| |
| /* Tuple object implementation */ |
| |
| #include "Python.h" |
| #include "accu.h" |
| |
| /* Speed optimization to avoid frequent malloc/free of small tuples */ |
| #ifndef PyTuple_MAXSAVESIZE |
| #define PyTuple_MAXSAVESIZE 20 /* Largest tuple to save on free list */ |
| #endif |
| #ifndef PyTuple_MAXFREELIST |
| #define PyTuple_MAXFREELIST 2000 /* Maximum number of tuples of each size to save */ |
| #endif |
| |
| #if PyTuple_MAXSAVESIZE > 0 |
| /* Entries 1 up to PyTuple_MAXSAVESIZE are free lists, entry 0 is the empty |
| tuple () of which at most one instance will be allocated. |
| */ |
| static PyTupleObject *free_list[PyTuple_MAXSAVESIZE]; |
| static int numfree[PyTuple_MAXSAVESIZE]; |
| #endif |
| #ifdef COUNT_ALLOCS |
| Py_ssize_t fast_tuple_allocs; |
| Py_ssize_t tuple_zero_allocs; |
| #endif |
| |
| /* Debug statistic to count GC tracking of tuples. |
| Please note that tuples are only untracked when considered by the GC, and |
| many of them will be dead before. Therefore, a tracking rate close to 100% |
| does not necessarily prove that the heuristic is inefficient. |
| */ |
| #ifdef SHOW_TRACK_COUNT |
| static Py_ssize_t count_untracked = 0; |
| static Py_ssize_t count_tracked = 0; |
| |
| static void |
| show_track(void) |
| { |
| fprintf(stderr, "Tuples created: %" PY_FORMAT_SIZE_T "d\n", |
| count_tracked + count_untracked); |
| fprintf(stderr, "Tuples tracked by the GC: %" PY_FORMAT_SIZE_T |
| "d\n", count_tracked); |
| fprintf(stderr, "%.2f%% tuple tracking rate\n\n", |
| (100.0*count_tracked/(count_untracked+count_tracked))); |
| } |
| #endif |
| |
| /* Print summary info about the state of the optimized allocator */ |
| void |
| _PyTuple_DebugMallocStats(FILE *out) |
| { |
| #if PyTuple_MAXSAVESIZE > 0 |
| int i; |
| char buf[128]; |
| for (i = 1; i < PyTuple_MAXSAVESIZE; i++) { |
| PyOS_snprintf(buf, sizeof(buf), |
| "free %d-sized PyTupleObject", i); |
| _PyDebugAllocatorStats(out, |
| buf, |
| numfree[i], _PyObject_VAR_SIZE(&PyTuple_Type, i)); |
| } |
| #endif |
| } |
| |
| PyObject * |
| PyTuple_New(Py_ssize_t size) |
| { |
| PyTupleObject *op; |
| Py_ssize_t i; |
| if (size < 0) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| #if PyTuple_MAXSAVESIZE > 0 |
| if (size == 0 && free_list[0]) { |
| op = free_list[0]; |
| Py_INCREF(op); |
| #ifdef COUNT_ALLOCS |
| tuple_zero_allocs++; |
| #endif |
| return (PyObject *) op; |
| } |
| if (size < PyTuple_MAXSAVESIZE && (op = free_list[size]) != NULL) { |
| free_list[size] = (PyTupleObject *) op->ob_item[0]; |
| numfree[size]--; |
| #ifdef COUNT_ALLOCS |
| fast_tuple_allocs++; |
| #endif |
| /* Inline PyObject_InitVar */ |
| #ifdef Py_TRACE_REFS |
| Py_SIZE(op) = size; |
| Py_TYPE(op) = &PyTuple_Type; |
| #endif |
| _Py_NewReference((PyObject *)op); |
| } |
| else |
| #endif |
| { |
| /* Check for overflow */ |
| if (size > (PY_SSIZE_T_MAX - sizeof(PyTupleObject) - |
| sizeof(PyObject *)) / sizeof(PyObject *)) { |
| return PyErr_NoMemory(); |
| } |
| op = PyObject_GC_NewVar(PyTupleObject, &PyTuple_Type, size); |
| if (op == NULL) |
| return NULL; |
| } |
| for (i=0; i < size; i++) |
| op->ob_item[i] = NULL; |
| #if PyTuple_MAXSAVESIZE > 0 |
| if (size == 0) { |
| free_list[0] = op; |
| ++numfree[0]; |
| Py_INCREF(op); /* extra INCREF so that this is never freed */ |
| } |
| #endif |
| #ifdef SHOW_TRACK_COUNT |
| count_tracked++; |
| #endif |
| _PyObject_GC_TRACK(op); |
| return (PyObject *) op; |
| } |
| |
| Py_ssize_t |
| PyTuple_Size(PyObject *op) |
| { |
| if (!PyTuple_Check(op)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| else |
| return Py_SIZE(op); |
| } |
| |
| PyObject * |
| PyTuple_GetItem(PyObject *op, Py_ssize_t i) |
| { |
| if (!PyTuple_Check(op)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| if (i < 0 || i >= Py_SIZE(op)) { |
| PyErr_SetString(PyExc_IndexError, "tuple index out of range"); |
| return NULL; |
| } |
| return ((PyTupleObject *)op) -> ob_item[i]; |
| } |
| |
| int |
| PyTuple_SetItem(PyObject *op, Py_ssize_t i, PyObject *newitem) |
| { |
| PyObject *olditem; |
| PyObject **p; |
| if (!PyTuple_Check(op) || op->ob_refcnt != 1) { |
| Py_XDECREF(newitem); |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| if (i < 0 || i >= Py_SIZE(op)) { |
| Py_XDECREF(newitem); |
| PyErr_SetString(PyExc_IndexError, |
| "tuple assignment index out of range"); |
| return -1; |
| } |
| p = ((PyTupleObject *)op) -> ob_item + i; |
| olditem = *p; |
| *p = newitem; |
| Py_XDECREF(olditem); |
| return 0; |
| } |
| |
| void |
| _PyTuple_MaybeUntrack(PyObject *op) |
| { |
| PyTupleObject *t; |
| Py_ssize_t i, n; |
| |
| if (!PyTuple_CheckExact(op) || !_PyObject_GC_IS_TRACKED(op)) |
| return; |
| t = (PyTupleObject *) op; |
| n = Py_SIZE(t); |
| for (i = 0; i < n; i++) { |
| PyObject *elt = PyTuple_GET_ITEM(t, i); |
| /* Tuple with NULL elements aren't |
| fully constructed, don't untrack |
| them yet. */ |
| if (!elt || |
| _PyObject_GC_MAY_BE_TRACKED(elt)) |
| return; |
| } |
| #ifdef SHOW_TRACK_COUNT |
| count_tracked--; |
| count_untracked++; |
| #endif |
| _PyObject_GC_UNTRACK(op); |
| } |
| |
| PyObject * |
| PyTuple_Pack(Py_ssize_t n, ...) |
| { |
| Py_ssize_t i; |
| PyObject *o; |
| PyObject *result; |
| PyObject **items; |
| va_list vargs; |
| |
| va_start(vargs, n); |
| result = PyTuple_New(n); |
| if (result == NULL) { |
| va_end(vargs); |
| return NULL; |
| } |
| items = ((PyTupleObject *)result)->ob_item; |
| for (i = 0; i < n; i++) { |
| o = va_arg(vargs, PyObject *); |
| Py_INCREF(o); |
| items[i] = o; |
| } |
| va_end(vargs); |
| return result; |
| } |
| |
| |
| /* Methods */ |
| |
| static void |
| tupledealloc(PyTupleObject *op) |
| { |
| Py_ssize_t i; |
| Py_ssize_t len = Py_SIZE(op); |
| PyObject_GC_UnTrack(op); |
| Py_TRASHCAN_SAFE_BEGIN(op) |
| if (len > 0) { |
| i = len; |
| while (--i >= 0) |
| Py_XDECREF(op->ob_item[i]); |
| #if PyTuple_MAXSAVESIZE > 0 |
| if (len < PyTuple_MAXSAVESIZE && |
| numfree[len] < PyTuple_MAXFREELIST && |
| Py_TYPE(op) == &PyTuple_Type) |
| { |
| op->ob_item[0] = (PyObject *) free_list[len]; |
| numfree[len]++; |
| free_list[len] = op; |
| goto done; /* return */ |
| } |
| #endif |
| } |
| Py_TYPE(op)->tp_free((PyObject *)op); |
| done: |
| Py_TRASHCAN_SAFE_END(op) |
| } |
| |
| static PyObject * |
| tuplerepr(PyTupleObject *v) |
| { |
| Py_ssize_t i, n; |
| PyObject *s = NULL; |
| _PyAccu acc; |
| static PyObject *sep = NULL; |
| |
| n = Py_SIZE(v); |
| if (n == 0) |
| return PyUnicode_FromString("()"); |
| |
| if (sep == NULL) { |
| sep = PyUnicode_FromString(", "); |
| if (sep == NULL) |
| return NULL; |
| } |
| |
| /* While not mutable, it is still possible to end up with a cycle in a |
| tuple through an object that stores itself within a tuple (and thus |
| infinitely asks for the repr of itself). This should only be |
| possible within a type. */ |
| i = Py_ReprEnter((PyObject *)v); |
| if (i != 0) { |
| return i > 0 ? PyUnicode_FromString("(...)") : NULL; |
| } |
| |
| if (_PyAccu_Init(&acc)) |
| goto error; |
| |
| s = PyUnicode_FromString("("); |
| if (s == NULL || _PyAccu_Accumulate(&acc, s)) |
| goto error; |
| Py_CLEAR(s); |
| |
| /* Do repr() on each element. */ |
| for (i = 0; i < n; ++i) { |
| if (Py_EnterRecursiveCall(" while getting the repr of a tuple")) |
| goto error; |
| s = PyObject_Repr(v->ob_item[i]); |
| Py_LeaveRecursiveCall(); |
| if (i > 0 && _PyAccu_Accumulate(&acc, sep)) |
| goto error; |
| if (s == NULL || _PyAccu_Accumulate(&acc, s)) |
| goto error; |
| Py_CLEAR(s); |
| } |
| if (n > 1) |
| s = PyUnicode_FromString(")"); |
| else |
| s = PyUnicode_FromString(",)"); |
| if (s == NULL || _PyAccu_Accumulate(&acc, s)) |
| goto error; |
| Py_CLEAR(s); |
| |
| Py_ReprLeave((PyObject *)v); |
| return _PyAccu_Finish(&acc); |
| |
| error: |
| _PyAccu_Destroy(&acc); |
| Py_XDECREF(s); |
| Py_ReprLeave((PyObject *)v); |
| return NULL; |
| } |
| |
| /* The addend 82520, was selected from the range(0, 1000000) for |
| generating the greatest number of prime multipliers for tuples |
| upto length eight: |
| |
| 1082527, 1165049, 1082531, 1165057, 1247581, 1330103, 1082533, |
| 1330111, 1412633, 1165069, 1247599, 1495177, 1577699 |
| |
| Tests have shown that it's not worth to cache the hash value, see |
| issue #9685. |
| */ |
| |
| static Py_hash_t |
| tuplehash(PyTupleObject *v) |
| { |
| Py_uhash_t x; /* Unsigned for defined overflow behavior. */ |
| Py_hash_t y; |
| Py_ssize_t len = Py_SIZE(v); |
| PyObject **p; |
| Py_uhash_t mult = _PyHASH_MULTIPLIER; |
| x = 0x345678UL; |
| p = v->ob_item; |
| while (--len >= 0) { |
| y = PyObject_Hash(*p++); |
| if (y == -1) |
| return -1; |
| x = (x ^ y) * mult; |
| /* the cast might truncate len; that doesn't change hash stability */ |
| mult += (Py_hash_t)(82520UL + len + len); |
| } |
| x += 97531UL; |
| if (x == (Py_uhash_t)-1) |
| x = -2; |
| return x; |
| } |
| |
| static Py_ssize_t |
| tuplelength(PyTupleObject *a) |
| { |
| return Py_SIZE(a); |
| } |
| |
| static int |
| tuplecontains(PyTupleObject *a, PyObject *el) |
| { |
| Py_ssize_t i; |
| int cmp; |
| |
| for (i = 0, cmp = 0 ; cmp == 0 && i < Py_SIZE(a); ++i) |
| cmp = PyObject_RichCompareBool(el, PyTuple_GET_ITEM(a, i), |
| Py_EQ); |
| return cmp; |
| } |
| |
| static PyObject * |
| tupleitem(PyTupleObject *a, Py_ssize_t i) |
| { |
| if (i < 0 || i >= Py_SIZE(a)) { |
| PyErr_SetString(PyExc_IndexError, "tuple index out of range"); |
| return NULL; |
| } |
| Py_INCREF(a->ob_item[i]); |
| return a->ob_item[i]; |
| } |
| |
| static PyObject * |
| tupleslice(PyTupleObject *a, Py_ssize_t ilow, |
| Py_ssize_t ihigh) |
| { |
| PyTupleObject *np; |
| PyObject **src, **dest; |
| Py_ssize_t i; |
| Py_ssize_t len; |
| if (ilow < 0) |
| ilow = 0; |
| if (ihigh > Py_SIZE(a)) |
| ihigh = Py_SIZE(a); |
| if (ihigh < ilow) |
| ihigh = ilow; |
| if (ilow == 0 && ihigh == Py_SIZE(a) && PyTuple_CheckExact(a)) { |
| Py_INCREF(a); |
| return (PyObject *)a; |
| } |
| len = ihigh - ilow; |
| np = (PyTupleObject *)PyTuple_New(len); |
| if (np == NULL) |
| return NULL; |
| src = a->ob_item + ilow; |
| dest = np->ob_item; |
| for (i = 0; i < len; i++) { |
| PyObject *v = src[i]; |
| Py_INCREF(v); |
| dest[i] = v; |
| } |
| return (PyObject *)np; |
| } |
| |
| PyObject * |
| PyTuple_GetSlice(PyObject *op, Py_ssize_t i, Py_ssize_t j) |
| { |
| if (op == NULL || !PyTuple_Check(op)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| return tupleslice((PyTupleObject *)op, i, j); |
| } |
| |
| static PyObject * |
| tupleconcat(PyTupleObject *a, PyObject *bb) |
| { |
| Py_ssize_t size; |
| Py_ssize_t i; |
| PyObject **src, **dest; |
| PyTupleObject *np; |
| if (!PyTuple_Check(bb)) { |
| PyErr_Format(PyExc_TypeError, |
| "can only concatenate tuple (not \"%.200s\") to tuple", |
| Py_TYPE(bb)->tp_name); |
| return NULL; |
| } |
| #define b ((PyTupleObject *)bb) |
| size = Py_SIZE(a) + Py_SIZE(b); |
| if (size < 0) |
| return PyErr_NoMemory(); |
| np = (PyTupleObject *) PyTuple_New(size); |
| if (np == NULL) { |
| return NULL; |
| } |
| src = a->ob_item; |
| dest = np->ob_item; |
| for (i = 0; i < Py_SIZE(a); i++) { |
| PyObject *v = src[i]; |
| Py_INCREF(v); |
| dest[i] = v; |
| } |
| src = b->ob_item; |
| dest = np->ob_item + Py_SIZE(a); |
| for (i = 0; i < Py_SIZE(b); i++) { |
| PyObject *v = src[i]; |
| Py_INCREF(v); |
| dest[i] = v; |
| } |
| return (PyObject *)np; |
| #undef b |
| } |
| |
| static PyObject * |
| tuplerepeat(PyTupleObject *a, Py_ssize_t n) |
| { |
| Py_ssize_t i, j; |
| Py_ssize_t size; |
| PyTupleObject *np; |
| PyObject **p, **items; |
| if (n < 0) |
| n = 0; |
| if (Py_SIZE(a) == 0 || n == 1) { |
| if (PyTuple_CheckExact(a)) { |
| /* Since tuples are immutable, we can return a shared |
| copy in this case */ |
| Py_INCREF(a); |
| return (PyObject *)a; |
| } |
| if (Py_SIZE(a) == 0) |
| return PyTuple_New(0); |
| } |
| if (n > PY_SSIZE_T_MAX / Py_SIZE(a)) |
| return PyErr_NoMemory(); |
| size = Py_SIZE(a) * n; |
| np = (PyTupleObject *) PyTuple_New(size); |
| if (np == NULL) |
| return NULL; |
| p = np->ob_item; |
| items = a->ob_item; |
| for (i = 0; i < n; i++) { |
| for (j = 0; j < Py_SIZE(a); j++) { |
| *p = items[j]; |
| Py_INCREF(*p); |
| p++; |
| } |
| } |
| return (PyObject *) np; |
| } |
| |
| static PyObject * |
| tupleindex(PyTupleObject *self, PyObject *args) |
| { |
| Py_ssize_t i, start=0, stop=Py_SIZE(self); |
| PyObject *v; |
| |
| if (!PyArg_ParseTuple(args, "O|O&O&:index", &v, |
| _PyEval_SliceIndex, &start, |
| _PyEval_SliceIndex, &stop)) |
| return NULL; |
| if (start < 0) { |
| start += Py_SIZE(self); |
| if (start < 0) |
| start = 0; |
| } |
| if (stop < 0) { |
| stop += Py_SIZE(self); |
| if (stop < 0) |
| stop = 0; |
| } |
| for (i = start; i < stop && i < Py_SIZE(self); i++) { |
| int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ); |
| if (cmp > 0) |
| return PyLong_FromSsize_t(i); |
| else if (cmp < 0) |
| return NULL; |
| } |
| PyErr_SetString(PyExc_ValueError, "tuple.index(x): x not in tuple"); |
| return NULL; |
| } |
| |
| static PyObject * |
| tuplecount(PyTupleObject *self, PyObject *v) |
| { |
| Py_ssize_t count = 0; |
| Py_ssize_t i; |
| |
| for (i = 0; i < Py_SIZE(self); i++) { |
| int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ); |
| if (cmp > 0) |
| count++; |
| else if (cmp < 0) |
| return NULL; |
| } |
| return PyLong_FromSsize_t(count); |
| } |
| |
| static int |
| tupletraverse(PyTupleObject *o, visitproc visit, void *arg) |
| { |
| Py_ssize_t i; |
| |
| for (i = Py_SIZE(o); --i >= 0; ) |
| Py_VISIT(o->ob_item[i]); |
| return 0; |
| } |
| |
| static PyObject * |
| tuplerichcompare(PyObject *v, PyObject *w, int op) |
| { |
| PyTupleObject *vt, *wt; |
| Py_ssize_t i; |
| Py_ssize_t vlen, wlen; |
| |
| if (!PyTuple_Check(v) || !PyTuple_Check(w)) |
| Py_RETURN_NOTIMPLEMENTED; |
| |
| vt = (PyTupleObject *)v; |
| wt = (PyTupleObject *)w; |
| |
| vlen = Py_SIZE(vt); |
| wlen = Py_SIZE(wt); |
| |
| /* Note: the corresponding code for lists has an "early out" test |
| * here when op is EQ or NE and the lengths differ. That pays there, |
| * but Tim was unable to find any real code where EQ/NE tuple |
| * compares don't have the same length, so testing for it here would |
| * have cost without benefit. |
| */ |
| |
| /* Search for the first index where items are different. |
| * Note that because tuples are immutable, it's safe to reuse |
| * vlen and wlen across the comparison calls. |
| */ |
| for (i = 0; i < vlen && i < wlen; i++) { |
| int k = PyObject_RichCompareBool(vt->ob_item[i], |
| wt->ob_item[i], Py_EQ); |
| if (k < 0) |
| return NULL; |
| if (!k) |
| break; |
| } |
| |
| if (i >= vlen || i >= wlen) { |
| /* No more items to compare -- compare sizes */ |
| int cmp; |
| PyObject *res; |
| switch (op) { |
| case Py_LT: cmp = vlen < wlen; break; |
| case Py_LE: cmp = vlen <= wlen; break; |
| case Py_EQ: cmp = vlen == wlen; break; |
| case Py_NE: cmp = vlen != wlen; break; |
| case Py_GT: cmp = vlen > wlen; break; |
| case Py_GE: cmp = vlen >= wlen; break; |
| default: return NULL; /* cannot happen */ |
| } |
| if (cmp) |
| res = Py_True; |
| else |
| res = Py_False; |
| Py_INCREF(res); |
| return res; |
| } |
| |
| /* We have an item that differs -- shortcuts for EQ/NE */ |
| if (op == Py_EQ) { |
| Py_INCREF(Py_False); |
| return Py_False; |
| } |
| if (op == Py_NE) { |
| Py_INCREF(Py_True); |
| return Py_True; |
| } |
| |
| /* Compare the final item again using the proper operator */ |
| return PyObject_RichCompare(vt->ob_item[i], wt->ob_item[i], op); |
| } |
| |
| static PyObject * |
| tuple_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds); |
| |
| static PyObject * |
| tuple_new(PyTypeObject *type, PyObject *args, PyObject *kwds) |
| { |
| PyObject *arg = NULL; |
| static char *kwlist[] = {"sequence", 0}; |
| |
| if (type != &PyTuple_Type) |
| return tuple_subtype_new(type, args, kwds); |
| if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:tuple", kwlist, &arg)) |
| return NULL; |
| |
| if (arg == NULL) |
| return PyTuple_New(0); |
| else |
| return PySequence_Tuple(arg); |
| } |
| |
| static PyObject * |
| tuple_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds) |
| { |
| PyObject *tmp, *newobj, *item; |
| Py_ssize_t i, n; |
| |
| assert(PyType_IsSubtype(type, &PyTuple_Type)); |
| tmp = tuple_new(&PyTuple_Type, args, kwds); |
| if (tmp == NULL) |
| return NULL; |
| assert(PyTuple_Check(tmp)); |
| newobj = type->tp_alloc(type, n = PyTuple_GET_SIZE(tmp)); |
| if (newobj == NULL) |
| return NULL; |
| for (i = 0; i < n; i++) { |
| item = PyTuple_GET_ITEM(tmp, i); |
| Py_INCREF(item); |
| PyTuple_SET_ITEM(newobj, i, item); |
| } |
| Py_DECREF(tmp); |
| return newobj; |
| } |
| |
| PyDoc_STRVAR(tuple_doc, |
| "tuple() -> empty tuple\n\ |
| tuple(iterable) -> tuple initialized from iterable's items\n\ |
| \n\ |
| If the argument is a tuple, the return value is the same object."); |
| |
| static PySequenceMethods tuple_as_sequence = { |
| (lenfunc)tuplelength, /* sq_length */ |
| (binaryfunc)tupleconcat, /* sq_concat */ |
| (ssizeargfunc)tuplerepeat, /* sq_repeat */ |
| (ssizeargfunc)tupleitem, /* sq_item */ |
| 0, /* sq_slice */ |
| 0, /* sq_ass_item */ |
| 0, /* sq_ass_slice */ |
| (objobjproc)tuplecontains, /* sq_contains */ |
| }; |
| |
| static PyObject* |
| tuplesubscript(PyTupleObject* self, PyObject* item) |
| { |
| if (PyIndex_Check(item)) { |
| Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError); |
| if (i == -1 && PyErr_Occurred()) |
| return NULL; |
| if (i < 0) |
| i += PyTuple_GET_SIZE(self); |
| return tupleitem(self, i); |
| } |
| else if (PySlice_Check(item)) { |
| Py_ssize_t start, stop, step, slicelength, cur, i; |
| PyObject* result; |
| PyObject* it; |
| PyObject **src, **dest; |
| |
| if (PySlice_GetIndicesEx(item, |
| PyTuple_GET_SIZE(self), |
| &start, &stop, &step, &slicelength) < 0) { |
| return NULL; |
| } |
| |
| if (slicelength <= 0) { |
| return PyTuple_New(0); |
| } |
| else if (start == 0 && step == 1 && |
| slicelength == PyTuple_GET_SIZE(self) && |
| PyTuple_CheckExact(self)) { |
| Py_INCREF(self); |
| return (PyObject *)self; |
| } |
| else { |
| result = PyTuple_New(slicelength); |
| if (!result) return NULL; |
| |
| src = self->ob_item; |
| dest = ((PyTupleObject *)result)->ob_item; |
| for (cur = start, i = 0; i < slicelength; |
| cur += step, i++) { |
| it = src[cur]; |
| Py_INCREF(it); |
| dest[i] = it; |
| } |
| |
| return result; |
| } |
| } |
| else { |
| PyErr_Format(PyExc_TypeError, |
| "tuple indices must be integers, not %.200s", |
| Py_TYPE(item)->tp_name); |
| return NULL; |
| } |
| } |
| |
| static PyObject * |
| tuple_getnewargs(PyTupleObject *v) |
| { |
| return Py_BuildValue("(N)", tupleslice(v, 0, Py_SIZE(v))); |
| |
| } |
| |
| static PyObject * |
| tuple_sizeof(PyTupleObject *self) |
| { |
| Py_ssize_t res; |
| |
| res = PyTuple_Type.tp_basicsize + Py_SIZE(self) * sizeof(PyObject *); |
| return PyLong_FromSsize_t(res); |
| } |
| |
| PyDoc_STRVAR(index_doc, |
| "T.index(value, [start, [stop]]) -> integer -- return first index of value.\n" |
| "Raises ValueError if the value is not present." |
| ); |
| PyDoc_STRVAR(count_doc, |
| "T.count(value) -> integer -- return number of occurrences of value"); |
| PyDoc_STRVAR(sizeof_doc, |
| "T.__sizeof__() -- size of T in memory, in bytes"); |
| |
| static PyMethodDef tuple_methods[] = { |
| {"__getnewargs__", (PyCFunction)tuple_getnewargs, METH_NOARGS}, |
| {"__sizeof__", (PyCFunction)tuple_sizeof, METH_NOARGS, sizeof_doc}, |
| {"index", (PyCFunction)tupleindex, METH_VARARGS, index_doc}, |
| {"count", (PyCFunction)tuplecount, METH_O, count_doc}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| static PyMappingMethods tuple_as_mapping = { |
| (lenfunc)tuplelength, |
| (binaryfunc)tuplesubscript, |
| 0 |
| }; |
| |
| static PyObject *tuple_iter(PyObject *seq); |
| |
| PyTypeObject PyTuple_Type = { |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) |
| "tuple", |
| sizeof(PyTupleObject) - sizeof(PyObject *), |
| sizeof(PyObject *), |
| (destructor)tupledealloc, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_reserved */ |
| (reprfunc)tuplerepr, /* tp_repr */ |
| 0, /* tp_as_number */ |
| &tuple_as_sequence, /* tp_as_sequence */ |
| &tuple_as_mapping, /* tp_as_mapping */ |
| (hashfunc)tuplehash, /* tp_hash */ |
| 0, /* tp_call */ |
| 0, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | |
| Py_TPFLAGS_BASETYPE | Py_TPFLAGS_TUPLE_SUBCLASS, /* tp_flags */ |
| tuple_doc, /* tp_doc */ |
| (traverseproc)tupletraverse, /* tp_traverse */ |
| 0, /* tp_clear */ |
| tuplerichcompare, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| tuple_iter, /* tp_iter */ |
| 0, /* tp_iternext */ |
| tuple_methods, /* tp_methods */ |
| 0, /* tp_members */ |
| 0, /* tp_getset */ |
| 0, /* tp_base */ |
| 0, /* tp_dict */ |
| 0, /* tp_descr_get */ |
| 0, /* tp_descr_set */ |
| 0, /* tp_dictoffset */ |
| 0, /* tp_init */ |
| 0, /* tp_alloc */ |
| tuple_new, /* tp_new */ |
| PyObject_GC_Del, /* tp_free */ |
| }; |
| |
| /* The following function breaks the notion that tuples are immutable: |
| it changes the size of a tuple. We get away with this only if there |
| is only one module referencing the object. You can also think of it |
| as creating a new tuple object and destroying the old one, only more |
| efficiently. In any case, don't use this if the tuple may already be |
| known to some other part of the code. */ |
| |
| int |
| _PyTuple_Resize(PyObject **pv, Py_ssize_t newsize) |
| { |
| PyTupleObject *v; |
| PyTupleObject *sv; |
| Py_ssize_t i; |
| Py_ssize_t oldsize; |
| |
| v = (PyTupleObject *) *pv; |
| if (v == NULL || Py_TYPE(v) != &PyTuple_Type || |
| (Py_SIZE(v) != 0 && Py_REFCNT(v) != 1)) { |
| *pv = 0; |
| Py_XDECREF(v); |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| oldsize = Py_SIZE(v); |
| if (oldsize == newsize) |
| return 0; |
| |
| if (oldsize == 0) { |
| /* Empty tuples are often shared, so we should never |
| resize them in-place even if we do own the only |
| (current) reference */ |
| Py_DECREF(v); |
| *pv = PyTuple_New(newsize); |
| return *pv == NULL ? -1 : 0; |
| } |
| |
| /* XXX UNREF/NEWREF interface should be more symmetrical */ |
| _Py_DEC_REFTOTAL; |
| if (_PyObject_GC_IS_TRACKED(v)) |
| _PyObject_GC_UNTRACK(v); |
| _Py_ForgetReference((PyObject *) v); |
| /* DECREF items deleted by shrinkage */ |
| for (i = newsize; i < oldsize; i++) { |
| Py_XDECREF(v->ob_item[i]); |
| v->ob_item[i] = NULL; |
| } |
| sv = PyObject_GC_Resize(PyTupleObject, v, newsize); |
| if (sv == NULL) { |
| *pv = NULL; |
| PyObject_GC_Del(v); |
| return -1; |
| } |
| _Py_NewReference((PyObject *) sv); |
| /* Zero out items added by growing */ |
| if (newsize > oldsize) |
| memset(&sv->ob_item[oldsize], 0, |
| sizeof(*sv->ob_item) * (newsize - oldsize)); |
| *pv = (PyObject *) sv; |
| _PyObject_GC_TRACK(sv); |
| return 0; |
| } |
| |
| int |
| PyTuple_ClearFreeList(void) |
| { |
| int freelist_size = 0; |
| #if PyTuple_MAXSAVESIZE > 0 |
| int i; |
| for (i = 1; i < PyTuple_MAXSAVESIZE; i++) { |
| PyTupleObject *p, *q; |
| p = free_list[i]; |
| freelist_size += numfree[i]; |
| free_list[i] = NULL; |
| numfree[i] = 0; |
| while (p) { |
| q = p; |
| p = (PyTupleObject *)(p->ob_item[0]); |
| PyObject_GC_Del(q); |
| } |
| } |
| #endif |
| return freelist_size; |
| } |
| |
| void |
| PyTuple_Fini(void) |
| { |
| #if PyTuple_MAXSAVESIZE > 0 |
| /* empty tuples are used all over the place and applications may |
| * rely on the fact that an empty tuple is a singleton. */ |
| Py_XDECREF(free_list[0]); |
| free_list[0] = NULL; |
| |
| (void)PyTuple_ClearFreeList(); |
| #endif |
| #ifdef SHOW_TRACK_COUNT |
| show_track(); |
| #endif |
| } |
| |
| /*********************** Tuple Iterator **************************/ |
| |
| typedef struct { |
| PyObject_HEAD |
| Py_ssize_t it_index; |
| PyTupleObject *it_seq; /* Set to NULL when iterator is exhausted */ |
| } tupleiterobject; |
| |
| static void |
| tupleiter_dealloc(tupleiterobject *it) |
| { |
| _PyObject_GC_UNTRACK(it); |
| Py_XDECREF(it->it_seq); |
| PyObject_GC_Del(it); |
| } |
| |
| static int |
| tupleiter_traverse(tupleiterobject *it, visitproc visit, void *arg) |
| { |
| Py_VISIT(it->it_seq); |
| return 0; |
| } |
| |
| static PyObject * |
| tupleiter_next(tupleiterobject *it) |
| { |
| PyTupleObject *seq; |
| PyObject *item; |
| |
| assert(it != NULL); |
| seq = it->it_seq; |
| if (seq == NULL) |
| return NULL; |
| assert(PyTuple_Check(seq)); |
| |
| if (it->it_index < PyTuple_GET_SIZE(seq)) { |
| item = PyTuple_GET_ITEM(seq, it->it_index); |
| ++it->it_index; |
| Py_INCREF(item); |
| return item; |
| } |
| |
| Py_DECREF(seq); |
| it->it_seq = NULL; |
| return NULL; |
| } |
| |
| static PyObject * |
| tupleiter_len(tupleiterobject *it) |
| { |
| Py_ssize_t len = 0; |
| if (it->it_seq) |
| len = PyTuple_GET_SIZE(it->it_seq) - it->it_index; |
| return PyLong_FromSsize_t(len); |
| } |
| |
| PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it))."); |
| |
| static PyObject * |
| tupleiter_reduce(tupleiterobject *it) |
| { |
| if (it->it_seq) |
| return Py_BuildValue("N(O)n", _PyObject_GetBuiltin("iter"), |
| it->it_seq, it->it_index); |
| else |
| return Py_BuildValue("N(())", _PyObject_GetBuiltin("iter")); |
| } |
| |
| static PyObject * |
| tupleiter_setstate(tupleiterobject *it, PyObject *state) |
| { |
| Py_ssize_t index = PyLong_AsSsize_t(state); |
| if (index == -1 && PyErr_Occurred()) |
| return NULL; |
| if (it->it_seq != NULL) { |
| if (index < 0) |
| index = 0; |
| else if (it->it_seq != NULL && index > PyTuple_GET_SIZE(it->it_seq)) |
| index = PyTuple_GET_SIZE(it->it_seq); |
| it->it_index = index; |
| } |
| Py_RETURN_NONE; |
| } |
| |
| PyDoc_STRVAR(reduce_doc, "Return state information for pickling."); |
| PyDoc_STRVAR(setstate_doc, "Set state information for unpickling."); |
| |
| static PyMethodDef tupleiter_methods[] = { |
| {"__length_hint__", (PyCFunction)tupleiter_len, METH_NOARGS, length_hint_doc}, |
| {"__reduce__", (PyCFunction)tupleiter_reduce, METH_NOARGS, reduce_doc}, |
| {"__setstate__", (PyCFunction)tupleiter_setstate, METH_O, setstate_doc}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| PyTypeObject PyTupleIter_Type = { |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) |
| "tuple_iterator", /* tp_name */ |
| sizeof(tupleiterobject), /* tp_basicsize */ |
| 0, /* tp_itemsize */ |
| /* methods */ |
| (destructor)tupleiter_dealloc, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_reserved */ |
| 0, /* tp_repr */ |
| 0, /* tp_as_number */ |
| 0, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| 0, /* tp_hash */ |
| 0, /* tp_call */ |
| 0, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ |
| 0, /* tp_doc */ |
| (traverseproc)tupleiter_traverse, /* tp_traverse */ |
| 0, /* tp_clear */ |
| 0, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| PyObject_SelfIter, /* tp_iter */ |
| (iternextfunc)tupleiter_next, /* tp_iternext */ |
| tupleiter_methods, /* tp_methods */ |
| 0, |
| }; |
| |
| static PyObject * |
| tuple_iter(PyObject *seq) |
| { |
| tupleiterobject *it; |
| |
| if (!PyTuple_Check(seq)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| it = PyObject_GC_New(tupleiterobject, &PyTupleIter_Type); |
| if (it == NULL) |
| return NULL; |
| it->it_index = 0; |
| Py_INCREF(seq); |
| it->it_seq = (PyTupleObject *)seq; |
| _PyObject_GC_TRACK(it); |
| return (PyObject *)it; |
| } |