[3.8] bpo-36018: Address more reviewer feedback (GH-15733) (GH-15734)

diff --git a/Lib/statistics.py b/Lib/statistics.py
index 4b17266..70c48d6 100644
--- a/Lib/statistics.py
+++ b/Lib/statistics.py
@@ -624,9 +624,8 @@
     Set *n* to 100 for percentiles which gives the 99 cuts points that
     separate *data* in to 100 equal sized groups.
 
-    The *data* can be any iterable containing sample data or it can be
-    an instance of a class that defines an inv_cdf() method.  For sample
-    data, the cut points are linearly interpolated between data points.
+    The *data* can be any iterable containing sample.
+    The cut points are linearly interpolated between data points.
 
     If *method* is set to *inclusive*, *data* is treated as population
     data.  The minimum value is treated as the 0th percentile and the
@@ -634,8 +633,6 @@
     """
     if n < 1:
         raise StatisticsError('n must be at least 1')
-    if hasattr(data, 'inv_cdf'):
-        return [data.inv_cdf(i / n) for i in range(1, n)]
     data = sorted(data)
     ld = len(data)
     if ld < 2:
@@ -955,6 +952,17 @@
             raise StatisticsError('cdf() not defined when sigma at or below zero')
         return _normal_dist_inv_cdf(p, self._mu, self._sigma)
 
+    def quantiles(self, n=4):
+        """Divide into *n* continuous intervals with equal probability.
+
+        Returns a list of (n - 1) cut points separating the intervals.
+
+        Set *n* to 4 for quartiles (the default).  Set *n* to 10 for deciles.
+        Set *n* to 100 for percentiles which gives the 99 cuts points that
+        separate the normal distribution in to 100 equal sized groups.
+        """
+        return [self.inv_cdf(i / n) for i in range(1, n)]
+
     def overlap(self, other):
         """Compute the overlapping coefficient (OVL) between two normal distributions.
 
@@ -995,6 +1003,20 @@
         return self._mu
 
     @property
+    def median(self):
+        "Return the median of the normal distribution"
+        return self._mu
+
+    @property
+    def mode(self):
+        """Return the mode of the normal distribution
+
+        The mode is the value x where which the probability density
+        function (pdf) takes its maximum value.
+        """
+        return self._mu
+
+    @property
     def stdev(self):
         "Standard deviation of the normal distribution."
         return self._sigma
diff --git a/Lib/test/test_statistics.py b/Lib/test/test_statistics.py
index 01b317c..af26473 100644
--- a/Lib/test/test_statistics.py
+++ b/Lib/test/test_statistics.py
@@ -2198,16 +2198,6 @@
             exp = list(map(f, expected))
             act = quantiles(map(f, data), n=n)
             self.assertTrue(all(math.isclose(e, a) for e, a in zip(exp, act)))
-        # Quartiles of a standard normal distribution
-        for n, expected in [
-            (1, []),
-            (2, [0.0]),
-            (3, [-0.4307, 0.4307]),
-            (4 ,[-0.6745, 0.0, 0.6745]),
-                ]:
-            actual = quantiles(statistics.NormalDist(), n=n)
-            self.assertTrue(all(math.isclose(e, a, abs_tol=0.0001)
-                            for e, a in zip(expected, actual)))
         # Q2 agrees with median()
         for k in range(2, 60):
             data = random.choices(range(100), k=k)
@@ -2248,16 +2238,6 @@
             exp = list(map(f, expected))
             act = quantiles(map(f, data), n=n, method="inclusive")
             self.assertTrue(all(math.isclose(e, a) for e, a in zip(exp, act)))
-        # Quartiles of a standard normal distribution
-        for n, expected in [
-            (1, []),
-            (2, [0.0]),
-            (3, [-0.4307, 0.4307]),
-            (4 ,[-0.6745, 0.0, 0.6745]),
-                ]:
-            actual = quantiles(statistics.NormalDist(), n=n, method="inclusive")
-            self.assertTrue(all(math.isclose(e, a, abs_tol=0.0001)
-                            for e, a in zip(expected, actual)))
         # Natural deciles
         self.assertEqual(quantiles([0, 100], n=10, method='inclusive'),
                          [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0])
@@ -2546,6 +2526,19 @@
         # Special values
         self.assertTrue(math.isnan(Z.inv_cdf(float('NaN'))))
 
+    def test_quantiles(self):
+        # Quartiles of a standard normal distribution
+        Z = self.module.NormalDist()
+        for n, expected in [
+            (1, []),
+            (2, [0.0]),
+            (3, [-0.4307, 0.4307]),
+            (4 ,[-0.6745, 0.0, 0.6745]),
+                ]:
+            actual = Z.quantiles(n=n)
+            self.assertTrue(all(math.isclose(e, a, abs_tol=0.0001)
+                            for e, a in zip(expected, actual)))
+
     def test_overlap(self):
         NormalDist = self.module.NormalDist
 
@@ -2612,6 +2605,8 @@
     def test_properties(self):
         X = self.module.NormalDist(100, 15)
         self.assertEqual(X.mean, 100)
+        self.assertEqual(X.median, 100)
+        self.assertEqual(X.mode, 100)
         self.assertEqual(X.stdev, 15)
         self.assertEqual(X.variance, 225)