoint(void) |
| { |
| } |
| |
| |
| /* For debugging convenience. See Misc/gdbinit for some useful gdb hooks */ |
| void |
| _PyObject_Dump(PyObject* op) |
| { |
| if (op == NULL) |
| fprintf(stderr, "NULL\n"); |
| else { |
| #ifdef WITH_THREAD |
| PyGILState_STATE gil; |
| #endif |
| fprintf(stderr, "object : "); |
| #ifdef WITH_THREAD |
| gil = PyGILState_Ensure(); |
| #endif |
| (void)PyObject_Print(op, stderr, 0); |
| #ifdef WITH_THREAD |
| PyGILState_Release(gil); |
| #endif |
| /* XXX(twouters) cast refcount to long until %zd is |
| universally available */ |
| fprintf(stderr, "\n" |
| "type : %s\n" |
| "refcount: %ld\n" |
| "address : %p\n", |
| Py_TYPE(op)==NULL ? "NULL" : Py_TYPE(op)->tp_name, |
| (long)op->ob_refcnt, |
| op); |
| } |
| } |
| |
| PyObject * |
| PyObject_Repr(PyObject *v) |
| { |
| PyObject *res; |
| if (PyErr_CheckSignals()) |
| return NULL; |
| #ifdef USE_STACKCHECK |
| if (PyOS_CheckStack()) { |
| PyErr_SetString(PyExc_MemoryError, "stack overflow"); |
| return NULL; |
| } |
| #endif |
| if (v == NULL) |
| return PyUnicode_FromString("<NULL>"); |
| if (Py_TYPE(v)->tp_repr == NULL) |
| return PyUnicode_FromFormat("<%s object at %p>", |
| v->ob_type->tp_name, v); |
| |
| #ifdef Py_DEBUG |
| /* PyObject_Repr() must not be called with an exception set, |
| because it may clear it (directly or indirectly) and so the |
| caller looses its exception */ |
| assert(!PyErr_Occurred()); |
| #endif |
| |
| res = (*v->ob_type->tp_repr)(v); |
| if (res == NULL) |
| return NULL; |
| if (!PyUnicode_Check(res)) { |
| PyErr_Format(PyExc_TypeError, |
| "__repr__ returned non-string (type %.200s)", |
| res->ob_type->tp_name); |
| Py_DECREF(res); |
| return NULL; |
| } |
| #ifndef Py_DEBUG |
| if (PyUnicode_READY(res) < 0) |
| return NULL; |
| #endif |
| return res; |
| } |
| |
| PyObject * |
| PyObject_Str(PyObject *v) |
| { |
| PyObject *res; |
| if (PyErr_CheckSignals()) |
| return NULL; |
| #ifdef USE_STACKCHECK |
| if (PyOS_CheckStack()) { |
| PyErr_SetString(PyExc_MemoryError, "stack overflow"); |
| return NULL; |
| } |
| #endif |
| if (v == NULL) |
| return PyUnicode_FromString("<NULL>"); |
| |
| if (PyUnicode_CheckExact(v)) { |
| #ifndef Py_DEBUG |
| if (PyUnicode_READY(v) < 0) |
| return NULL; |
| #endif |
| Py_INCREF(v); |
| return v; |
| } |
| if (Py_TYPE(v)->tp_str == NULL) |
| return PyObject_Repr(v); |
| |
| #ifdef Py_DEBUG |
| /* PyObject_Str() must not be called with an exception set, |
| because it may clear it (directly or indirectly) and so the |
| caller looses its exception */ |
| assert(!PyErr_Occurred()); |
| #endif |
| |
| /* It is possible for a type to have a tp_str representation that loops |
| infinitely. */ |
| if (Py_EnterRecursiveCall(" while getting the str of an object")) |
| return NULL; |
| res = (*Py_TYPE(v)->tp_str)(v); |
| Py_LeaveRecursiveCall(); |
| if (res == NULL) |
| return NULL; |
| if (!PyUnicode_Check(res)) { |
| PyErr_Format(PyExc_TypeError, |
| "__str__ returned non-string (type %.200s)", |
| Py_TYPE(res)->tp_name); |
| Py_DECREF(res); |
| return NULL; |
| } |
| #ifndef Py_DEBUG |
| if (PyUnicode_READY(res) < 0) |
| return NULL; |
| #endif |
| assert(_PyUnicode_CheckConsistency(res, 1)); |
| return res; |
| } |
| |
| PyObject * |
| PyObject_ASCII(PyObject *v) |
| { |
| PyObject *repr, *ascii, *res; |
| |
| repr = PyObject_Repr(v); |
| if (repr == NULL) |
| return NULL; |
| |
| if (PyUnicode_IS_ASCII(repr)) |
| return repr; |
| |
| /* repr is guaranteed to be a PyUnicode object by PyObject_Repr */ |
| ascii = _PyUnicode_AsASCIIString(repr, "backslashreplace"); |
| Py_DECREF(repr); |
| if (ascii == NULL) |
| return NULL; |
| |
| res = PyUnicode_DecodeASCII( |
| PyBytes_AS_STRING(ascii), |
| PyBytes_GET_SIZE(ascii), |
| NULL); |
| |
| Py_DECREF(ascii); |
| return res; |
| } |
| |
| PyObject * |
| PyObject_Bytes(PyObject *v) |
| { |
| PyObject *result, *func; |
| _Py_IDENTIFIER(__bytes__); |
| |
| if (v == NULL) |
| return PyBytes_FromString("<NULL>"); |
| |
| if (PyBytes_CheckExact(v)) { |
| Py_INCREF(v); |
| return v; |
| } |
| |
| func = _PyObject_LookupSpecial(v, &PyId___bytes__); |
| if (func != NULL) { |
| result = PyObject_CallFunctionObjArgs(func, NULL); |
| Py_DECREF(func); |
| if (result == NULL) |
| return NULL; |
| if (!PyBytes_Check(result)) { |
| PyErr_Format(PyExc_TypeError, |
| "__bytes__ returned non-bytes (type %.200s)", |
| Py_TYPE(result)->tp_name); |
| Py_DECREF(result); |
| return NULL; |
| } |
| return result; |
| } |
| else if (PyErr_Occurred()) |
| return NULL; |
| return PyBytes_FromObject(v); |
| } |
| |
| /* For Python 3.0.1 and later, the old three-way comparison has been |
| completely removed in favour of rich comparisons. PyObject_Compare() and |
| PyObject_Cmp() are gone, and the builtin cmp function no longer exists. |
| The old tp_compare slot has been renamed to tp_reserved, and should no |
| longer be used. Use tp_richcompare instead. |
| |
| See (*) below for practical amendments. |
| |
| tp_richcompare gets called with a first argument of the appropriate type |
| and a second object of an arbitrary type. We never do any kind of |
| coercion. |
| |
| The tp_richcompare slot should return an object, as follows: |
| |
| NULL if an exception occurred |
| NotImplemented if the requested comparison is not implemented |
| any other false value if the requested comparison is false |
| any other true value if the requested comparison is true |
| |
| The PyObject_RichCompare[Bool]() wrappers raise TypeError when they get |
| NotImplemented. |
| |
| (*) Practical amendments: |
| |
| - If rich comparison returns NotImplemented, == and != are decided by |
| comparing the object pointer (i.e. falling back to the base object |
| implementation). |
| |
| */ |
| |
| /* Map rich comparison operators to their swapped version, e.g. LT <--> GT */ |
| int _Py_SwappedOp[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE}; |
| |
| static char *opstrings[] = {"<", "<=", "==", "!=", ">", ">="}; |
| |
| /* Perform a rich comparison, raising TypeError when the requested comparison |
| operator is not supported. */ |
| static PyObject * |
| do_richcompare(PyObject *v, PyObject *w, int op) |
| { |
| richcmpfunc f; |
| PyObject *res; |
| int checked_reverse_op = 0; |
| |
| if (v->ob_type != w->ob_type && |
| PyType_IsSubtype(w->ob_type, v->ob_type) && |
| (f = w->ob_type->tp_richcompare) != NULL) { |
| checked_reverse_op = 1; |
| res = (*f)(w, v, _Py_SwappedOp[op]); |
| if (res != Py_NotImplemented) |
| return res; |
| Py_DECREF(res); |
| } |
| if ((f = v->ob_type->tp_richcompare) != NULL) { |
| res = (*f)(v, w, op); |
| if (res != Py_NotImplemented) |
| return res; |
| Py_DECREF(res); |
| } |
| if (!checked_reverse_op && (f = w->ob_type->tp_richcompare) != NULL) { |
| res = (*f)(w, v, _Py_SwappedOp[op]); |
| if (res != Py_NotImplemented) |
| return res; |
| Py_DECREF(res); |
| } |
| /* If neither object implements it, provide a sensible default |
| for == and !=, but raise an exception for ordering. */ |
| switch (op) { |
| case Py_EQ: |
| res = (v == w) ? Py_True : Py_False; |
| break; |
| case Py_NE: |
| res = (v != w) ? Py_True : Py_False; |
| break; |
| default: |
| /* XXX Special-case None so it doesn't show as NoneType() */ |
| PyErr_Format(PyExc_TypeError, |
| "unorderable types: %.100s() %s %.100s()", |
| v->ob_type->tp_name, |
| opstrings[op], |
| w->ob_type->tp_name); |
| return NULL; |
| } |
| Py_INCREF(res); |
| return res; |
| } |
| |
| /* Perform a rich comparison with object result. This wraps do_richcompare() |
| with a check for NULL arguments and a recursion check. */ |
| |
| PyObject * |
| PyObject_RichCompare(PyObject *v, PyObject *w, int op) |
| { |
| PyObject *res; |
| |
| assert(Py_LT <= op && op <= Py_GE); |
| if (v == NULL || w == NULL) { |
| if (!PyErr_Occurred()) |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| if (Py_EnterRecursiveCall(" in comparison")) |
| return NULL; |
| res = do_richcompare(v, w, op); |
| Py_LeaveRecursiveCall(); |
| return res; |
| } |
| |
| /* Perform a rich comparison with integer result. This wraps |
| PyObject_RichCompare(), returning -1 for error, 0 for false, 1 for true. */ |
| int |
| PyObject_RichCompareBool(PyObject *v, PyObject *w, int op) |
| { |
| PyObject *res; |
| int ok; |
| |
| /* Quick result when objects are the same. |
| Guarantees that identity implies equality. */ |
| if (v == w) { |
| if (op == Py_EQ) |
| return 1; |
| else if (op == Py_NE) |
| return 0; |
| } |
| |
| res = PyObject_RichCompare(v, w, op); |
| if (res == NULL) |
| return -1; |
| if (PyBool_Check(res)) |
| ok = (res == Py_True); |
| else |
| ok = PyObject_IsTrue(res); |
| Py_DECREF(res); |
| return ok; |
| } |
| |
| /* Set of hash utility functions to help maintaining the invariant that |
| if a==b then hash(a)==hash(b) |
| |
| All the utility functions (_Py_Hash*()) return "-1" to signify an error. |
| */ |
| |
| /* For numeric types, the hash of a number x is based on the reduction |
| of x modulo the prime P = 2**_PyHASH_BITS - 1. It's designed so that |
| hash(x) == hash(y) whenever x and y are numerically equal, even if |
| x and y have different types. |
| |
| A quick summary of the hashing strategy: |
| |
| (1) First define the 'reduction of x modulo P' for any rational |
| number x; this is a standard extension of the usual notion of |
| reduction modulo P for integers. If x == p/q (written in lowest |
| terms), the reduction is interpreted as the reduction of p times |
| the inverse of the reduction of q, all modulo P; if q is exactly |
| divisible by P then define the reduction to be infinity. So we've |
| got a well-defined map |
| |
| reduce : { rational numbers } -> { 0, 1, 2, ..., P-1, infinity }. |
| |
| (2) Now for a rational number x, define hash(x) by: |
| |
| reduce(x) if x >= 0 |
| -reduce(-x) if x < 0 |
| |
| If the result of the reduction is infinity (this is impossible for |
| integers, floats and Decimals) then use the predefined hash value |
| _PyHASH_INF for x >= 0, or -_PyHASH_INF for x < 0, instead. |
| _PyHASH_INF, -_PyHASH_INF and _PyHASH_NAN are also used for the |
| hashes of float and Decimal infinities and nans. |
| |
| A selling point for the above strategy is that it makes it possible |
| to compute hashes of decimal and binary floating-point numbers |
| efficiently, even if the exponent of the binary or decimal number |
| is large. The key point is that |
| |
| reduce(x * y) == reduce(x) * reduce(y) (modulo _PyHASH_MODULUS) |
| |
| provided that {reduce(x), reduce(y)} != {0, infinity}. The reduction of a |
| binary or decimal float is never infinity, since the denominator is a power |
| of 2 (for binary) or a divisor of a power of 10 (for decimal). So we have, |
| for nonnegative x, |
| |
| reduce(x * 2**e) == reduce(x) * reduce(2**e) % _PyHASH_MODULUS |
| |
| reduce(x * 10**e) == reduce(x) * reduce(10**e) % _PyHASH_MODULUS |
| |
| and reduce(10**e) can be computed efficiently by the usual modular |
| exponentiation algorithm. For reduce(2**e) it's even better: since |
| P is of the form 2**n-1, reduce(2**e) is 2**(e mod n), and multiplication |
| by 2**(e mod n) modulo 2**n-1 just amounts to a rotation of bits. |
| |
| */ |
| |
| Py_hash_t |
| _Py_HashDouble(double v) |
| { |
| int e, sign; |
| double m; |
| Py_uhash_t x, y; |
| |
| if (!Py_IS_FINITE(v)) { |
| if (Py_IS_INFINITY(v)) |
| return v > 0 ? _PyHASH_INF : -_PyHASH_INF; |
| else |
| return _PyHASH_NAN; |
| } |
| |
| m = frexp(v, &e); |
| |
| sign = 1; |
| if (m < 0) { |
| sign = -1; |
| m = -m; |
| } |
| |
| /* process 28 bits at a time; this should work well both for binary |
| and hexadecimal floating point. */ |
| x = 0; |
| while (m) { |
| x = ((x << 28) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - 28); |
| m *= 268435456.0; /* 2**28 */ |
| e -= 28; |
| y = (Py_uhash_t)m; /* pull out integer part */ |
| m -= y; |
| x += y; |
| if (x >= _PyHASH_MODULUS) |
| x -= _PyHASH_MODULUS; |
| } |
| |
| /* adjust for the exponent; first reduce it modulo _PyHASH_BITS */ |
| e = e >= 0 ? e % _PyHASH_BITS : _PyHASH_BITS-1-((-1-e) % _PyHASH_BITS); |
| x = ((x << e) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - e); |
| |
| x = x * sign; |
| if (x == (Py_uhash_t)-1) |
| x = (Py_uhash_t)-2; |
| return (Py_hash_t)x; |
| } |
| |
| Py_hash_t |
| _Py_HashPointer(void *p) |
| { |
| Py_hash_t x; |
| size_t y = (size_t)p; |
| /* bottom 3 or 4 bits are likely to be 0; rotate y by 4 to avoid |
| excessive hash collisions for dicts and sets */ |
| y = (y >> 4) | (y << (8 * SIZEOF_VOID_P - 4)); |
| x = (Py_hash_t)y; |
| if (x == -1) |
| x = -2; |
| return x; |
| } |
| |
| Py_hash_t |
| _Py_HashBytes(unsigned char *p, Py_ssize_t len) |
| { |
| Py_uhash_t x; |
| Py_ssize_t i; |
| |
| /* |
| We make the hash of the empty string be 0, rather than using |
| (prefix ^ suffix), since this slightly obfuscates the hash secret |
| */ |
| #ifdef Py_DEBUG |
| assert(_Py_HashSecret_Initialized); |
| #endif |
| if (len == 0) { |
| return 0; |
| } |
| x = (Py_uhash_t) _Py_HashSecret.prefix; |
| x ^= (Py_uhash_t) *p << 7; |
| for (i = 0; i < len; i++) |
| x = (_PyHASH_MULTIPLIER * x) ^ (Py_uhash_t) *p++; |
| x ^= (Py_uhash_t) len; |
| x ^= (Py_uhash_t) _Py_HashSecret.suffix; |
| if (x == -1) |
| x = -2; |
| return x; |
| } |
| |
| Py_hash_t |
| PyObject_HashNotImplemented(PyObject *v) |
| { |
| PyErr_Format(PyExc_TypeError, "unhashable type: '%.200s'", |
| Py_TYPE(v)->tp_name); |
| return -1; |
| } |
| |
| _Py_HashSecret_t _Py_HashSecret; |
| |
| Py_hash_t |
| PyObject_Hash(PyObject *v) |
| { |
| PyTypeObject *tp = Py_TYPE(v); |
| if (tp->tp_hash != NULL) |
| return (*tp->tp_hash)(v); |
| /* To keep to the general practice that inheriting |
| * solely from object in C code should work without |
| * an explicit call to PyType_Ready, we implicitly call |
| * PyType_Ready here and then check the tp_hash slot again |
| */ |
| if (tp->tp_dict == NULL) { |
| if (PyType_Ready(tp) < 0) |
| return -1; |
| if (tp->tp_hash != NULL) |
| return (*tp->tp_hash)(v); |
| } |
| /* Otherwise, the object can't be hashed */ |
| return PyObject_HashNotImplemented(v); |
| } |
| |
| PyObject * |
| PyObject_GetAttrString(PyObject *v, const char *name) |
| { |
| PyObject *w, *res; |
| |
| if (Py_TYPE(v)->tp_getattr != NULL) |
| return (*Py_TYPE(v)->tp_getattr)(v, (char*)name); |
| w = PyUnicode_InternFromString(name); |
| if (w == NULL) |
| return NULL; |
| res = PyObject_GetAttr(v, w); |
| Py_DECREF(w); |
| return res; |
| } |
| |
| int |
| PyObject_HasAttrString(PyObject *v, const char *name) |
| { |
| PyObject *res = PyObject_GetAttrString(v, name); |
| if (res != NULL) { |
| Py_DECREF(res); |
| return 1; |
| } |
| PyErr_Clear(); |
| return 0; |
| } |
| |
| int |
| PyObject_SetAttrString(PyObject *v, const char *name, PyObject *w) |
| { |
| PyObject *s; |
| int res; |
| |
| if (Py_TYPE(v)->tp_setattr != NULL) |
| return (*Py_TYPE(v)->tp_setattr)(v, (char*)name, w); |
| s = PyUnicode_InternFromString(name); |
| if (s == NULL) |
| return -1; |
| res = PyObject_SetAttr(v, s, w); |
| Py_XDECREF(s); |
| return res; |
| } |
| |
| int |
| _PyObject_IsAbstract(PyObject *obj) |
| { |
| int res; |
| PyObject* isabstract; |
| _Py_IDENTIFIER(__isabstractmethod__); |
| |
| if (obj == NULL) |
| return 0; |
| |
| isabstract = _PyObject_GetAttrId(obj, &PyId___isabstractmethod__); |
| if (isabstract == NULL) { |
| if (PyErr_ExceptionMatches(PyExc_AttributeError)) { |
| PyErr_Clear(); |
| return 0; |
| } |
| return -1; |
| } |
| res = PyObject_IsTrue(isabstract); |
| Py_DECREF(isabstract); |
| return res; |
| } |
| |
| PyObject * |
| _PyObject_GetAttrId(PyObject *v, _Py_Identifier *name) |
| { |
| PyObject *result; |
| PyObject *oname = _PyUnicode_FromId(name); /* borrowed */ |
| if (!oname) |
| return NULL; |
| result = PyObject_GetAttr(v, oname); |
| return result; |
| } |
| |
| int |
| _PyObject_HasAttrId(PyObject *v, _Py_Identifier *name) |
| { |
| int result; |
| PyObject *oname = _PyUnicode_FromId(name); /* borrowed */ |
| if (!oname) |
| return -1; |
| result = PyObject_HasAttr(v, oname); |
| return result; |
| } |
| |
| int |
| _PyObject_SetAttrId(PyObject *v, _Py_Identifier *name, PyObject *w) |
| { |
| int result; |
| PyObject *oname = _PyUnicode_FromId(name); /* borrowed */ |
| if (!oname) |
| return -1; |
| result = PyObject_SetAttr(v, oname, w); |
| return result; |
| } |
| |
| PyObject * |
| PyObject_GetAttr(PyObject *v, PyObject *name) |
| { |
| PyTypeObject *tp = Py_TYPE(v); |
| |
| if (!PyUnicode_Check(name)) { |
| PyErr_Format(PyExc_TypeError, |
| "attribute name must be string, not '%.200s'", |
| name->ob_type->tp_name); |
| return NULL; |
| } |
| if (tp->tp_getattro != NULL) |
| return (*tp->tp_getattro)(v, name); |
| if (tp->tp_getattr != NULL) { |
| char *name_str = _PyUnicode_AsString(name); |
| if (name_str == NULL) |
| return NULL; |
| return (*tp->tp_getattr)(v, name_str); |
| } |
| PyErr_Format(PyExc_AttributeError, |
| "'%.50s' object has no attribute '%U'", |
| tp->tp_name, name); |
| return NULL; |
| } |
| |
| int |
| PyObject_HasAttr(PyObject *v, PyObject *name) |
| { |
| PyObject *res = PyObject_GetAttr(v, name); |
| if (res != NULL) { |
| Py_DECREF(res); |
| return 1; |
| } |
| PyErr_Clear(); |
| return 0; |
| } |
| |
| int |
| PyObject_SetAttr(PyObject *v, PyObject *name, PyObject *value) |
| { |
| PyTypeObject *tp = Py_TYPE(v); |
| int err; |
| |
| if (!PyUnicode_Check(name)) { |
| PyErr_Format(PyExc_TypeError, |
| "attribute name must be string, not '%.200s'", |
| name->ob_type->tp_name); |
| return -1; |
| } |
| Py_INCREF(name); |
| |
| PyUnicode_InternInPlace(&name); |
| if (tp->tp_setattro != NULL) { |
| err = (*tp->tp_setattro)(v, name, value); |
| Py_DECREF(name); |
| return err; |
| } |
| if (tp->tp_setattr != NULL) { |
| char *name_str = _PyUnicode_AsString(name); |
| if (name_str == NULL) |
| return -1; |
| err = (*tp->tp_setattr)(v, name_str, value); |
| Py_DECREF(name); |
| return err; |
| } |
| Py_DECREF(name); |
| assert(name->ob_refcnt >= 1); |
| if (tp->tp_getattr == NULL && tp->tp_getattro == NULL) |
| PyErr_Format(PyExc_TypeError, |
| "'%.100s' object has no attributes " |
| "(%s .%U)", |
| tp->tp_name, |
| value==NULL ? "del" : "assign to", |
| name); |
| else |
| PyErr_Format(PyExc_TypeError, |
| "'%.100s' object has only read-only attributes " |
| "(%s .%U)", |
| tp->tp_name, |
| value==NULL ? "del" : "assign to", |
| name); |
| return -1; |
| } |
| |
| /* Helper to get a pointer to an object's __dict__ slot, if any */ |
| |
| PyObject ** |
| _PyObject_GetDictPtr(PyObject *obj) |
| { |
| Py_ssize_t dictoffset; |
| PyTypeObject *tp = Py_TYPE(obj); |
| |
| dictoffset = tp->tp_dictoffset; |
| if (dictoffset == 0) |
| return NULL; |
| if (dictoffset < 0) { |
| Py_ssize_t tsize; |
| size_t size; |
| |
| tsize = ((PyVarObject *)obj)->ob_size; |
| if (tsize < 0) |
| tsize = -tsize; |
| size = _PyObject_VAR_SIZE(tp, tsize); |
| |
| dictoffset += (long)size; |
| assert(dictoffset > 0); |
| assert(dictoffset % SIZEOF_VOID_P == 0); |
| } |
| return (PyObject **) ((char *)obj + dictoffset); |
| } |
| |
| PyObject * |
| PyObject_SelfIter(PyObject *obj) |
| { |
| Py_INCREF(obj); |
| return obj; |
| } |
| |
| /* Convenience function to get a builtin from its name */ |
| PyObject * |
| _PyObject_GetBuiltin(const char *name) |
| { |
| PyObject *mod, *attr; |
| mod = PyImport_ImportModule("builtins"); |
| if (mod == NULL) |
| return NULL; |
| attr = PyObject_GetAttrString(mod, name); |
| Py_DECREF(mod); |
| return attr; |
| } |
| |
| /* Helper used when the __next__ method is removed from a type: |
| tp_iternext is never NULL and can be safely called without checking |
| on every iteration. |
| */ |
| |
| PyObject * |
| _PyObject_NextNotImplemented(PyObject *self) |
| { |
| PyErr_Format(PyExc_TypeError, |
| "'%.200s' object is not iterable", |
| Py_TYPE(self)->tp_name); |
| return NULL; |
| } |
| |
| /* Generic GetAttr functions - put these in your tp_[gs]etattro slot */ |
| |
| PyObject * |
| _PyObject_GenericGetAttrWithDict(PyObject *obj, PyObject *name, PyObject *dict) |
| { |
| PyTypeObject *tp = Py_TYPE(obj); |
| PyObject *descr = NULL; |
| PyObject *res = NULL; |
| descrgetfunc f; |
| Py_ssize_t dictoffset; |
| PyObject **dictptr; |
| |
| if (!PyUnicode_Check(name)){ |
| PyErr_Format(PyExc_TypeError, |
| "attribute name must be string, not '%.200s'", |
| name->ob_type->tp_name); |
| return NULL; |
| } |
| else |
| Py_INCREF(name); |
| |
| if (tp->tp_dict == NULL) { |
| if (PyType_Ready(tp) < 0) |
| goto done; |
| } |
| |
| descr = _PyType_Lookup(tp, name); |
| Py_XINCREF(descr); |
| |
| f = NULL; |
| if (descr != NULL) { |
| f = descr->ob_type->tp_descr_get; |
| if (f != NULL && PyDescr_IsData(descr)) { |
| res = f(descr, obj, (PyObject *)obj->ob_type); |
| goto done; |
| } |
| } |
| |
| if (dict == NULL) { |
| /* Inline _PyObject_GetDictPtr */ |
| dictoffset = tp->tp_dictoffset; |
| if (dictoffset != 0) { |
| if (dictoffset < 0) { |
| Py_ssize_t tsize; |
| size_t size; |
| |
| tsize = ((PyVarObject *)obj)->ob_size; |
| if (tsize < 0) |
| tsize = -tsize; |
| size = _PyObject_VAR_SIZE(tp, tsize); |
| |
| dictoffset += (long)size; |
| assert(dictoffset > 0); |
| assert(dictoffset % SIZEOF_VOID_P == 0); |
| } |
| dictptr = (PyObject **) ((char *)obj + dictoffset); |
| dict = *dictptr; |
| } |
| } |
| if (dict != NULL) { |
| Py_INCREF(dict); |
| res = PyDict_GetItem(dict, name); |
| if (res != NULL) { |
| Py_INCREF(res); |
| Py_DECREF(dict); |
| goto done; |
| } |
| Py_DECREF(dict); |
| } |
| |
| if (f != NULL) { |
| res = f(descr, obj, (PyObject *)Py_TYPE(obj)); |
| goto done; |
| } |
| |
| if (descr != NULL) { |
| res = descr; |
| descr = NULL; |
| goto done; |
| } |
| |
| PyErr_Format(PyExc_AttributeError, |
| "'%.50s' object has no attribute '%U'", |
| tp->tp_name, name); |
| done: |
| Py_XDECREF(descr); |
| Py_DECREF(name); |
| return res; |
| } |
| |
| PyObject * |
| PyObject_GenericGetAttr(PyObject *obj, PyObject *name) |
| { |
| return _PyObject_GenericGetAttrWithDict(obj, name, NULL); |
| } |
| |
| int |
| _PyObject_GenericSetAttrWithDict(PyObject *obj, PyObject *name, |
| PyObject *value, PyObject *dict) |
| { |
| PyTypeObject *tp = Py_TYPE(obj); |
| PyObject *descr; |
| descrsetfunc f; |
| PyObject **dictptr; |
| int res = -1; |
| |
| if (!PyUnicode_Check(name)){ |
| PyErr_Format(PyExc_TypeError, |
| "attribute name must be string, not '%.200s'", |
| name->ob_type->tp_name); |
| return -1; |
| } |
| |
| if (tp->tp_dict == NULL && PyType_Ready(tp) < 0) |
| return -1; |
| |
| Py_INCREF(name); |
| |
| descr = _PyType_Lookup(tp, name); |
| Py_XINCREF(descr); |
| |
| f = NULL; |
| if (descr != NULL) { |
| f = descr->ob_type->tp_descr_set; |
| if (f != NULL && PyDescr_IsData(descr)) { |
| res = f(descr, obj, value); |
| goto done; |
| } |
| } |
| |
| if (dict == NULL) { |
| dictptr = _PyObject_GetDictPtr(obj); |
| if (dictptr != NULL) { |
| res = _PyObjectDict_SetItem(Py_TYPE(obj), dictptr, name, value); |
| if (res < 0 && PyErr_ExceptionMatches(PyExc_KeyError)) |
| PyErr_SetObject(PyExc_AttributeError, name); |
| goto done; |
| } |
| } |
| if (dict != NULL) { |
| Py_INCREF(dict); |
| if (value == NULL) |
| res = PyDict_DelItem(dict, name); |
| else |
| res = PyDict_SetItem(dict, name, value); |
| Py_DECREF(dict); |
| if (res < 0 && PyErr_ExceptionMatches(PyExc_KeyError)) |
| PyErr_SetObject(PyExc_AttributeError, name); |
| goto done; |
| } |
| |
| if (f != NULL) { |
| res = f(descr, obj, value); |
| goto done; |
| } |
| |
| if (descr == NULL) { |
| PyErr_Format(PyExc_AttributeError, |
| "'%.100s' object has no attribute '%U'", |
| tp->tp_name, name); |
| goto done; |
| } |
| |
| PyErr_Format(PyExc_AttributeError, |
| "'%.50s' object attribute '%U' is read-only", |
| tp->tp_name, name); |
| done: |
| Py_XDECREF(descr); |
| Py_DECREF(name); |
| return res; |
| } |
| |
| int |
| PyObject_GenericSetAttr(PyObject *obj, PyObject *name, PyObject *value) |
| { |
| return _PyObject_GenericSetAttrWithDict(obj, name, value, NULL); |
| } |
| |
| int |
| PyObject_GenericSetDict(PyObject *obj, PyObject *value, void *context) |
| { |
| PyObject *dict, **dictptr = _PyObject_GetDictPtr(obj); |
| if (dictptr == NULL) { |
| PyErr_SetString(PyExc_AttributeError, |
| "This object has no __dict__"); |
| return -1; |
| } |
| if (value == NULL) { |
| PyErr_SetString(PyExc_TypeError, "cannot delete __dict__"); |
| return -1; |
| } |
| if (!PyDict_Check(value)) { |
| PyErr_Format(PyExc_TypeError, |
| "__dict__ must be set to a dictionary, " |
| "not a '%.200s'", Py_TYPE(value)->tp_name); |
| return -1; |
| } |
| dict = *dictptr; |
| Py_XINCREF(value); |
| *dictptr = value; |
| Py_XDECREF(dict); |
| return 0; |
| } |
| |
| |
| /* Test a value used as condition, e.g., in a for or if statement. |
| Return -1 if an error occurred */ |
| |
| int |
| PyObject_IsTrue(PyObject *v) |
| { |
| Py_ssize_t res; |
| if (v == Py_True) |
| return 1; |
| if (v == Py_False) |
| return 0; |
| if (v == Py_None) |
| return 0; |
| else if (v->ob_type->tp_as_number != NULL && |
| v->ob_type->tp_as_number->nb_bool != NULL) |
| res = (*v->ob_type->tp_as_number->nb_bool)(v); |
| else if (v->ob_type->tp_as_mapping != NULL && |
| v->ob_type->tp_as_mapping->mp_length != NULL) |
| res = (*v->ob_type->tp_as_mapping->mp_length)(v); |
| else if (v->ob_type->tp_as_sequence != NULL && |
| v->ob_type->tp_as_sequence->sq_length != NULL) |
| res = (*v->ob_type->tp_as_sequence->sq_length)(v); |
| else |
| return 1; |
| /* if it is negative, it should be either -1 or -2 */ |
| return (res > 0) ? 1 : Py_SAFE_DOWNCAST(res, Py_ssize_t, int); |
| } |
| |
| /* equivalent of 'not v' |
| Return -1 if an error occurred */ |
| |
| int |
| PyObject_Not(PyObject *v) |
| { |
| int res; |
| res = PyObject_IsTrue(v); |
| if (res < 0) |
| return res; |
| return res == 0; |
| } |
| |
| /* Test whether an object can be called */ |
| |
| int |
| PyCallable_Check(PyObject *x) |
| { |
| if (x == NULL) |
| return 0; |
| return x->ob_type->tp_call != NULL; |
| } |
| |
| |
| /* Helper for PyObject_Dir without arguments: returns the local scope. */ |
| static PyObject * |
| _dir_locals(void) |
| { |
| PyObject *names; |
| PyObject *locals = PyEval_GetLocals(); |
| |
| if (locals == NULL) { |
| PyErr_SetString(PyExc_SystemError, "frame does not exist"); |
| return NULL; |
| } |
| |
| names = PyMapping_Keys(locals); |
| if (!names) |
| return NULL; |
| if (!PyList_Check(names)) { |
| PyErr_Format(PyExc_TypeError, |
| "dir(): expected keys() of locals to be a list, " |
| "not '%.200s'", Py_TYPE(names)->tp_name); |
| Py_DECREF(names); |
| return NULL; |
| } |
| if (PyList_Sort(names)) { |
| Py_DECREF(names); |
| return NULL; |
| } |
| /* the locals don't need to be DECREF'd */ |
| return names; |
| } |
| |
| /* Helper for PyObject_Dir: object introspection. */ |
| static PyObject * |
| _dir_object(PyObject *obj) |
| { |
| PyObject *result, *sorted; |
| _Py_IDENTIFIER(__dir__); |
| PyObject *dirfunc = _PyObject_LookupSpecial(obj, &PyId___dir__); |
| |
| assert(obj); |
| if (dirfunc == NULL) { |
| if (!PyErr_Occurred()) |
| PyErr_SetString(PyExc_TypeError, "object does not provide __dir__"); |
| return NULL; |
| } |
| /* use __dir__ */ |
| result = PyObject_CallFunctionObjArgs(dirfunc, NULL); |
| Py_DECREF(dirfunc); |
| if (result == NULL) |
| return NULL; |
| /* return sorted(result) */ |
| sorted = PySequence_List(result); |
| Py_DECREF(result); |
| if (sorted == NULL) |
| return NULL; |
| if (PyList_Sort(sorted)) { |
| Py_DECREF(sorted); |
| return NULL; |
| } |
| return sorted; |
| } |
| |
| /* Implementation of dir() -- if obj is NULL, returns the names in the current |
| (local) scope. Otherwise, performs introspection of the object: returns a |
| sorted list of attribute names (supposedly) accessible from the object |
| */ |
| PyObject * |
| PyObject_Dir(PyObject *obj) |
| { |
| return (obj == NULL) ? _dir_locals() : _dir_object(obj); |
| } |
| |
| /* |
| None is a non-NULL undefined value. |
| There is (and should be!) no way to create other objects of this type, |
| so there is exactly one (which is indestructible, by the way). |
| */ |
| |
| /* ARGSUSED */ |
| static PyObject * |
| none_repr(PyObject *op) |
| { |
| return PyUnicode_FromString("None"); |
| } |
| |
| /* ARGUSED */ |
| static void |
| none_dealloc(PyObject* ignore) |
| { |
| /* This should never get called, but we also don't want to SEGV if |
| * we accidentally decref None out of existence. |
| */ |
| Py_FatalError("deallocating None"); |
| } |
| |
| static PyObject * |
| none_new(PyTypeObject *type, PyObject *args, PyObject *kwargs) |
| { |
| if (PyTuple_GET_SIZE(args) || (kwargs && PyDict_Size(kwargs))) { |
| PyErr_SetString(PyExc_TypeError, "NoneType takes no arguments"); |
| return NULL; |
| } |
| Py_RETURN_NONE; |
| } |
| |
| static int |
| none_bool(PyObject *v) |
| { |
| return 0; |
| } |
| |
| static PyNumberMethods none_as_number = { |
| 0, /* nb_add */ |
| 0, /* nb_subtract */ |
| 0, /* nb_multiply */ |
| 0, /* nb_remainder */ |
| 0, /* nb_divmod */ |
| 0, /* nb_power */ |
| 0, /* nb_negative */ |
| 0, /* nb_positive */ |
| 0, /* nb_absolute */ |
| (inquiry)none_bool, /* nb_bool */ |
| 0, /* nb_invert */ |
| 0, /* nb_lshift */ |
| 0, /* nb_rshift */ |
| 0, /* nb_and */ |
| 0, /* nb_xor */ |
| 0, /* nb_or */ |
| 0, /* nb_int */ |
| 0, /* nb_reserved */ |
| 0, /* nb_float */ |
| 0, /* nb_inplace_add */ |
| 0, /* nb_inplace_subtract */ |
| 0, /* nb_inplace_multiply */ |
| 0, /* nb_inplace_remainder */ |
| 0, /* nb_inplace_power */ |
| 0, /* nb_inplace_lshift */ |
| 0, /* nb_inplace_rshift */ |
| 0, /* nb_inplace_and */ |
| 0, /* nb_inplace_xor */ |
| 0, /* nb_inplace_or */ |
| 0, /* nb_floor_divide */ |
| 0, /* nb_true_divide */ |
| 0, /* nb_inplace_floor_divide */ |
| 0, /* nb_inplace_true_divide */ |
| 0, /* nb_index */ |
| }; |
| |
| static PyTypeObject PyNone_Type = { |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) |
| "NoneType", |
| 0, |
| 0, |
| none_dealloc, /*tp_dealloc*/ /*never called*/ |
| 0, /*tp_print*/ |
| 0, /*tp_getattr*/ |
| 0, /*tp_setattr*/ |
| 0, /*tp_reserved*/ |
| none_repr, /*tp_repr*/ |
| &none_as_number, /*tp_as_number*/ |
| 0, /*tp_as_sequence*/ |
| 0, /*tp_as_mapping*/ |
| 0, /*tp_hash */ |
| 0, /*tp_call */ |
| 0, /*tp_str */ |
| 0, /*tp_getattro */ |
| 0, /*tp_setattro */ |
| 0, /*tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT, /*tp_flags */ |
| 0, /*tp_doc */ |
| 0, /*tp_traverse */ |
| 0, /*tp_clear */ |
| 0, /*tp_richcompare */ |
| 0, /*tp_weaklistoffset */ |
| 0, /*tp_iter */ |
| 0, /*tp_iternext */ |
| 0, /*tp_methods */ |
| 0, /*tp_members */ |
| 0, /*tp_getset */ |
| 0, /*tp_base */ |
| 0, /*tp_dict */ |
| 0, /*tp_descr_get */ |
| 0, /*tp_descr_set */ |
| 0, /*tp_dictoffset */ |
| 0, /*tp_init */ |
| 0, /*tp_alloc */ |
| none_new, /*tp_new */ |
| }; |
| |
| PyObject _Py_NoneStruct = { |
| _PyObject_EXTRA_INIT |
| 1, &PyNone_Type |
| }; |
| |
| /* NotImplemented is an object that can be used to signal that an |
| operation is not implemented for the given type combination. */ |
| |
| static PyObject * |
| NotImplemented_repr(PyObject *op) |
| { |
| return PyUnicode_FromString("NotImplemented"); |
| } |
| |
| static PyObject * |
| notimplemented_new(PyTypeObject *type, PyObject *args, PyObject *kwargs) |
| { |
| if (PyTuple_GET_SIZE(args) || (kwargs && PyDict_Size(kwargs))) { |
| PyErr_SetString(PyExc_TypeError, "NotImplementedType takes no arguments"); |
| return NULL; |
| } |
| Py_RETURN_NOTIMPLEMENTED; |
| } |
| |
| static void |
| notimplemented_dealloc(PyObject* ignore) |
| { |
| /* This should never get called, but we also don't want to SEGV if |
| * we accidentally decref NotImplemented out of existence. |
| */ |
| Py_FatalError("deallocating NotImplemented"); |
| } |
| |
| static PyTypeObject PyNotImplemented_Type = { |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) |
| "NotImplementedType", |
| 0, |
| 0, |
| notimplemented_dealloc, /*tp_dealloc*/ /*never called*/ |
| 0, /*tp_print*/ |
| 0, /*tp_getattr*/ |
| 0, /*tp_setattr*/ |
| 0, /*tp_reserved*/ |
| NotImplemented_repr, /*tp_repr*/ |
| 0, /*tp_as_number*/ |
| 0, /*tp_as_sequence*/ |
| 0, /*tp_as_mapping*/ |
| 0, /*tp_hash */ |
| 0, /*tp_call */ |
| 0, /*tp_str */ |
| 0, /*tp_getattro */ |
| 0, /*tp_setattro */ |
| 0, /*tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT, /*tp_flags */ |
| 0, /*tp_doc */ |
| 0, /*tp_traverse */ |
| 0, /*tp_clear */ |
| 0, /*tp_richcompare */ |
| 0, /*tp_weaklistoffset */ |
| 0, /*tp_iter */ |
| 0, /*tp_iternext */ |
| 0, /*tp_methods */ |
| 0, /*tp_members */ |
| 0, /*tp_getset */ |
| 0, /*tp_base */ |
| 0, /*tp_dict */ |
| 0, /*tp_descr_get */ |
| 0, /*tp_descr_set */ |
| 0, /*tp_dictoffset */ |
| 0, /*tp_init */ |
| 0, /*tp_alloc */ |
| notimplemented_new, /*tp_new */ |
| }; |
| |
| PyObject _Py_NotImplementedStruct = { |
| _PyObject_EXTRA_INIT |
| 1, &PyNotImplemented_Type |
| }; |
| |
| void |
| _Py_ReadyTypes(void) |
| { |
| if (PyType_Ready(&PyType_Type) < 0) |
| Py_FatalError("Can't initialize type type"); |
| |
| if (PyType_Ready(&_PyWeakref_RefType) < 0) |
| Py_FatalError("Can't initialize weakref type"); |
| |
| if (PyType_Ready(&_PyWeakref_CallableProxyType) < 0) |
| Py_FatalError("Can't initialize callable weakref proxy type"); |
| |
| if (PyType_Ready(&_PyWeakref_ProxyType) < 0) |
| Py_FatalError("Can't initialize weakref proxy type"); |
| |
| if (PyType_Ready(&PyBool_Type) < 0) |
| Py_FatalError("Can't initialize bool type"); |
| |
| if (PyType_Ready(&PyByteArray_Type) < 0) |
| Py_FatalError("Can't initialize bytearray type"); |
| |
| if (PyType_Ready(&PyBytes_Type) < 0) |
| Py_FatalError("Can't initialize 'str'"); |
| |
| if (PyType_Ready(&PyList_Type) < 0) |
| Py_FatalError("Can't initialize list type"); |
| |
| if (PyType_Ready(&PyNone_Type) < 0) |
| Py_FatalError("Can't initialize None type"); |
| |
| if (PyType_Ready(&PyNotImplemented_Type) < 0) |
| Py_FatalError("Can't initialize NotImplemented type"); |
| |
| if (PyType_Ready(&PyTraceBack_Type) < 0) |
| Py_FatalError("Can't initialize traceback type"); |
| |
| if (PyType_Ready(&PySuper_Type) < 0) |
| Py_FatalError("Can't initialize super type"); |
| |
| if (PyType_Ready(&PyBaseObject_Type) < 0) |
| Py_FatalError("Can't initialize object type"); |
| |
| if (PyType_Ready(&PyRange_Type) < 0) |
| Py_FatalError("Can't initialize range type"); |
| |
| if (PyType_Ready(&PyDict_Type) < 0) |
| Py_FatalError("Can't initialize dict type"); |
| |
| if (PyType_Ready(&PySet_Type) < 0) |
| Py_FatalError("Can't initialize set type"); |
| |
| if (PyType_Ready(&PyUnicode_Type) < 0) |
| Py_FatalError("Can't initialize str type"); |
| |
| if (PyType_Ready(&PySlice_Type) < 0) |
| Py_FatalError("Can't initialize slice type"); |
| |
| if (PyType_Ready(&PyStaticMethod_Type) < 0) |
| Py_FatalError("Can't initialize static method type"); |
| |
| if (PyType_Ready(&PyComplex_Type) < 0) |
| Py_FatalError("Can't initialize complex type"); |
| |
| if (PyType_Ready(&PyFloat_Type) < 0) |
| Py_FatalError("Can't initialize float type"); |
| |
| if (PyType_Ready(&PyLong_Type) < 0) |
| Py_FatalError("Can't initialize int type"); |
| |
| if (PyType_Ready(&PyFrozenSet_Type) < 0) |
| Py_FatalError("Can't initialize frozenset type"); |
| |
| if (PyType_Ready(&PyProperty_Type) < 0) |
| Py_FatalError("Can't initialize property type"); |
| |
| if (PyType_Ready(&_PyManagedBuffer_Type) < 0) |
| Py_FatalError("Can't initialize managed buffer type"); |
| |
| if (PyType_Ready(&PyMemoryView_Type) < 0) |
| Py_FatalError("Can't initialize memoryview type"); |
| |
| if (PyType_Ready(&PyTuple_Type) < 0) |
| Py_FatalError("Can't initialize tuple type"); |
| |
| if (PyType_Ready(&PyEnum_Type) < 0) |
| Py_FatalError("Can't initialize enumerate type"); |
| |
| if (PyType_Ready(&PyReversed_Type) < 0) |
| Py_FatalError("Can't initialize reversed type"); |
| |
| if (PyType_Ready(&PyStdPrinter_Type) < 0) |
| Py_FatalError("Can't initialize StdPrinter"); |
| |
| if (PyType_Ready(&PyCode_Type) < 0) |
| Py_FatalError("Can't initialize code type"); |
| |
| if (PyType_Ready(&PyFrame_Type) < 0) |
| Py_FatalError("Can't initialize frame type"); |
| |
| if (PyType_Ready(&PyCFunction_Type) < 0) |
| Py_FatalError("Can't initialize builtin function type"); |
| |
| if (PyType_Ready(&PyMethod_Type) < 0) |
| Py_FatalError("Can't initialize method type"); |
| |
| if (PyType_Ready(&PyFunction_Type) < 0) |
| Py_FatalError("Can't initialize function type"); |
| |
| if (PyType_Ready(&PyDictProxy_Type) < 0) |
| Py_FatalError("Can't initialize dict proxy type"); |
| |
| if (PyType_Ready(&PyGen_Type) < 0) |
| Py_FatalError("Can't initialize generator type"); |
| |
| if (PyType_Ready(&PyGetSetDescr_Type) < 0) |
| Py_FatalError("Can't initialize get-set descriptor type"); |
| |
| if (PyType_Ready(&PyWrapperDescr_Type) < 0) |
| Py_FatalError("Can't initialize wrapper type"); |
| |
| if (PyType_Ready(&_PyMethodWrapper_Type) < 0) |
| Py_FatalError("Can't initialize method wrapper type"); |
| |
| if (PyType_Ready(&PyEllipsis_Type) < 0) |
| Py_FatalError("Can't initialize ellipsis type"); |
| |
| if (PyType_Ready(&PyMemberDescr_Type) < 0) |
| Py_FatalError("Can't initialize member descriptor type"); |
| |
| if (PyType_Ready(&_PyNamespace_Type) < 0) |
| Py_FatalError("Can't initialize namespace type"); |
| |
| if (PyType_Ready(&PyCapsule_Type) < 0) |
| Py_FatalError("Can't initialize capsule type"); |
| |
| if (PyType_Ready(&PyLongRangeIter_Type) < 0) |
| Py_FatalError("Can't initialize long range iterator type"); |
| |
| if (PyType_Ready(&PyCell_Type) < 0) |
| Py_FatalError("Can't initialize cell type"); |
| |
| if (PyType_Ready(&PyInstanceMethod_Type) < 0) |
| Py_FatalError("Can't initialize instance method type"); |
| |
| if (PyType_Ready(&PyClassMethodDescr_Type) < 0) |
| Py_FatalError("Can't initialize class method descr type"); |
| |
| if (PyType_Ready(&PyMethodDescr_Type) < 0) |
| Py_FatalError("Can't initialize method descr type"); |
| |
| if (PyType_Ready(&PyCallIter_Type) < 0) |
| Py_FatalError("Can't initialize call iter type"); |
| |
| if (PyType_Ready(&PySeqIter_Type) < 0) |
| Py_FatalError("Can't initialize sequence iterator type"); |
| } |
| |
| |
| #ifdef Py_TRACE_REFS |
| |
| void |
| _Py_NewReference(PyObject *op) |
| { |
| _Py_INC_REFTOTAL; |
| op->ob_refcnt = 1; |
| _Py_AddToAllObjects(op, 1); |
| _Py_INC_TPALLOCS(op); |
| } |
| |
| void |
| _Py_ForgetReference(register PyObject *op) |
| { |
| #ifdef SLOW_UNREF_CHECK |
| register PyObject *p; |
| #endif |
| if (op->ob_refcnt < 0) |
| Py_FatalError("UNREF negative refcnt"); |
| if (op == &refchain || |
| op->_ob_prev->_ob_next != op || op->_ob_next->_ob_prev != op) { |
| fprintf(stderr, "* ob\n"); |
| _PyObject_Dump(op); |
| fprintf(stderr, "* op->_ob_prev->_ob_next\n"); |
| _PyObject_Dump(op->_ob_prev->_ob_next); |
| fprintf(stderr, "* op->_ob_next->_ob_prev\n"); |
| _PyObject_Dump(op->_ob_next->_ob_prev); |
| Py_FatalError("UNREF invalid object"); |
| } |
| #ifdef SLOW_UNREF_CHECK |
| for (p = refchain._ob_next; p != &refchain; p = p->_ob_next) { |
| if (p == op) |
| break; |
| } |
| if (p == &refchain) /* Not found */ |
| Py_FatalError("UNREF unknown object"); |
| #endif |
| op->_ob_next->_ob_prev = op->_ob_prev; |
| op->_ob_prev->_ob_next = op->_ob_next; |
| op->_ob_next = op->_ob_prev = NULL; |
| _Py_INC_TPFREES(op); |
| } |
| |
| void |
| _Py_Dealloc(PyObject *op) |
| { |
| destructor dealloc = Py_TYPE(op)->tp_dealloc; |
| _Py_ForgetReference(op); |
| (*dealloc)(op); |
| } |
| |
| /* Print all live objects. Because PyObject_Print is called, the |
| * interpreter must be in a healthy state. |
| */ |
| void |
| _Py_PrintReferences(FILE *fp) |
| { |
| PyObject *op; |
| fprintf(fp, "Remaining objects:\n"); |
| for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) { |
| fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] ", op, op->ob_refcnt); |
| if (PyObject_Print(op, fp, 0) != 0) |
| PyErr_Clear(); |
| putc('\n', fp); |
| } |
| } |
| |
| /* Print the addresses of all live objects. Unlike _Py_PrintReferences, this |
| * doesn't make any calls to the Python C API, so is always safe to call. |
| */ |
| void |
| _Py_PrintReferenceAddresses(FILE *fp) |
| { |
| PyObject *op; |
| fprintf(fp, "Remaining object addresses:\n"); |
| for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) |
| fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] %s\n", op, |
| op->ob_refcnt, Py_TYPE(op)->tp_name); |
| } |
| |
| PyObject * |
| _Py_GetObjects(PyObject *self, PyObject *args) |
| { |
| int i, n; |
| PyObject *t = NULL; |
| PyObject *res, *op; |
| |
| if (!PyArg_ParseTuple(args, "i|O", &n, &t)) |
| return NULL; |
| op = refchain._ob_next; |
| res = PyList_New(0); |
| if (res == NULL) |
| return NULL; |
| for (i = 0; (n == 0 || i < n) && op != &refchain; i++) { |
| while (op == self || op == args || op == res || op == t || |
| (t != NULL && Py_TYPE(op) != (PyTypeObject *) t)) { |
| op = op->_ob_next; |
| if (op == &refchain) |
| return res; |
| } |
| if (PyList_Append(res, op) < 0) { |
| Py_DECREF(res); |
| return NULL; |
| } |
| op = op->_ob_next; |
| } |
| return res; |
| } |
| |
| #endif |
| |
| /* Hack to force loading of pycapsule.o */ |
| PyTypeObject *_PyCapsule_hack = &PyCapsule_Type; |
| |
| |
| /* Hack to force loading of abstract.o */ |
| Py_ssize_t (*_Py_abstract_hack)(PyObject *) = PyObject_Size; |
| |
| |
| void |
| _PyObject_DebugTypeStats(FILE *out) |
| { |
| _PyCFunction_DebugMallocStats(out); |
| _PyDict_DebugMallocStats(out); |
| _PyFloat_DebugMallocStats(out); |
| _PyFrame_DebugMallocStats(out); |
| _PyList_DebugMallocStats(out); |
| _PyMethod_DebugMallocStats(out); |
| _PySet_DebugMallocStats(out); |
| _PyTuple_DebugMallocStats(out); |
| } |
| |
| /* These methods are used to control infinite recursion in repr, str, print, |
| etc. Container objects that may recursively contain themselves, |
| e.g. builtin dictionaries and lists, should used Py_ReprEnter() and |
| Py_ReprLeave() to avoid infinite recursion. |
| |
| Py_ReprEnter() returns 0 the first time it is called for a particular |
| object and 1 every time thereafter. It returns -1 if an exception |
| occurred. Py_ReprLeave() has no return value. |
| |
| See dictobject.c and listobject.c for examples of use. |
| */ |
| |
| #define KEY "Py_Repr" |
| |
| int |
| Py_ReprEnter(PyObject *obj) |
| { |
| PyObject *dict; |
| PyObject *list; |
| Py_ssize_t i; |
| |
| dict = PyThreadState_GetDict(); |
| if (dict == NULL) |
| return 0; |
| list = PyDict_GetItemString(dict, KEY); |
| if (list == NULL) { |
| list = PyList_New(0); |
| if (list == NULL) |
| return -1; |
| if (PyDict_SetItemString(dict, KEY, list) < 0) |
| return -1; |
| Py_DECREF(list); |
| } |
| i = PyList_GET_SIZE(list); |
| while (--i >= 0) { |
| if (PyList_GET_ITEM(list, i) == obj) |
| return 1; |
| } |
| if (PyList_Append(list, obj) < 0) |
| return -1; |
| return 0; |
| } |
| |
| void |
| Py_ReprLeave(PyObject *obj) |
| { |
| PyObject *dict; |
| PyObject *list; |
| Py_ssize_t i; |
| PyObject *error_type, *error_value, *error_traceback; |
| |
| PyErr_Fetch(&error_type, &error_value, &error_traceback); |
| |
| dict = PyThreadState_GetDict(); |
| if (dict == NULL) |
| goto finally; |
| |
| list = PyDict_GetItemString(dict, KEY); |
| if (list == NULL || !PyList_Check(list)) |
| goto finally; |
| |
| i = PyList_GET_SIZE(list); |
| /* Count backwards because we always expect obj to be list[-1] */ |
| while (--i >= 0) { |
| if (PyList_GET_ITEM(list, i) == obj) { |
| PyList_SetSlice(list, i, i + 1, NULL); |
| break; |
| } |
| } |
| |
| finally: |
| /* ignore exceptions because there is no way to report them. */ |
| PyErr_Restore(error_type, error_value, error_traceback); |
| } |
| |
| /* Trashcan support. */ |
| |
| /* Current call-stack depth of tp_dealloc calls. */ |
| int _PyTrash_delete_nesting = 0; |
| |
| /* List of objects that still need to be cleaned up, singly linked via their |
| * gc headers' gc_prev pointers. |
| */ |
| PyObject *_PyTrash_delete_later = NULL; |
| |
| /* Add op to the _PyTrash_delete_later list. Called when the current |
| * call-stack depth gets large. op must be a currently untracked gc'ed |
| * object, with refcount 0. Py_DECREF must already have been called on it. |
| */ |
| void |
| _PyTrash_deposit_object(PyObject *op) |
| { |
| assert(PyObject_IS_GC(op)); |
| assert(_PyGC_REFS(op) == _PyGC_REFS_UNTRACKED); |
| assert(op->ob_refcnt == 0); |
| _Py_AS_GC(op)->gc.gc_prev = (PyGC_Head *)_PyTrash_delete_later; |
| _PyTrash_delete_later = op; |
| } |
| |
| /* The equivalent API, using per-thread state recursion info */ |
| void |
| _PyTrash_thread_deposit_object(PyObject *op) |
| { |
| PyThreadState *tstate = PyThreadState_GET(); |
| assert(PyObject_IS_GC(op)); |
| assert(_PyGC_REFS(op) == _PyGC_REFS_UNTRACKED); |
| assert(op->ob_refcnt == 0); |
| _Py_AS_GC(op)->gc.gc_prev = (PyGC_Head *) tstate->trash_delete_later; |
| tstate->trash_delete_later = op; |
| } |
| |
| /* Dealloccate all the objects in the _PyTrash_delete_later list. Called when |
| * the call-stack unwinds again. |
| */ |
| void |
| _PyTrash_destroy_chain(void) |
| { |
| while (_PyTrash_delete_later) { |
| PyObject *op = _PyTrash_delete_later; |
| destructor dealloc = Py_TYPE(op)->tp_dealloc; |
| |
| _PyTrash_delete_later = |
| (PyObject*) _Py_AS_GC(op)->gc.gc_prev; |
| |
| /* Call the deallocator directly. This used to try to |
| * fool Py_DECREF into calling it indirectly, but |
| * Py_DECREF was already called on this object, and in |
| * assorted non-release builds calling Py_DECREF again ends |
| * up distorting allocation statistics. |
| */ |
| assert(op->ob_refcnt == 0); |
| ++_PyTrash_delete_nesting; |
| (*dealloc)(op); |
| --_PyTrash_delete_nesting; |
| } |
| } |
| |
| /* The equivalent API, using per-thread state recursion info */ |
| void |
| _PyTrash_thread_destroy_chain(void) |
| { |
| PyThreadState *tstate = PyThreadState_GET(); |
| while (tstate->trash_delete_later) { |
| PyObject *op = tstate->trash_delete_later; |
| destructor dealloc = Py_TYPE(op)->tp_dealloc; |
| |
| tstate->trash_delete_later = |
| (PyObject*) _Py_AS_GC(op)->gc.gc_prev; |
| |
| /* Call the deallocator directly. This used to try to |
| * fool Py_DECREF into calling it indirectly, but |
| * Py_DECREF was already called on this object, and in |
| * assorted non-release builds calling Py_DECREF again ends |
| * up distorting allocation statistics. |
| */ |
| assert(op->ob_refcnt == 0); |
| ++tstate->trash_delete_nesting; |
| (*dealloc)(op); |
| --tstate->trash_delete_nesting; |
| } |
| } |
| |
| #ifndef Py_TRACE_REFS |
| /* For Py_LIMITED_API, we need an out-of-line version of _Py_Dealloc. |
| Define this here, so we can undefine the macro. */ |
| #undef _Py_Dealloc |
| PyAPI_FUNC(void) _Py_Dealloc(PyObject *); |
| void |
| _Py_Dealloc(PyObject *op) |
| { |
| _Py_INC_TPFREES(op) _Py_COUNT_ALLOCS_COMMA |
| (*Py_TYPE(op)->tp_dealloc)(op); |
| } |
| #endif |
| |
| #ifdef __cplusplus |
| } |
| #endif |