|  | 
 | /* Float object implementation */ | 
 |  | 
 | /* XXX There should be overflow checks here, but it's hard to check | 
 |    for any kind of float exception without losing portability. */ | 
 |  | 
 | #include "Python.h" | 
 | #include "structseq.h" | 
 |  | 
 | #include <ctype.h> | 
 | #include <float.h> | 
 |  | 
 | #undef MAX | 
 | #undef MIN | 
 | #define MAX(x, y) ((x) < (y) ? (y) : (x)) | 
 | #define MIN(x, y) ((x) < (y) ? (x) : (y)) | 
 |  | 
 | #ifdef HAVE_IEEEFP_H | 
 | #include <ieeefp.h> | 
 | #endif | 
 |  | 
 |  | 
 | #ifdef _OSF_SOURCE | 
 | /* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */ | 
 | extern int finite(double); | 
 | #endif | 
 |  | 
 | /* Special free list -- see comments for same code in intobject.c. */ | 
 | #define BLOCK_SIZE	1000	/* 1K less typical malloc overhead */ | 
 | #define BHEAD_SIZE	8	/* Enough for a 64-bit pointer */ | 
 | #define N_FLOATOBJECTS	((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject)) | 
 |  | 
 | struct _floatblock { | 
 | 	struct _floatblock *next; | 
 | 	PyFloatObject objects[N_FLOATOBJECTS]; | 
 | }; | 
 |  | 
 | typedef struct _floatblock PyFloatBlock; | 
 |  | 
 | static PyFloatBlock *block_list = NULL; | 
 | static PyFloatObject *free_list = NULL; | 
 |  | 
 | static PyFloatObject * | 
 | fill_free_list(void) | 
 | { | 
 | 	PyFloatObject *p, *q; | 
 | 	/* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */ | 
 | 	p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock)); | 
 | 	if (p == NULL) | 
 | 		return (PyFloatObject *) PyErr_NoMemory(); | 
 | 	((PyFloatBlock *)p)->next = block_list; | 
 | 	block_list = (PyFloatBlock *)p; | 
 | 	p = &((PyFloatBlock *)p)->objects[0]; | 
 | 	q = p + N_FLOATOBJECTS; | 
 | 	while (--q > p) | 
 | 		Py_TYPE(q) = (struct _typeobject *)(q-1); | 
 | 	Py_TYPE(q) = NULL; | 
 | 	return p + N_FLOATOBJECTS - 1; | 
 | } | 
 |  | 
 | double | 
 | PyFloat_GetMax(void) | 
 | { | 
 | 	return DBL_MAX; | 
 | } | 
 |  | 
 | double | 
 | PyFloat_GetMin(void) | 
 | { | 
 | 	return DBL_MIN; | 
 | } | 
 |  | 
 | static PyTypeObject FloatInfoType; | 
 |  | 
 | PyDoc_STRVAR(floatinfo__doc__, | 
 | "sys.float_info\n\ | 
 | \n\ | 
 | A structseq holding information about the float type. It contains low level\n\ | 
 | information about the precision and internal representation. Please study\n\ | 
 | your system's :file:`float.h` for more information."); | 
 |  | 
 | static PyStructSequence_Field floatinfo_fields[] = { | 
 | 	{"max",		"DBL_MAX -- maximum representable finite float"}, | 
 | 	{"max_exp",	"DBL_MAX_EXP -- maximum int e such that radix**(e-1) " | 
 | 			"is representable"}, | 
 | 	{"max_10_exp",	"DBL_MAX_10_EXP -- maximum int e such that 10**e " | 
 | 			"is representable"}, | 
 | 	{"min",		"DBL_MIN -- Minimum positive normalizer float"}, | 
 | 	{"min_exp",	"DBL_MIN_EXP -- minimum int e such that radix**(e-1) " | 
 | 			"is a normalized float"}, | 
 | 	{"min_10_exp",	"DBL_MIN_10_EXP -- minimum int e such that 10**e is " | 
 | 			"a normalized"}, | 
 | 	{"dig",		"DBL_DIG -- digits"}, | 
 | 	{"mant_dig",	"DBL_MANT_DIG -- mantissa digits"}, | 
 | 	{"epsilon",	"DBL_EPSILON -- Difference between 1 and the next " | 
 | 			"representable float"}, | 
 | 	{"radix",	"FLT_RADIX -- radix of exponent"}, | 
 | 	{"rounds",	"FLT_ROUNDS -- addition rounds"}, | 
 | 	{0} | 
 | }; | 
 |  | 
 | static PyStructSequence_Desc floatinfo_desc = { | 
 | 	"sys.float_info",	/* name */ | 
 | 	floatinfo__doc__,	/* doc */ | 
 | 	floatinfo_fields,	/* fields */ | 
 | 	11 | 
 | }; | 
 |  | 
 | PyObject * | 
 | PyFloat_GetInfo(void) | 
 | { | 
 | 	PyObject* floatinfo; | 
 | 	int pos = 0; | 
 |  | 
 | 	floatinfo = PyStructSequence_New(&FloatInfoType); | 
 | 	if (floatinfo == NULL) { | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | #define SetIntFlag(flag) \ | 
 | 	PyStructSequence_SET_ITEM(floatinfo, pos++, PyLong_FromLong(flag)) | 
 | #define SetDblFlag(flag) \ | 
 | 	PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag)) | 
 |  | 
 | 	SetDblFlag(DBL_MAX); | 
 | 	SetIntFlag(DBL_MAX_EXP); | 
 | 	SetIntFlag(DBL_MAX_10_EXP); | 
 | 	SetDblFlag(DBL_MIN); | 
 | 	SetIntFlag(DBL_MIN_EXP); | 
 | 	SetIntFlag(DBL_MIN_10_EXP); | 
 | 	SetIntFlag(DBL_DIG); | 
 | 	SetIntFlag(DBL_MANT_DIG); | 
 | 	SetDblFlag(DBL_EPSILON); | 
 | 	SetIntFlag(FLT_RADIX); | 
 | 	SetIntFlag(FLT_ROUNDS); | 
 | #undef SetIntFlag | 
 | #undef SetDblFlag | 
 | 	 | 
 | 	if (PyErr_Occurred()) { | 
 | 		Py_CLEAR(floatinfo); | 
 | 		return NULL; | 
 | 	} | 
 | 	return floatinfo; | 
 | } | 
 |  | 
 | PyObject * | 
 | PyFloat_FromDouble(double fval) | 
 | { | 
 | 	register PyFloatObject *op; | 
 | 	if (free_list == NULL) { | 
 | 		if ((free_list = fill_free_list()) == NULL) | 
 | 			return NULL; | 
 | 	} | 
 | 	/* Inline PyObject_New */ | 
 | 	op = free_list; | 
 | 	free_list = (PyFloatObject *)Py_TYPE(op); | 
 | 	PyObject_INIT(op, &PyFloat_Type); | 
 | 	op->ob_fval = fval; | 
 | 	return (PyObject *) op; | 
 | } | 
 |  | 
 | PyObject * | 
 | PyFloat_FromString(PyObject *v) | 
 | { | 
 | 	const char *s, *last, *end; | 
 | 	double x; | 
 | 	char buffer[256]; /* for errors */ | 
 | 	char *s_buffer = NULL; | 
 | 	Py_ssize_t len; | 
 | 	PyObject *result = NULL; | 
 |  | 
 | 	if (PyUnicode_Check(v)) { | 
 | 		s_buffer = (char *)PyMem_MALLOC(PyUnicode_GET_SIZE(v)+1); | 
 | 		if (s_buffer == NULL) | 
 | 			return PyErr_NoMemory(); | 
 | 		if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v), | 
 | 					    PyUnicode_GET_SIZE(v), | 
 | 					    s_buffer, | 
 | 					    NULL)) | 
 | 			goto error; | 
 | 		s = s_buffer; | 
 | 		len = strlen(s); | 
 | 	} | 
 | 	else if (PyObject_AsCharBuffer(v, &s, &len)) { | 
 | 		PyErr_SetString(PyExc_TypeError, | 
 | 			"float() argument must be a string or a number"); | 
 | 		return NULL; | 
 | 	} | 
 | 	last = s + len; | 
 |  | 
 | 	while (Py_ISSPACE(*s)) | 
 | 		s++; | 
 | 	/* We don't care about overflow or underflow.  If the platform | 
 | 	 * supports them, infinities and signed zeroes (on underflow) are | 
 | 	 * fine. */ | 
 | 	x = PyOS_string_to_double(s, (char **)&end, NULL); | 
 | 	if (x == -1.0 && PyErr_Occurred()) | 
 | 		goto error; | 
 | 	while (Py_ISSPACE(*end)) | 
 | 		end++; | 
 | 	if (end == last) | 
 | 		result = PyFloat_FromDouble(x); | 
 | 	else { | 
 | 		PyOS_snprintf(buffer, sizeof(buffer), | 
 | 			      "invalid literal for float(): %.200s", s); | 
 | 		PyErr_SetString(PyExc_ValueError, buffer); | 
 | 		result = NULL; | 
 | 	} | 
 |  | 
 |   error: | 
 | 	if (s_buffer) | 
 | 		PyMem_FREE(s_buffer); | 
 | 	return result; | 
 | } | 
 |  | 
 | static void | 
 | float_dealloc(PyFloatObject *op) | 
 | { | 
 | 	if (PyFloat_CheckExact(op)) { | 
 | 		Py_TYPE(op) = (struct _typeobject *)free_list; | 
 | 		free_list = op; | 
 | 	} | 
 | 	else | 
 | 		Py_TYPE(op)->tp_free((PyObject *)op); | 
 | } | 
 |  | 
 | double | 
 | PyFloat_AsDouble(PyObject *op) | 
 | { | 
 | 	PyNumberMethods *nb; | 
 | 	PyFloatObject *fo; | 
 | 	double val; | 
 |  | 
 | 	if (op && PyFloat_Check(op)) | 
 | 		return PyFloat_AS_DOUBLE((PyFloatObject*) op); | 
 |  | 
 | 	if (op == NULL) { | 
 | 		PyErr_BadArgument(); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	if ((nb = Py_TYPE(op)->tp_as_number) == NULL || nb->nb_float == NULL) { | 
 | 		PyErr_SetString(PyExc_TypeError, "a float is required"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	fo = (PyFloatObject*) (*nb->nb_float) (op); | 
 | 	if (fo == NULL) | 
 | 		return -1; | 
 | 	if (!PyFloat_Check(fo)) { | 
 | 		PyErr_SetString(PyExc_TypeError, | 
 | 				"nb_float should return float object"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	val = PyFloat_AS_DOUBLE(fo); | 
 | 	Py_DECREF(fo); | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | /* Macro and helper that convert PyObject obj to a C double and store | 
 |    the value in dbl.  If conversion to double raises an exception, obj is | 
 |    set to NULL, and the function invoking this macro returns NULL.  If | 
 |    obj is not of float, int or long type, Py_NotImplemented is incref'ed, | 
 |    stored in obj, and returned from the function invoking this macro. | 
 | */ | 
 | #define CONVERT_TO_DOUBLE(obj, dbl)			\ | 
 | 	if (PyFloat_Check(obj))				\ | 
 | 		dbl = PyFloat_AS_DOUBLE(obj);		\ | 
 | 	else if (convert_to_double(&(obj), &(dbl)) < 0)	\ | 
 | 		return obj; | 
 |  | 
 | /* Methods */ | 
 |  | 
 | static int | 
 | convert_to_double(PyObject **v, double *dbl) | 
 | { | 
 | 	register PyObject *obj = *v; | 
 |  | 
 | 	if (PyLong_Check(obj)) { | 
 | 		*dbl = PyLong_AsDouble(obj); | 
 | 		if (*dbl == -1.0 && PyErr_Occurred()) { | 
 | 			*v = NULL; | 
 | 			return -1; | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		Py_INCREF(Py_NotImplemented); | 
 | 		*v = Py_NotImplemented; | 
 | 		return -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_str_or_repr(PyFloatObject *v, int precision, char format_code) | 
 | { | 
 |     PyObject *result; | 
 |     char *buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v), | 
 |                                       format_code, precision, | 
 |                                       Py_DTSF_ADD_DOT_0, | 
 |                                       NULL); | 
 |     if (!buf) | 
 |         return PyErr_NoMemory(); | 
 |     result = PyUnicode_FromString(buf); | 
 |     PyMem_Free(buf); | 
 |     return result; | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_repr(PyFloatObject *v) | 
 | { | 
 |     return float_str_or_repr(v, 0, 'r'); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_str(PyFloatObject *v) | 
 | { | 
 |     return float_str_or_repr(v, PyFloat_STR_PRECISION, 'g'); | 
 | } | 
 |  | 
 | /* Comparison is pretty much a nightmare.  When comparing float to float, | 
 |  * we do it as straightforwardly (and long-windedly) as conceivable, so | 
 |  * that, e.g., Python x == y delivers the same result as the platform | 
 |  * C x == y when x and/or y is a NaN. | 
 |  * When mixing float with an integer type, there's no good *uniform* approach. | 
 |  * Converting the double to an integer obviously doesn't work, since we | 
 |  * may lose info from fractional bits.  Converting the integer to a double | 
 |  * also has two failure modes:  (1) a long int may trigger overflow (too | 
 |  * large to fit in the dynamic range of a C double); (2) even a C long may have | 
 |  * more bits than fit in a C double (e.g., on a a 64-bit box long may have | 
 |  * 63 bits of precision, but a C double probably has only 53), and then | 
 |  * we can falsely claim equality when low-order integer bits are lost by | 
 |  * coercion to double.  So this part is painful too. | 
 |  */ | 
 |  | 
 | static PyObject* | 
 | float_richcompare(PyObject *v, PyObject *w, int op) | 
 | { | 
 | 	double i, j; | 
 | 	int r = 0; | 
 |  | 
 | 	assert(PyFloat_Check(v)); | 
 | 	i = PyFloat_AS_DOUBLE(v); | 
 |  | 
 | 	/* Switch on the type of w.  Set i and j to doubles to be compared, | 
 | 	 * and op to the richcomp to use. | 
 | 	 */ | 
 | 	if (PyFloat_Check(w)) | 
 | 		j = PyFloat_AS_DOUBLE(w); | 
 |  | 
 | 	else if (!Py_IS_FINITE(i)) { | 
 | 		if (PyLong_Check(w)) | 
 | 			/* If i is an infinity, its magnitude exceeds any | 
 | 			 * finite integer, so it doesn't matter which int we | 
 | 			 * compare i with.  If i is a NaN, similarly. | 
 | 			 */ | 
 | 			j = 0.0; | 
 | 		else | 
 | 			goto Unimplemented; | 
 | 	} | 
 |  | 
 | 	else if (PyLong_Check(w)) { | 
 | 		int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1; | 
 | 		int wsign = _PyLong_Sign(w); | 
 | 		size_t nbits; | 
 | 		int exponent; | 
 |  | 
 | 		if (vsign != wsign) { | 
 | 			/* Magnitudes are irrelevant -- the signs alone | 
 | 			 * determine the outcome. | 
 | 			 */ | 
 | 			i = (double)vsign; | 
 | 			j = (double)wsign; | 
 | 			goto Compare; | 
 | 		} | 
 | 		/* The signs are the same. */ | 
 | 		/* Convert w to a double if it fits.  In particular, 0 fits. */ | 
 | 		nbits = _PyLong_NumBits(w); | 
 | 		if (nbits == (size_t)-1 && PyErr_Occurred()) { | 
 | 			/* This long is so large that size_t isn't big enough | 
 | 			 * to hold the # of bits.  Replace with little doubles | 
 | 			 * that give the same outcome -- w is so large that | 
 | 			 * its magnitude must exceed the magnitude of any | 
 | 			 * finite float. | 
 | 			 */ | 
 | 			PyErr_Clear(); | 
 | 			i = (double)vsign; | 
 | 			assert(wsign != 0); | 
 | 			j = wsign * 2.0; | 
 | 			goto Compare; | 
 | 		} | 
 | 		if (nbits <= 48) { | 
 | 			j = PyLong_AsDouble(w); | 
 | 			/* It's impossible that <= 48 bits overflowed. */ | 
 | 			assert(j != -1.0 || ! PyErr_Occurred()); | 
 | 			goto Compare; | 
 | 		} | 
 | 		assert(wsign != 0); /* else nbits was 0 */ | 
 | 		assert(vsign != 0); /* if vsign were 0, then since wsign is | 
 | 		                     * not 0, we would have taken the | 
 | 		                     * vsign != wsign branch at the start */ | 
 | 		/* We want to work with non-negative numbers. */ | 
 | 		if (vsign < 0) { | 
 | 			/* "Multiply both sides" by -1; this also swaps the | 
 | 			 * comparator. | 
 | 			 */ | 
 | 			i = -i; | 
 | 			op = _Py_SwappedOp[op]; | 
 | 		} | 
 | 		assert(i > 0.0); | 
 | 		(void) frexp(i, &exponent); | 
 | 		/* exponent is the # of bits in v before the radix point; | 
 | 		 * we know that nbits (the # of bits in w) > 48 at this point | 
 | 		 */ | 
 | 		if (exponent < 0 || (size_t)exponent < nbits) { | 
 | 			i = 1.0; | 
 | 			j = 2.0; | 
 | 			goto Compare; | 
 | 		} | 
 | 		if ((size_t)exponent > nbits) { | 
 | 			i = 2.0; | 
 | 			j = 1.0; | 
 | 			goto Compare; | 
 | 		} | 
 | 		/* v and w have the same number of bits before the radix | 
 | 		 * point.  Construct two longs that have the same comparison | 
 | 		 * outcome. | 
 | 		 */ | 
 | 		{ | 
 | 			double fracpart; | 
 | 			double intpart; | 
 | 			PyObject *result = NULL; | 
 | 			PyObject *one = NULL; | 
 | 			PyObject *vv = NULL; | 
 | 			PyObject *ww = w; | 
 |  | 
 | 			if (wsign < 0) { | 
 | 				ww = PyNumber_Negative(w); | 
 | 				if (ww == NULL) | 
 | 					goto Error; | 
 | 			} | 
 | 			else | 
 | 				Py_INCREF(ww); | 
 |  | 
 | 			fracpart = modf(i, &intpart); | 
 | 			vv = PyLong_FromDouble(intpart); | 
 | 			if (vv == NULL) | 
 | 				goto Error; | 
 |  | 
 | 			if (fracpart != 0.0) { | 
 | 				/* Shift left, and or a 1 bit into vv | 
 | 				 * to represent the lost fraction. | 
 | 				 */ | 
 | 				PyObject *temp; | 
 |  | 
 | 				one = PyLong_FromLong(1); | 
 | 				if (one == NULL) | 
 | 					goto Error; | 
 |  | 
 | 				temp = PyNumber_Lshift(ww, one); | 
 | 				if (temp == NULL) | 
 | 					goto Error; | 
 | 				Py_DECREF(ww); | 
 | 				ww = temp; | 
 |  | 
 | 				temp = PyNumber_Lshift(vv, one); | 
 | 				if (temp == NULL) | 
 | 					goto Error; | 
 | 				Py_DECREF(vv); | 
 | 				vv = temp; | 
 |  | 
 | 				temp = PyNumber_Or(vv, one); | 
 | 				if (temp == NULL) | 
 | 					goto Error; | 
 | 				Py_DECREF(vv); | 
 | 				vv = temp; | 
 | 			} | 
 |  | 
 | 			r = PyObject_RichCompareBool(vv, ww, op); | 
 | 			if (r < 0) | 
 | 				goto Error; | 
 | 			result = PyBool_FromLong(r); | 
 |  		 Error: | 
 |  		 	Py_XDECREF(vv); | 
 |  		 	Py_XDECREF(ww); | 
 |  		 	Py_XDECREF(one); | 
 |  		 	return result; | 
 | 		} | 
 | 	} /* else if (PyLong_Check(w)) */ | 
 |  | 
 | 	else	/* w isn't float, int, or long */ | 
 | 		goto Unimplemented; | 
 |  | 
 |  Compare: | 
 | 	PyFPE_START_PROTECT("richcompare", return NULL) | 
 | 	switch (op) { | 
 | 	case Py_EQ: | 
 | 		r = i == j; | 
 | 		break; | 
 | 	case Py_NE: | 
 | 		r = i != j; | 
 | 		break; | 
 | 	case Py_LE: | 
 | 		r = i <= j; | 
 | 		break; | 
 | 	case Py_GE: | 
 | 		r = i >= j; | 
 | 		break; | 
 | 	case Py_LT: | 
 | 		r = i < j; | 
 | 		break; | 
 | 	case Py_GT: | 
 | 		r = i > j; | 
 | 		break; | 
 | 	} | 
 | 	PyFPE_END_PROTECT(r) | 
 | 	return PyBool_FromLong(r); | 
 |  | 
 |  Unimplemented: | 
 | 	Py_INCREF(Py_NotImplemented); | 
 | 	return Py_NotImplemented; | 
 | } | 
 |  | 
 | static long | 
 | float_hash(PyFloatObject *v) | 
 | { | 
 | 	return _Py_HashDouble(v->ob_fval); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_add(PyObject *v, PyObject *w) | 
 | { | 
 | 	double a,b; | 
 | 	CONVERT_TO_DOUBLE(v, a); | 
 | 	CONVERT_TO_DOUBLE(w, b); | 
 | 	PyFPE_START_PROTECT("add", return 0) | 
 | 	a = a + b; | 
 | 	PyFPE_END_PROTECT(a) | 
 | 	return PyFloat_FromDouble(a); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_sub(PyObject *v, PyObject *w) | 
 | { | 
 | 	double a,b; | 
 | 	CONVERT_TO_DOUBLE(v, a); | 
 | 	CONVERT_TO_DOUBLE(w, b); | 
 | 	PyFPE_START_PROTECT("subtract", return 0) | 
 | 	a = a - b; | 
 | 	PyFPE_END_PROTECT(a) | 
 | 	return PyFloat_FromDouble(a); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_mul(PyObject *v, PyObject *w) | 
 | { | 
 | 	double a,b; | 
 | 	CONVERT_TO_DOUBLE(v, a); | 
 | 	CONVERT_TO_DOUBLE(w, b); | 
 | 	PyFPE_START_PROTECT("multiply", return 0) | 
 | 	a = a * b; | 
 | 	PyFPE_END_PROTECT(a) | 
 | 	return PyFloat_FromDouble(a); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_div(PyObject *v, PyObject *w) | 
 | { | 
 | 	double a,b; | 
 | 	CONVERT_TO_DOUBLE(v, a); | 
 | 	CONVERT_TO_DOUBLE(w, b); | 
 | #ifdef Py_NAN | 
 | 	if (b == 0.0) { | 
 | 		PyErr_SetString(PyExc_ZeroDivisionError, | 
 | 				"float division"); | 
 | 		return NULL; | 
 | 	} | 
 | #endif | 
 | 	PyFPE_START_PROTECT("divide", return 0) | 
 | 	a = a / b; | 
 | 	PyFPE_END_PROTECT(a) | 
 | 	return PyFloat_FromDouble(a); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_rem(PyObject *v, PyObject *w) | 
 | { | 
 | 	double vx, wx; | 
 | 	double mod; | 
 | 	CONVERT_TO_DOUBLE(v, vx); | 
 | 	CONVERT_TO_DOUBLE(w, wx); | 
 | #ifdef Py_NAN | 
 | 	if (wx == 0.0) { | 
 | 		PyErr_SetString(PyExc_ZeroDivisionError, | 
 | 				"float modulo"); | 
 | 		return NULL; | 
 | 	} | 
 | #endif | 
 | 	PyFPE_START_PROTECT("modulo", return 0) | 
 | 	mod = fmod(vx, wx); | 
 | 	/* note: checking mod*wx < 0 is incorrect -- underflows to | 
 | 	   0 if wx < sqrt(smallest nonzero double) */ | 
 | 	if (mod && ((wx < 0) != (mod < 0))) { | 
 | 		mod += wx; | 
 | 	} | 
 | 	PyFPE_END_PROTECT(mod) | 
 | 	return PyFloat_FromDouble(mod); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_divmod(PyObject *v, PyObject *w) | 
 | { | 
 | 	double vx, wx; | 
 | 	double div, mod, floordiv; | 
 |  	CONVERT_TO_DOUBLE(v, vx); | 
 |  	CONVERT_TO_DOUBLE(w, wx); | 
 | 	if (wx == 0.0) { | 
 | 		PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()"); | 
 | 		return NULL; | 
 | 	} | 
 | 	PyFPE_START_PROTECT("divmod", return 0) | 
 | 	mod = fmod(vx, wx); | 
 | 	/* fmod is typically exact, so vx-mod is *mathematically* an | 
 | 	   exact multiple of wx.  But this is fp arithmetic, and fp | 
 | 	   vx - mod is an approximation; the result is that div may | 
 | 	   not be an exact integral value after the division, although | 
 | 	   it will always be very close to one. | 
 | 	*/ | 
 | 	div = (vx - mod) / wx; | 
 | 	if (mod) { | 
 | 		/* ensure the remainder has the same sign as the denominator */ | 
 | 		if ((wx < 0) != (mod < 0)) { | 
 | 			mod += wx; | 
 | 			div -= 1.0; | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		/* the remainder is zero, and in the presence of signed zeroes | 
 | 		   fmod returns different results across platforms; ensure | 
 | 		   it has the same sign as the denominator; we'd like to do | 
 | 		   "mod = wx * 0.0", but that may get optimized away */ | 
 | 		mod *= mod;  /* hide "mod = +0" from optimizer */ | 
 | 		if (wx < 0.0) | 
 | 			mod = -mod; | 
 | 	} | 
 | 	/* snap quotient to nearest integral value */ | 
 | 	if (div) { | 
 | 		floordiv = floor(div); | 
 | 		if (div - floordiv > 0.5) | 
 | 			floordiv += 1.0; | 
 | 	} | 
 | 	else { | 
 | 		/* div is zero - get the same sign as the true quotient */ | 
 | 		div *= div;	/* hide "div = +0" from optimizers */ | 
 | 		floordiv = div * vx / wx; /* zero w/ sign of vx/wx */ | 
 | 	} | 
 | 	PyFPE_END_PROTECT(floordiv) | 
 | 	return Py_BuildValue("(dd)", floordiv, mod); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_floor_div(PyObject *v, PyObject *w) | 
 | { | 
 | 	PyObject *t, *r; | 
 |  | 
 | 	t = float_divmod(v, w); | 
 | 	if (t == NULL || t == Py_NotImplemented) | 
 | 		return t; | 
 | 	assert(PyTuple_CheckExact(t)); | 
 | 	r = PyTuple_GET_ITEM(t, 0); | 
 | 	Py_INCREF(r); | 
 | 	Py_DECREF(t); | 
 | 	return r; | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_pow(PyObject *v, PyObject *w, PyObject *z) | 
 | { | 
 | 	double iv, iw, ix; | 
 |  | 
 | 	if ((PyObject *)z != Py_None) { | 
 | 		PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not " | 
 | 			"allowed unless all arguments are integers"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	CONVERT_TO_DOUBLE(v, iv); | 
 | 	CONVERT_TO_DOUBLE(w, iw); | 
 |  | 
 | 	/* Sort out special cases here instead of relying on pow() */ | 
 | 	if (iw == 0) { 		/* v**0 is 1, even 0**0 */ | 
 | 		return PyFloat_FromDouble(1.0); | 
 | 	} | 
 | 	if (iv == 0.0) {  /* 0**w is error if w<0, else 1 */ | 
 | 		if (iw < 0.0) { | 
 | 			PyErr_SetString(PyExc_ZeroDivisionError, | 
 | 					"0.0 cannot be raised to a negative power"); | 
 | 			return NULL; | 
 | 		} | 
 | 		return PyFloat_FromDouble(0.0); | 
 | 	} | 
 | 	if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */ | 
 | 		return PyFloat_FromDouble(1.0); | 
 | 	} | 
 | 	if (iv < 0.0) { | 
 | 		/* Whether this is an error is a mess, and bumps into libm | 
 | 		 * bugs so we have to figure it out ourselves. | 
 | 		 */ | 
 | 		if (iw != floor(iw)) { | 
 | 			/* Negative numbers raised to fractional powers | 
 | 			 * become complex. | 
 | 			 */ | 
 | 			return PyComplex_Type.tp_as_number->nb_power(v, w, z); | 
 | 		} | 
 | 		/* iw is an exact integer, albeit perhaps a very large one. | 
 | 		 * -1 raised to an exact integer should never be exceptional. | 
 | 		 * Alas, some libms (chiefly glibc as of early 2003) return | 
 | 		 * NaN and set EDOM on pow(-1, large_int) if the int doesn't | 
 | 		 * happen to be representable in a *C* integer.  That's a | 
 | 		 * bug; we let that slide in math.pow() (which currently | 
 | 		 * reflects all platform accidents), but not for Python's **. | 
 | 		 */ | 
 | 		 if (iv == -1.0 && Py_IS_FINITE(iw)) { | 
 | 		 	/* Return 1 if iw is even, -1 if iw is odd; there's | 
 | 		 	 * no guarantee that any C integral type is big | 
 | 		 	 * enough to hold iw, so we have to check this | 
 | 		 	 * indirectly. | 
 | 		 	 */ | 
 | 		 	ix = floor(iw * 0.5) * 2.0; | 
 | 			return PyFloat_FromDouble(ix == iw ? 1.0 : -1.0); | 
 | 		} | 
 | 		/* Else iv != -1.0, and overflow or underflow are possible. | 
 | 		 * Unless we're to write pow() ourselves, we have to trust | 
 | 		 * the platform to do this correctly. | 
 | 		 */ | 
 | 	} | 
 | 	errno = 0; | 
 | 	PyFPE_START_PROTECT("pow", return NULL) | 
 | 	ix = pow(iv, iw); | 
 | 	PyFPE_END_PROTECT(ix) | 
 | 	Py_ADJUST_ERANGE1(ix); | 
 | 	if (errno != 0) { | 
 | 		/* We don't expect any errno value other than ERANGE, but | 
 | 		 * the range of libm bugs appears unbounded. | 
 | 		 */ | 
 | 		PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError : | 
 | 						     PyExc_ValueError); | 
 | 		return NULL; | 
 | 	} | 
 | 	return PyFloat_FromDouble(ix); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_neg(PyFloatObject *v) | 
 | { | 
 | 	return PyFloat_FromDouble(-v->ob_fval); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_abs(PyFloatObject *v) | 
 | { | 
 | 	return PyFloat_FromDouble(fabs(v->ob_fval)); | 
 | } | 
 |  | 
 | static int | 
 | float_bool(PyFloatObject *v) | 
 | { | 
 | 	return v->ob_fval != 0.0; | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_is_integer(PyObject *v) | 
 | { | 
 | 	double x = PyFloat_AsDouble(v); | 
 | 	PyObject *o; | 
 | 	 | 
 | 	if (x == -1.0 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	if (!Py_IS_FINITE(x)) | 
 | 		Py_RETURN_FALSE; | 
 | 	errno = 0; | 
 | 	PyFPE_START_PROTECT("is_integer", return NULL) | 
 | 	o = (floor(x) == x) ? Py_True : Py_False; | 
 | 	PyFPE_END_PROTECT(x) | 
 | 	if (errno != 0) { | 
 | 		PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError : | 
 | 						     PyExc_ValueError); | 
 | 		return NULL; | 
 | 	} | 
 | 	Py_INCREF(o); | 
 | 	return o; | 
 | } | 
 |  | 
 | #if 0 | 
 | static PyObject * | 
 | float_is_inf(PyObject *v) | 
 | { | 
 | 	double x = PyFloat_AsDouble(v); | 
 | 	if (x == -1.0 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	return PyBool_FromLong((long)Py_IS_INFINITY(x)); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_is_nan(PyObject *v) | 
 | { | 
 | 	double x = PyFloat_AsDouble(v); | 
 | 	if (x == -1.0 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	return PyBool_FromLong((long)Py_IS_NAN(x)); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_is_finite(PyObject *v) | 
 | { | 
 | 	double x = PyFloat_AsDouble(v); | 
 | 	if (x == -1.0 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	return PyBool_FromLong((long)Py_IS_FINITE(x)); | 
 | } | 
 | #endif | 
 |  | 
 | static PyObject * | 
 | float_trunc(PyObject *v) | 
 | { | 
 | 	double x = PyFloat_AsDouble(v); | 
 | 	double wholepart;	/* integral portion of x, rounded toward 0 */ | 
 |  | 
 | 	(void)modf(x, &wholepart); | 
 | 	/* Try to get out cheap if this fits in a Python int.  The attempt | 
 | 	 * to cast to long must be protected, as C doesn't define what | 
 | 	 * happens if the double is too big to fit in a long.  Some rare | 
 | 	 * systems raise an exception then (RISCOS was mentioned as one, | 
 | 	 * and someone using a non-default option on Sun also bumped into | 
 | 	 * that).  Note that checking for >= and <= LONG_{MIN,MAX} would | 
 | 	 * still be vulnerable:  if a long has more bits of precision than | 
 | 	 * a double, casting MIN/MAX to double may yield an approximation, | 
 | 	 * and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would | 
 | 	 * yield true from the C expression wholepart<=LONG_MAX, despite | 
 | 	 * that wholepart is actually greater than LONG_MAX. | 
 | 	 */ | 
 | 	if (LONG_MIN < wholepart && wholepart < LONG_MAX) { | 
 | 		const long aslong = (long)wholepart; | 
 | 		return PyLong_FromLong(aslong); | 
 | 	} | 
 | 	return PyLong_FromDouble(wholepart); | 
 | } | 
 |  | 
 | /* double_round: rounds a finite double to the closest multiple of | 
 |    10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <= | 
 |    ndigits <= 323).  Returns a Python float, or sets a Python error and | 
 |    returns NULL on failure (OverflowError and memory errors are possible). */ | 
 |  | 
 | #ifndef PY_NO_SHORT_FLOAT_REPR | 
 | /* version of double_round that uses the correctly-rounded string<->double | 
 |    conversions from Python/dtoa.c */ | 
 |  | 
 | static PyObject * | 
 | double_round(double x, int ndigits) { | 
 |  | 
 | 	double rounded; | 
 | 	Py_ssize_t buflen, mybuflen=100; | 
 | 	char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf; | 
 | 	int decpt, sign; | 
 | 	PyObject *result = NULL; | 
 |  | 
 | 	/* round to a decimal string */ | 
 | 	buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end); | 
 | 	if (buf == NULL) { | 
 | 		PyErr_NoMemory(); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* Get new buffer if shortbuf is too small.  Space needed <= buf_end - | 
 | 	buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0').  */ | 
 | 	buflen = buf_end - buf; | 
 | 	if (buflen + 8 > mybuflen) { | 
 | 		mybuflen = buflen+8; | 
 | 		mybuf = (char *)PyMem_Malloc(mybuflen); | 
 | 		if (mybuf == NULL) { | 
 | 			PyErr_NoMemory(); | 
 | 			goto exit; | 
 | 		} | 
 | 	} | 
 | 	/* copy buf to mybuf, adding exponent, sign and leading 0 */ | 
 | 	PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""), | 
 | 		      buf, decpt - (int)buflen); | 
 |  | 
 | 	/* and convert the resulting string back to a double */ | 
 | 	errno = 0; | 
 | 	rounded = _Py_dg_strtod(mybuf, NULL); | 
 | 	if (errno == ERANGE && fabs(rounded) >= 1.) | 
 | 		PyErr_SetString(PyExc_OverflowError, | 
 | 				"rounded value too large to represent"); | 
 | 	else | 
 | 		result = PyFloat_FromDouble(rounded); | 
 |  | 
 | 	/* done computing value;  now clean up */ | 
 | 	if (mybuf != shortbuf) | 
 | 		PyMem_Free(mybuf); | 
 |   exit: | 
 | 	_Py_dg_freedtoa(buf); | 
 | 	return result; | 
 | } | 
 |  | 
 | #else /* PY_NO_SHORT_FLOAT_REPR */ | 
 |  | 
 | /* fallback version, to be used when correctly rounded binary<->decimal | 
 |    conversions aren't available */ | 
 |  | 
 | static PyObject * | 
 | double_round(double x, int ndigits) { | 
 | 	double pow1, pow2, y, z; | 
 | 	if (ndigits >= 0) { | 
 | 		if (ndigits > 22) { | 
 | 			/* pow1 and pow2 are each safe from overflow, but | 
 | 			   pow1*pow2 ~= pow(10.0, ndigits) might overflow */ | 
 | 			pow1 = pow(10.0, (double)(ndigits-22)); | 
 | 			pow2 = 1e22; | 
 | 		} | 
 | 		else { | 
 | 			pow1 = pow(10.0, (double)ndigits); | 
 | 			pow2 = 1.0; | 
 | 		} | 
 | 		y = (x*pow1)*pow2; | 
 | 		/* if y overflows, then rounded value is exactly x */ | 
 | 		if (!Py_IS_FINITE(y)) | 
 | 			return PyFloat_FromDouble(x); | 
 | 	} | 
 | 	else { | 
 | 		pow1 = pow(10.0, (double)-ndigits); | 
 | 		pow2 = 1.0; /* unused; silences a gcc compiler warning */ | 
 | 		y = x / pow1; | 
 | 	} | 
 |  | 
 | 	z = round(y); | 
 | 	if (fabs(y-z) == 0.5) | 
 | 		/* halfway between two integers; use round-half-even */ | 
 | 		z = 2.0*round(y/2.0); | 
 |  | 
 | 	if (ndigits >= 0) | 
 | 		z = (z / pow2) / pow1; | 
 | 	else | 
 | 		z *= pow1; | 
 |  | 
 | 	/* if computation resulted in overflow, raise OverflowError */ | 
 | 	if (!Py_IS_FINITE(z)) { | 
 | 		PyErr_SetString(PyExc_OverflowError, | 
 | 				"overflow occurred during round"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return PyFloat_FromDouble(z); | 
 | } | 
 |  | 
 | #endif /* PY_NO_SHORT_FLOAT_REPR */ | 
 |  | 
 | /* round a Python float v to the closest multiple of 10**-ndigits */ | 
 |  | 
 | static PyObject * | 
 | float_round(PyObject *v, PyObject *args) | 
 | { | 
 | 	double x, rounded; | 
 | 	PyObject *o_ndigits = NULL; | 
 | 	Py_ssize_t ndigits; | 
 |  | 
 | 	x = PyFloat_AsDouble(v); | 
 | 	if (!PyArg_ParseTuple(args, "|O", &o_ndigits)) | 
 | 		return NULL; | 
 | 	if (o_ndigits == NULL) { | 
 | 		/* single-argument round: round to nearest integer */ | 
 | 		rounded = round(x); | 
 | 		if (fabs(x-rounded) == 0.5) | 
 | 			/* halfway case: round to even */ | 
 | 			rounded = 2.0*round(x/2.0); | 
 | 		return PyLong_FromDouble(rounded); | 
 | 	} | 
 |  | 
 | 	/* interpret second argument as a Py_ssize_t; clips on overflow */ | 
 | 	ndigits = PyNumber_AsSsize_t(o_ndigits, NULL); | 
 | 	if (ndigits == -1 && PyErr_Occurred()) | 
 | 		return NULL; | 
 |  | 
 | 	/* nans and infinities round to themselves */ | 
 | 	if (!Py_IS_FINITE(x)) | 
 | 		return PyFloat_FromDouble(x); | 
 |  | 
 | 	/* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x | 
 | 	   always rounds to itself.  For ndigits < NDIGITS_MIN, x always | 
 | 	   rounds to +-0.0.  Here 0.30103 is an upper bound for log10(2). */ | 
 | #define NDIGITS_MAX ((int)((DBL_MANT_DIG-DBL_MIN_EXP) * 0.30103)) | 
 | #define NDIGITS_MIN (-(int)((DBL_MAX_EXP + 1) * 0.30103)) | 
 | 	if (ndigits > NDIGITS_MAX) | 
 | 		/* return x */ | 
 | 		return PyFloat_FromDouble(x); | 
 | 	else if (ndigits < NDIGITS_MIN) | 
 | 		/* return 0.0, but with sign of x */ | 
 | 		return PyFloat_FromDouble(0.0*x); | 
 | 	else | 
 | 		/* finite x, and ndigits is not unreasonably large */ | 
 | 		return double_round(x, (int)ndigits); | 
 | #undef NDIGITS_MAX | 
 | #undef NDIGITS_MIN | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_float(PyObject *v) | 
 | { | 
 | 	if (PyFloat_CheckExact(v)) | 
 | 		Py_INCREF(v); | 
 | 	else | 
 | 		v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval); | 
 | 	return v; | 
 | } | 
 |  | 
 | /* turn ASCII hex characters into integer values and vice versa */ | 
 |  | 
 | static char | 
 | char_from_hex(int x) | 
 | { | 
 | 	assert(0 <= x && x < 16); | 
 | 	return "0123456789abcdef"[x]; | 
 | } | 
 |  | 
 | static int | 
 | hex_from_char(char c) { | 
 | 	int x; | 
 | 	switch(c) { | 
 | 	case '0': | 
 | 		x = 0; | 
 | 		break; | 
 | 	case '1': | 
 | 		x = 1; | 
 | 		break; | 
 | 	case '2': | 
 | 		x = 2; | 
 | 		break; | 
 | 	case '3': | 
 | 		x = 3; | 
 | 		break; | 
 | 	case '4': | 
 | 		x = 4; | 
 | 		break; | 
 | 	case '5': | 
 | 		x = 5; | 
 | 		break; | 
 | 	case '6': | 
 | 		x = 6; | 
 | 		break; | 
 | 	case '7': | 
 | 		x = 7; | 
 | 		break; | 
 | 	case '8': | 
 | 		x = 8; | 
 | 		break; | 
 | 	case '9': | 
 | 		x = 9; | 
 | 		break; | 
 | 	case 'a': | 
 | 	case 'A': | 
 | 		x = 10; | 
 | 		break; | 
 | 	case 'b': | 
 | 	case 'B': | 
 | 		x = 11; | 
 | 		break; | 
 | 	case 'c': | 
 | 	case 'C': | 
 | 		x = 12; | 
 | 		break; | 
 | 	case 'd': | 
 | 	case 'D': | 
 | 		x = 13; | 
 | 		break; | 
 | 	case 'e': | 
 | 	case 'E': | 
 | 		x = 14; | 
 | 		break; | 
 | 	case 'f': | 
 | 	case 'F': | 
 | 		x = 15; | 
 | 		break; | 
 | 	default: | 
 | 		x = -1; | 
 | 		break; | 
 | 	} | 
 | 	return x; | 
 | } | 
 |  | 
 | /* convert a float to a hexadecimal string */ | 
 |  | 
 | /* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer | 
 |    of the form 4k+1. */ | 
 | #define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4 | 
 |  | 
 | static PyObject * | 
 | float_hex(PyObject *v) | 
 | { | 
 | 	double x, m; | 
 | 	int e, shift, i, si, esign; | 
 | 	/* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the | 
 | 	   trailing NUL byte. */ | 
 | 	char s[(TOHEX_NBITS-1)/4+3]; | 
 |  | 
 | 	CONVERT_TO_DOUBLE(v, x); | 
 |  | 
 | 	if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) | 
 | 		return float_str((PyFloatObject *)v); | 
 |  | 
 | 	if (x == 0.0) { | 
 | 		if(copysign(1.0, x) == -1.0) | 
 | 			return PyUnicode_FromString("-0x0.0p+0"); | 
 | 		else | 
 | 			return PyUnicode_FromString("0x0.0p+0"); | 
 | 	} | 
 |  | 
 | 	m = frexp(fabs(x), &e); | 
 | 	shift = 1 - MAX(DBL_MIN_EXP - e, 0); | 
 | 	m = ldexp(m, shift); | 
 | 	e -= shift; | 
 |  | 
 | 	si = 0; | 
 | 	s[si] = char_from_hex((int)m); | 
 | 	si++; | 
 | 	m -= (int)m; | 
 | 	s[si] = '.'; | 
 | 	si++; | 
 | 	for (i=0; i < (TOHEX_NBITS-1)/4; i++) { | 
 | 		m *= 16.0; | 
 | 		s[si] = char_from_hex((int)m); | 
 | 		si++; | 
 | 		m -= (int)m; | 
 | 	} | 
 | 	s[si] = '\0'; | 
 |  | 
 | 	if (e < 0) { | 
 | 		esign = (int)'-'; | 
 | 		e = -e; | 
 | 	} | 
 | 	else | 
 | 		esign = (int)'+'; | 
 |  | 
 | 	if (x < 0.0) | 
 | 		return PyUnicode_FromFormat("-0x%sp%c%d", s, esign, e); | 
 | 	else | 
 | 		return PyUnicode_FromFormat("0x%sp%c%d", s, esign, e); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(float_hex_doc, | 
 | "float.hex() -> string\n\ | 
 | \n\ | 
 | Return a hexadecimal representation of a floating-point number.\n\ | 
 | >>> (-0.1).hex()\n\ | 
 | '-0x1.999999999999ap-4'\n\ | 
 | >>> 3.14159.hex()\n\ | 
 | '0x1.921f9f01b866ep+1'"); | 
 |  | 
 | /* Convert a hexadecimal string to a float. */ | 
 |  | 
 | static PyObject * | 
 | float_fromhex(PyObject *cls, PyObject *arg) | 
 | { | 
 | 	PyObject *result_as_float, *result; | 
 | 	double x; | 
 | 	long exp, top_exp, lsb, key_digit; | 
 | 	char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end; | 
 | 	int half_eps, digit, round_up, negate=0; | 
 | 	Py_ssize_t length, ndigits, fdigits, i; | 
 |  | 
 | 	/* | 
 | 	 * For the sake of simplicity and correctness, we impose an artificial | 
 | 	 * limit on ndigits, the total number of hex digits in the coefficient | 
 | 	 * The limit is chosen to ensure that, writing exp for the exponent, | 
 | 	 * | 
 | 	 *   (1) if exp > LONG_MAX/2 then the value of the hex string is | 
 | 	 *   guaranteed to overflow (provided it's nonzero) | 
 | 	 * | 
 | 	 *   (2) if exp < LONG_MIN/2 then the value of the hex string is | 
 | 	 *   guaranteed to underflow to 0. | 
 | 	 * | 
 | 	 *   (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of | 
 | 	 *   overflow in the calculation of exp and top_exp below. | 
 | 	 * | 
 | 	 * More specifically, ndigits is assumed to satisfy the following | 
 | 	 * inequalities: | 
 | 	 * | 
 | 	 *   4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2 | 
 | 	 *   4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP | 
 | 	 * | 
 | 	 * If either of these inequalities is not satisfied, a ValueError is | 
 | 	 * raised.  Otherwise, write x for the value of the hex string, and | 
 | 	 * assume x is nonzero.  Then | 
 | 	 * | 
 | 	 *   2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits). | 
 | 	 * | 
 | 	 * Now if exp > LONG_MAX/2 then: | 
 | 	 * | 
 | 	 *   exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP) | 
 | 	 *                    = DBL_MAX_EXP | 
 | 	 * | 
 | 	 * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C | 
 | 	 * double, so overflows.  If exp < LONG_MIN/2, then | 
 | 	 * | 
 | 	 *   exp + 4*ndigits <= LONG_MIN/2 - 1 + ( | 
 | 	 *                      DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2) | 
 | 	 *                    = DBL_MIN_EXP - DBL_MANT_DIG - 1 | 
 | 	 * | 
 | 	 * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0 | 
 | 	 * when converted to a C double. | 
 | 	 * | 
 | 	 * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both | 
 | 	 * exp+4*ndigits and exp-4*ndigits are within the range of a long. | 
 | 	 */ | 
 |  | 
 | 	s = _PyUnicode_AsStringAndSize(arg, &length); | 
 | 	if (s == NULL) | 
 | 		return NULL; | 
 | 	s_end = s + length; | 
 |  | 
 | 	/******************** | 
 | 	 * Parse the string * | 
 | 	 ********************/ | 
 |  | 
 | 	/* leading whitespace */ | 
 | 	while (Py_ISSPACE(*s)) | 
 | 		s++; | 
 |  | 
 | 	/* infinities and nans */ | 
 | 	x = _Py_parse_inf_or_nan(s, &coeff_end); | 
 | 	if (coeff_end != s) { | 
 | 		s = coeff_end; | 
 | 		goto finished; | 
 | 	} | 
 |  | 
 | 	/* optional sign */ | 
 | 	if (*s == '-') { | 
 | 		s++; | 
 | 		negate = 1; | 
 | 	} | 
 | 	else if (*s == '+') | 
 | 		s++; | 
 |  | 
 | 	/* [0x] */ | 
 | 	s_store = s; | 
 | 	if (*s == '0') { | 
 | 		s++; | 
 | 		if (*s == 'x' || *s == 'X') | 
 | 			s++; | 
 | 		else | 
 | 			s = s_store; | 
 | 	} | 
 |  | 
 | 	/* coefficient: <integer> [. <fraction>] */ | 
 | 	coeff_start = s; | 
 | 	while (hex_from_char(*s) >= 0) | 
 | 		s++; | 
 | 	s_store = s; | 
 | 	if (*s == '.') { | 
 | 		s++; | 
 | 		while (hex_from_char(*s) >= 0) | 
 | 			s++; | 
 | 		coeff_end = s-1; | 
 | 	} | 
 | 	else | 
 | 		coeff_end = s; | 
 |  | 
 | 	/* ndigits = total # of hex digits; fdigits = # after point */ | 
 | 	ndigits = coeff_end - coeff_start; | 
 | 	fdigits = coeff_end - s_store; | 
 | 	if (ndigits == 0) | 
 | 		goto parse_error; | 
 | 	if (ndigits > MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2, | 
 | 			  LONG_MAX/2 + 1 - DBL_MAX_EXP)/4) | 
 | 		goto insane_length_error; | 
 |  | 
 | 	/* [p <exponent>] */ | 
 | 	if (*s == 'p' || *s == 'P') { | 
 | 		s++; | 
 | 		exp_start = s; | 
 | 		if (*s == '-' || *s == '+') | 
 | 			s++; | 
 | 		if (!('0' <= *s && *s <= '9')) | 
 | 			goto parse_error; | 
 | 		s++; | 
 | 		while ('0' <= *s && *s <= '9') | 
 | 			s++; | 
 | 		exp = strtol(exp_start, NULL, 10); | 
 | 	} | 
 | 	else | 
 | 		exp = 0; | 
 |  | 
 | /* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */ | 
 | #define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ?		\ | 
 | 				     coeff_end-(j) :			\ | 
 | 				     coeff_end-1-(j))) | 
 |  | 
 | 	/******************************************* | 
 | 	 * Compute rounded value of the hex string * | 
 | 	 *******************************************/ | 
 |  | 
 | 	/* Discard leading zeros, and catch extreme overflow and underflow */ | 
 | 	while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0) | 
 | 		ndigits--; | 
 | 	if (ndigits == 0 || exp < LONG_MIN/2) { | 
 | 		x = 0.0; | 
 | 		goto finished; | 
 | 	} | 
 | 	if (exp > LONG_MAX/2) | 
 | 		goto overflow_error; | 
 |  | 
 | 	/* Adjust exponent for fractional part. */ | 
 | 	exp = exp - 4*((long)fdigits); | 
 |  | 
 | 	/* top_exp = 1 more than exponent of most sig. bit of coefficient */ | 
 | 	top_exp = exp + 4*((long)ndigits - 1); | 
 | 	for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2) | 
 | 		top_exp++; | 
 |  | 
 | 	/* catch almost all nonextreme cases of overflow and underflow here */ | 
 | 	if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) { | 
 | 		x = 0.0; | 
 | 		goto finished; | 
 | 	} | 
 | 	if (top_exp > DBL_MAX_EXP) | 
 | 		goto overflow_error; | 
 |  | 
 | 	/* lsb = exponent of least significant bit of the *rounded* value. | 
 | 	   This is top_exp - DBL_MANT_DIG unless result is subnormal. */ | 
 | 	lsb = MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG; | 
 |  | 
 | 	x = 0.0; | 
 | 	if (exp >= lsb) { | 
 | 		/* no rounding required */ | 
 | 		for (i = ndigits-1; i >= 0; i--) | 
 | 			x = 16.0*x + HEX_DIGIT(i); | 
 | 		x = ldexp(x, (int)(exp)); | 
 | 		goto finished; | 
 | 	} | 
 | 	/* rounding required.  key_digit is the index of the hex digit | 
 | 	   containing the first bit to be rounded away. */ | 
 | 	half_eps = 1 << (int)((lsb - exp - 1) % 4); | 
 | 	key_digit = (lsb - exp - 1) / 4; | 
 | 	for (i = ndigits-1; i > key_digit; i--) | 
 | 		x = 16.0*x + HEX_DIGIT(i); | 
 | 	digit = HEX_DIGIT(key_digit); | 
 | 	x = 16.0*x + (double)(digit & (16-2*half_eps)); | 
 |  | 
 | 	/* round-half-even: round up if bit lsb-1 is 1 and at least one of | 
 | 	   bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */ | 
 | 	if ((digit & half_eps) != 0) { | 
 | 		round_up = 0; | 
 | 		if ((digit & (3*half_eps-1)) != 0 || | 
 | 		    (half_eps == 8 && (HEX_DIGIT(key_digit+1) & 1) != 0)) | 
 | 			round_up = 1; | 
 | 		else | 
 | 			for (i = key_digit-1; i >= 0; i--) | 
 | 				if (HEX_DIGIT(i) != 0) { | 
 | 					round_up = 1; | 
 | 					break; | 
 | 				} | 
 | 		if (round_up == 1) { | 
 | 			x += 2*half_eps; | 
 | 			if (top_exp == DBL_MAX_EXP && | 
 | 			    x == ldexp((double)(2*half_eps), DBL_MANT_DIG)) | 
 | 				/* overflow corner case: pre-rounded value < | 
 | 				   2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */ | 
 | 				goto overflow_error; | 
 | 		} | 
 | 	} | 
 | 	x = ldexp(x, (int)(exp+4*key_digit)); | 
 |  | 
 |   finished: | 
 | 	/* optional trailing whitespace leading to the end of the string */ | 
 | 	while (Py_ISSPACE(*s)) | 
 | 		s++; | 
 | 	if (s != s_end) | 
 | 		goto parse_error; | 
 | 	result_as_float = Py_BuildValue("(d)", negate ? -x : x); | 
 | 	if (result_as_float == NULL) | 
 | 		return NULL; | 
 | 	result = PyObject_CallObject(cls, result_as_float); | 
 | 	Py_DECREF(result_as_float); | 
 | 	return result; | 
 |  | 
 |   overflow_error: | 
 | 	PyErr_SetString(PyExc_OverflowError, | 
 | 			"hexadecimal value too large to represent as a float"); | 
 | 	return NULL; | 
 |  | 
 |   parse_error: | 
 | 	PyErr_SetString(PyExc_ValueError, | 
 | 			"invalid hexadecimal floating-point string"); | 
 | 	return NULL; | 
 |  | 
 |   insane_length_error: | 
 | 	PyErr_SetString(PyExc_ValueError, | 
 | 			"hexadecimal string too long to convert"); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(float_fromhex_doc, | 
 | "float.fromhex(string) -> float\n\ | 
 | \n\ | 
 | Create a floating-point number from a hexadecimal string.\n\ | 
 | >>> float.fromhex('0x1.ffffp10')\n\ | 
 | 2047.984375\n\ | 
 | >>> float.fromhex('-0x1p-1074')\n\ | 
 | -4.9406564584124654e-324"); | 
 |  | 
 |  | 
 | static PyObject * | 
 | float_as_integer_ratio(PyObject *v, PyObject *unused) | 
 | { | 
 | 	double self; | 
 | 	double float_part; | 
 | 	int exponent; | 
 | 	int i; | 
 |  | 
 | 	PyObject *prev; | 
 | 	PyObject *py_exponent = NULL; | 
 | 	PyObject *numerator = NULL; | 
 | 	PyObject *denominator = NULL; | 
 | 	PyObject *result_pair = NULL; | 
 | 	PyNumberMethods *long_methods = PyLong_Type.tp_as_number; | 
 |  | 
 | #define INPLACE_UPDATE(obj, call) \ | 
 | 	prev = obj; \ | 
 | 	obj = call; \ | 
 | 	Py_DECREF(prev); \ | 
 |  | 
 | 	CONVERT_TO_DOUBLE(v, self); | 
 |  | 
 | 	if (Py_IS_INFINITY(self)) { | 
 | 	  PyErr_SetString(PyExc_OverflowError, | 
 | 			  "Cannot pass infinity to float.as_integer_ratio."); | 
 | 	  return NULL; | 
 | 	} | 
 | #ifdef Py_NAN | 
 | 	if (Py_IS_NAN(self)) { | 
 | 	  PyErr_SetString(PyExc_ValueError, | 
 | 			  "Cannot pass NaN to float.as_integer_ratio."); | 
 | 	  return NULL; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	PyFPE_START_PROTECT("as_integer_ratio", goto error); | 
 | 	float_part = frexp(self, &exponent);  	/* self == float_part * 2**exponent exactly */ | 
 | 	PyFPE_END_PROTECT(float_part); | 
 | 	 | 
 | 	for (i=0; i<300 && float_part != floor(float_part) ; i++) { | 
 | 		float_part *= 2.0; | 
 | 		exponent--; | 
 | 	}	 | 
 | 	/* self == float_part * 2**exponent exactly and float_part is integral. | 
 |            If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part | 
 |            to be truncated by PyLong_FromDouble(). */ | 
 |  | 
 | 	numerator = PyLong_FromDouble(float_part); | 
 | 	if (numerator == NULL) goto error; | 
 |  | 
 | 	/* fold in 2**exponent */ | 
 | 	denominator = PyLong_FromLong(1); | 
 | 	py_exponent = PyLong_FromLong(labs((long)exponent)); | 
 | 	if (py_exponent == NULL) goto error; | 
 | 	INPLACE_UPDATE(py_exponent, | 
 | 		       long_methods->nb_lshift(denominator, py_exponent)); | 
 | 	if (py_exponent == NULL) goto error; | 
 | 	if (exponent > 0) { | 
 | 		INPLACE_UPDATE(numerator, | 
 | 			       long_methods->nb_multiply(numerator, py_exponent)); | 
 | 		if (numerator == NULL) goto error; | 
 | 	} | 
 | 	else { | 
 | 		Py_DECREF(denominator); | 
 | 		denominator = py_exponent; | 
 | 		py_exponent = NULL; | 
 | 	} | 
 |  | 
 | 	result_pair = PyTuple_Pack(2, numerator, denominator); | 
 |  | 
 | #undef INPLACE_UPDATE | 
 | error: | 
 | 	Py_XDECREF(py_exponent); | 
 | 	Py_XDECREF(denominator); | 
 | 	Py_XDECREF(numerator); | 
 | 	return result_pair; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(float_as_integer_ratio_doc, | 
 | "float.as_integer_ratio() -> (int, int)\n" | 
 | "\n" | 
 | "Returns a pair of integers, whose ratio is exactly equal to the original\n" | 
 | "float and with a positive denominator.\n" | 
 | "Raises OverflowError on infinities and a ValueError on NaNs.\n" | 
 | "\n" | 
 | ">>> (10.0).as_integer_ratio()\n" | 
 | "(10, 1)\n" | 
 | ">>> (0.0).as_integer_ratio()\n" | 
 | "(0, 1)\n" | 
 | ">>> (-.25).as_integer_ratio()\n" | 
 | "(-1, 4)"); | 
 |  | 
 |  | 
 | static PyObject * | 
 | float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds); | 
 |  | 
 | static PyObject * | 
 | float_new(PyTypeObject *type, PyObject *args, PyObject *kwds) | 
 | { | 
 | 	PyObject *x = Py_False; /* Integer zero */ | 
 | 	static char *kwlist[] = {"x", 0}; | 
 |  | 
 | 	if (type != &PyFloat_Type) | 
 | 		return float_subtype_new(type, args, kwds); /* Wimp out */ | 
 | 	if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x)) | 
 | 		return NULL; | 
 | 	/* If it's a string, but not a string subclass, use | 
 | 	   PyFloat_FromString. */ | 
 | 	if (PyUnicode_CheckExact(x)) | 
 | 		return PyFloat_FromString(x); | 
 | 	return PyNumber_Float(x); | 
 | } | 
 |  | 
 | /* Wimpy, slow approach to tp_new calls for subtypes of float: | 
 |    first create a regular float from whatever arguments we got, | 
 |    then allocate a subtype instance and initialize its ob_fval | 
 |    from the regular float.  The regular float is then thrown away. | 
 | */ | 
 | static PyObject * | 
 | float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds) | 
 | { | 
 | 	PyObject *tmp, *newobj; | 
 |  | 
 | 	assert(PyType_IsSubtype(type, &PyFloat_Type)); | 
 | 	tmp = float_new(&PyFloat_Type, args, kwds); | 
 | 	if (tmp == NULL) | 
 | 		return NULL; | 
 | 	assert(PyFloat_CheckExact(tmp)); | 
 | 	newobj = type->tp_alloc(type, 0); | 
 | 	if (newobj == NULL) { | 
 | 		Py_DECREF(tmp); | 
 | 		return NULL; | 
 | 	} | 
 | 	((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval; | 
 | 	Py_DECREF(tmp); | 
 | 	return newobj; | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_getnewargs(PyFloatObject *v) | 
 | { | 
 | 	return Py_BuildValue("(d)", v->ob_fval); | 
 | } | 
 |  | 
 | /* this is for the benefit of the pack/unpack routines below */ | 
 |  | 
 | typedef enum { | 
 | 	unknown_format, ieee_big_endian_format, ieee_little_endian_format | 
 | } float_format_type; | 
 |  | 
 | static float_format_type double_format, float_format; | 
 | static float_format_type detected_double_format, detected_float_format; | 
 |  | 
 | static PyObject * | 
 | float_getformat(PyTypeObject *v, PyObject* arg) | 
 | { | 
 | 	char* s; | 
 | 	float_format_type r; | 
 |  | 
 | 	if (!PyUnicode_Check(arg)) { | 
 | 		PyErr_Format(PyExc_TypeError, | 
 | 	     "__getformat__() argument must be string, not %.500s", | 
 | 			     Py_TYPE(arg)->tp_name); | 
 | 		return NULL; | 
 | 	} | 
 | 	s = _PyUnicode_AsString(arg); | 
 | 	if (s == NULL) | 
 | 		return NULL; | 
 | 	if (strcmp(s, "double") == 0) { | 
 | 		r = double_format; | 
 | 	} | 
 | 	else if (strcmp(s, "float") == 0) { | 
 | 		r = float_format; | 
 | 	} | 
 | 	else { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"__getformat__() argument 1 must be " | 
 | 				"'double' or 'float'"); | 
 | 		return NULL; | 
 | 	} | 
 | 	 | 
 | 	switch (r) { | 
 | 	case unknown_format: | 
 | 		return PyUnicode_FromString("unknown"); | 
 | 	case ieee_little_endian_format: | 
 | 		return PyUnicode_FromString("IEEE, little-endian"); | 
 | 	case ieee_big_endian_format: | 
 | 		return PyUnicode_FromString("IEEE, big-endian"); | 
 | 	default: | 
 | 		Py_FatalError("insane float_format or double_format"); | 
 | 		return NULL; | 
 | 	} | 
 | } | 
 |  | 
 | PyDoc_STRVAR(float_getformat_doc, | 
 | "float.__getformat__(typestr) -> string\n" | 
 | "\n" | 
 | "You probably don't want to use this function.  It exists mainly to be\n" | 
 | "used in Python's test suite.\n" | 
 | "\n" | 
 | "typestr must be 'double' or 'float'.  This function returns whichever of\n" | 
 | "'unknown', 'IEEE, big-endian' or 'IEEE, little-endian' best describes the\n" | 
 | "format of floating point numbers used by the C type named by typestr."); | 
 |  | 
 | static PyObject * | 
 | float_setformat(PyTypeObject *v, PyObject* args) | 
 | { | 
 | 	char* typestr; | 
 | 	char* format; | 
 | 	float_format_type f; | 
 | 	float_format_type detected; | 
 | 	float_format_type *p; | 
 |  | 
 | 	if (!PyArg_ParseTuple(args, "ss:__setformat__", &typestr, &format)) | 
 | 		return NULL; | 
 |  | 
 | 	if (strcmp(typestr, "double") == 0) { | 
 | 		p = &double_format; | 
 | 		detected = detected_double_format; | 
 | 	} | 
 | 	else if (strcmp(typestr, "float") == 0) { | 
 | 		p = &float_format; | 
 | 		detected = detected_float_format; | 
 | 	} | 
 | 	else { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"__setformat__() argument 1 must " | 
 | 				"be 'double' or 'float'"); | 
 | 		return NULL; | 
 | 	} | 
 | 	 | 
 | 	if (strcmp(format, "unknown") == 0) { | 
 | 		f = unknown_format; | 
 | 	} | 
 | 	else if (strcmp(format, "IEEE, little-endian") == 0) { | 
 | 		f = ieee_little_endian_format; | 
 | 	} | 
 | 	else if (strcmp(format, "IEEE, big-endian") == 0) { | 
 | 		f = ieee_big_endian_format; | 
 | 	} | 
 | 	else { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"__setformat__() argument 2 must be " | 
 | 				"'unknown', 'IEEE, little-endian' or " | 
 | 				"'IEEE, big-endian'"); | 
 | 		return NULL; | 
 |  | 
 | 	} | 
 |  | 
 | 	if (f != unknown_format && f != detected) { | 
 | 		PyErr_Format(PyExc_ValueError, | 
 | 			     "can only set %s format to 'unknown' or the " | 
 | 			     "detected platform value", typestr); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	*p = f; | 
 | 	Py_RETURN_NONE; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(float_setformat_doc, | 
 | "float.__setformat__(typestr, fmt) -> None\n" | 
 | "\n" | 
 | "You probably don't want to use this function.  It exists mainly to be\n" | 
 | "used in Python's test suite.\n" | 
 | "\n" | 
 | "typestr must be 'double' or 'float'.  fmt must be one of 'unknown',\n" | 
 | "'IEEE, big-endian' or 'IEEE, little-endian', and in addition can only be\n" | 
 | "one of the latter two if it appears to match the underlying C reality.\n" | 
 | "\n" | 
 | "Overrides the automatic determination of C-level floating point type.\n" | 
 | "This affects how floats are converted to and from binary strings."); | 
 |  | 
 | static PyObject * | 
 | float_getzero(PyObject *v, void *closure) | 
 | { | 
 | 	return PyFloat_FromDouble(0.0); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float__format__(PyObject *self, PyObject *args) | 
 | { | 
 | 	PyObject *format_spec; | 
 |  | 
 | 	if (!PyArg_ParseTuple(args, "U:__format__", &format_spec)) | 
 | 		return NULL; | 
 | 	return _PyFloat_FormatAdvanced(self, | 
 | 				       PyUnicode_AS_UNICODE(format_spec), | 
 | 				       PyUnicode_GET_SIZE(format_spec)); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(float__format__doc, | 
 | "float.__format__(format_spec) -> string\n" | 
 | "\n" | 
 | "Formats the float according to format_spec."); | 
 |  | 
 |  | 
 | static PyMethodDef float_methods[] = { | 
 | 	{"conjugate",	(PyCFunction)float_float,	METH_NOARGS, | 
 | 	 "Returns self, the complex conjugate of any float."}, | 
 | 	{"__trunc__",	(PyCFunction)float_trunc, METH_NOARGS, | 
 |          "Returns the Integral closest to x between 0 and x."}, | 
 | 	{"__round__",	(PyCFunction)float_round, METH_VARARGS, | 
 |          "Returns the Integral closest to x, rounding half toward even.\n" | 
 |          "When an argument is passed, works like built-in round(x, ndigits)."}, | 
 | 	{"as_integer_ratio", (PyCFunction)float_as_integer_ratio, METH_NOARGS, | 
 | 	 float_as_integer_ratio_doc}, | 
 | 	{"fromhex", (PyCFunction)float_fromhex, | 
 | 	 METH_O|METH_CLASS, float_fromhex_doc}, | 
 | 	{"hex", (PyCFunction)float_hex, | 
 | 	 METH_NOARGS, float_hex_doc}, | 
 | 	{"is_integer",	(PyCFunction)float_is_integer,	METH_NOARGS, | 
 | 	 "Returns True if the float is an integer."}, | 
 | #if 0 | 
 | 	{"is_inf",	(PyCFunction)float_is_inf,	METH_NOARGS, | 
 | 	 "Returns True if the float is positive or negative infinite."}, | 
 | 	{"is_finite",	(PyCFunction)float_is_finite,	METH_NOARGS, | 
 | 	 "Returns True if the float is finite, neither infinite nor NaN."}, | 
 | 	{"is_nan",	(PyCFunction)float_is_nan,	METH_NOARGS, | 
 | 	 "Returns True if the float is not a number (NaN)."}, | 
 | #endif | 
 | 	{"__getnewargs__",	(PyCFunction)float_getnewargs,	METH_NOARGS}, | 
 | 	{"__getformat__",	(PyCFunction)float_getformat,	 | 
 | 	 METH_O|METH_CLASS,		float_getformat_doc}, | 
 | 	{"__setformat__",	(PyCFunction)float_setformat,	 | 
 | 	 METH_VARARGS|METH_CLASS,	float_setformat_doc}, | 
 |         {"__format__",          (PyCFunction)float__format__, | 
 |          METH_VARARGS,                  float__format__doc}, | 
 | 	{NULL,		NULL}		/* sentinel */ | 
 | }; | 
 |  | 
 | static PyGetSetDef float_getset[] = { | 
 |     {"real",  | 
 |      (getter)float_float, (setter)NULL, | 
 |      "the real part of a complex number", | 
 |      NULL}, | 
 |     {"imag",  | 
 |      (getter)float_getzero, (setter)NULL, | 
 |      "the imaginary part of a complex number", | 
 |      NULL}, | 
 |     {NULL}  /* Sentinel */ | 
 | }; | 
 |  | 
 | PyDoc_STRVAR(float_doc, | 
 | "float(x) -> floating point number\n\ | 
 | \n\ | 
 | Convert a string or number to a floating point number, if possible."); | 
 |  | 
 |  | 
 | static PyNumberMethods float_as_number = { | 
 | 	float_add, 	/*nb_add*/ | 
 | 	float_sub, 	/*nb_subtract*/ | 
 | 	float_mul, 	/*nb_multiply*/ | 
 | 	float_rem, 	/*nb_remainder*/ | 
 | 	float_divmod, 	/*nb_divmod*/ | 
 | 	float_pow, 	/*nb_power*/ | 
 | 	(unaryfunc)float_neg, /*nb_negative*/ | 
 | 	(unaryfunc)float_float, /*nb_positive*/ | 
 | 	(unaryfunc)float_abs, /*nb_absolute*/ | 
 | 	(inquiry)float_bool, /*nb_bool*/ | 
 | 	0,		/*nb_invert*/ | 
 | 	0,		/*nb_lshift*/ | 
 | 	0,		/*nb_rshift*/ | 
 | 	0,		/*nb_and*/ | 
 | 	0,		/*nb_xor*/ | 
 | 	0,		/*nb_or*/ | 
 | 	float_trunc,	/*nb_int*/ | 
 | 	0,		/*nb_reserved*/ | 
 | 	float_float,	/*nb_float*/ | 
 | 	0,		/* nb_inplace_add */ | 
 | 	0,		/* nb_inplace_subtract */ | 
 | 	0,		/* nb_inplace_multiply */ | 
 | 	0,		/* nb_inplace_remainder */ | 
 | 	0, 		/* nb_inplace_power */ | 
 | 	0,		/* nb_inplace_lshift */ | 
 | 	0,		/* nb_inplace_rshift */ | 
 | 	0,		/* nb_inplace_and */ | 
 | 	0,		/* nb_inplace_xor */ | 
 | 	0,		/* nb_inplace_or */ | 
 | 	float_floor_div, /* nb_floor_divide */ | 
 | 	float_div,	/* nb_true_divide */ | 
 | 	0,		/* nb_inplace_floor_divide */ | 
 | 	0,		/* nb_inplace_true_divide */ | 
 | }; | 
 |  | 
 | PyTypeObject PyFloat_Type = { | 
 | 	PyVarObject_HEAD_INIT(&PyType_Type, 0) | 
 | 	"float", | 
 | 	sizeof(PyFloatObject), | 
 | 	0, | 
 | 	(destructor)float_dealloc,		/* tp_dealloc */ | 
 | 	0,			 		/* tp_print */ | 
 | 	0,					/* tp_getattr */ | 
 | 	0,					/* tp_setattr */ | 
 | 	0,			 		/* tp_reserved */ | 
 | 	(reprfunc)float_repr,			/* tp_repr */ | 
 | 	&float_as_number,			/* tp_as_number */ | 
 | 	0,					/* tp_as_sequence */ | 
 | 	0,					/* tp_as_mapping */ | 
 | 	(hashfunc)float_hash,			/* tp_hash */ | 
 | 	0,					/* tp_call */ | 
 | 	(reprfunc)float_str,			/* tp_str */ | 
 | 	PyObject_GenericGetAttr,		/* tp_getattro */ | 
 | 	0,					/* tp_setattro */ | 
 | 	0,					/* tp_as_buffer */ | 
 | 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ | 
 | 	float_doc,				/* tp_doc */ | 
 |  	0,					/* tp_traverse */ | 
 | 	0,					/* tp_clear */ | 
 | 	float_richcompare,			/* tp_richcompare */ | 
 | 	0,					/* tp_weaklistoffset */ | 
 | 	0,					/* tp_iter */ | 
 | 	0,					/* tp_iternext */ | 
 | 	float_methods,				/* tp_methods */ | 
 | 	0,					/* tp_members */ | 
 | 	float_getset,				/* tp_getset */ | 
 | 	0,					/* tp_base */ | 
 | 	0,					/* tp_dict */ | 
 | 	0,					/* tp_descr_get */ | 
 | 	0,					/* tp_descr_set */ | 
 | 	0,					/* tp_dictoffset */ | 
 | 	0,					/* tp_init */ | 
 | 	0,					/* tp_alloc */ | 
 | 	float_new,				/* tp_new */ | 
 | }; | 
 |  | 
 | void | 
 | _PyFloat_Init(void) | 
 | { | 
 | 	/* We attempt to determine if this machine is using IEEE | 
 | 	   floating point formats by peering at the bits of some | 
 | 	   carefully chosen values.  If it looks like we are on an | 
 | 	   IEEE platform, the float packing/unpacking routines can | 
 | 	   just copy bits, if not they resort to arithmetic & shifts | 
 | 	   and masks.  The shifts & masks approach works on all finite | 
 | 	   values, but what happens to infinities, NaNs and signed | 
 | 	   zeroes on packing is an accident, and attempting to unpack | 
 | 	   a NaN or an infinity will raise an exception. | 
 |  | 
 | 	   Note that if we're on some whacked-out platform which uses | 
 | 	   IEEE formats but isn't strictly little-endian or big- | 
 | 	   endian, we will fall back to the portable shifts & masks | 
 | 	   method. */ | 
 |  | 
 | #if SIZEOF_DOUBLE == 8 | 
 | 	{ | 
 | 		double x = 9006104071832581.0; | 
 | 		if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0) | 
 | 			detected_double_format = ieee_big_endian_format; | 
 | 		else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0) | 
 | 			detected_double_format = ieee_little_endian_format; | 
 | 		else  | 
 | 			detected_double_format = unknown_format; | 
 | 	} | 
 | #else | 
 | 	detected_double_format = unknown_format; | 
 | #endif | 
 |  | 
 | #if SIZEOF_FLOAT == 4 | 
 | 	{ | 
 | 		float y = 16711938.0; | 
 | 		if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0) | 
 | 			detected_float_format = ieee_big_endian_format; | 
 | 		else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0) | 
 | 			detected_float_format = ieee_little_endian_format; | 
 | 		else  | 
 | 			detected_float_format = unknown_format; | 
 | 	} | 
 | #else | 
 | 	detected_float_format = unknown_format; | 
 | #endif | 
 |  | 
 | 	double_format = detected_double_format; | 
 | 	float_format = detected_float_format; | 
 |  | 
 | 	/* Init float info */ | 
 | 	if (FloatInfoType.tp_name == 0) | 
 | 		PyStructSequence_InitType(&FloatInfoType, &floatinfo_desc); | 
 | } | 
 |  | 
 | int | 
 | PyFloat_ClearFreeList(void) | 
 | { | 
 | 	PyFloatObject *p; | 
 | 	PyFloatBlock *list, *next; | 
 | 	int i; | 
 | 	int u;			/* remaining unfreed floats per block */ | 
 | 	int freelist_size = 0; | 
 |  | 
 | 	list = block_list; | 
 | 	block_list = NULL; | 
 | 	free_list = NULL; | 
 | 	while (list != NULL) { | 
 | 		u = 0; | 
 | 		for (i = 0, p = &list->objects[0]; | 
 | 		     i < N_FLOATOBJECTS; | 
 | 		     i++, p++) { | 
 | 			if (PyFloat_CheckExact(p) && Py_REFCNT(p) != 0) | 
 | 				u++; | 
 | 		} | 
 | 		next = list->next; | 
 | 		if (u) { | 
 | 			list->next = block_list; | 
 | 			block_list = list; | 
 | 			for (i = 0, p = &list->objects[0]; | 
 | 			     i < N_FLOATOBJECTS; | 
 | 			     i++, p++) { | 
 | 				if (!PyFloat_CheckExact(p) || | 
 | 				    Py_REFCNT(p) == 0) { | 
 | 					Py_TYPE(p) = (struct _typeobject *) | 
 | 						free_list; | 
 | 					free_list = p; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		else { | 
 | 			PyMem_FREE(list); | 
 | 		} | 
 | 		freelist_size += u; | 
 | 		list = next; | 
 | 	} | 
 | 	return freelist_size; | 
 | } | 
 |  | 
 | void | 
 | PyFloat_Fini(void) | 
 | { | 
 | 	PyFloatObject *p; | 
 | 	PyFloatBlock *list; | 
 | 	int i; | 
 | 	int u;			/* total unfreed floats per block */ | 
 |  | 
 | 	u = PyFloat_ClearFreeList(); | 
 |  | 
 | 	if (!Py_VerboseFlag) | 
 | 		return; | 
 | 	fprintf(stderr, "# cleanup floats"); | 
 | 	if (!u) { | 
 | 		fprintf(stderr, "\n"); | 
 | 	} | 
 | 	else { | 
 | 		fprintf(stderr, | 
 | 			": %d unfreed float%s\n", | 
 | 			u, u == 1 ? "" : "s"); | 
 | 	} | 
 | 	if (Py_VerboseFlag > 1) { | 
 | 		list = block_list; | 
 | 		while (list != NULL) { | 
 | 			for (i = 0, p = &list->objects[0]; | 
 | 			     i < N_FLOATOBJECTS; | 
 | 			     i++, p++) { | 
 | 				if (PyFloat_CheckExact(p) && | 
 | 				    Py_REFCNT(p) != 0) { | 
 | 					char *buf = PyOS_double_to_string( | 
 | 						PyFloat_AS_DOUBLE(p), 'r', | 
 | 						0, 0, NULL); | 
 | 					if (buf) { | 
 | 						/* XXX(twouters) cast | 
 | 						   refcount to long | 
 | 						   until %zd is | 
 | 						   universally | 
 | 						   available | 
 | 						*/ | 
 | 						fprintf(stderr, | 
 | 			     "#   <float at %p, refcnt=%ld, val=%s>\n", | 
 | 						p, (long)Py_REFCNT(p), buf); | 
 | 						PyMem_Free(buf); | 
 | 					} | 
 | 				} | 
 | 			} | 
 | 			list = list->next; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 |  * _PyFloat_{Pack,Unpack}{4,8}.  See floatobject.h. | 
 |  */ | 
 | int | 
 | _PyFloat_Pack4(double x, unsigned char *p, int le) | 
 | { | 
 | 	if (float_format == unknown_format) { | 
 | 		unsigned char sign; | 
 | 		int e; | 
 | 		double f; | 
 | 		unsigned int fbits; | 
 | 		int incr = 1; | 
 |  | 
 | 		if (le) { | 
 | 			p += 3; | 
 | 			incr = -1; | 
 | 		} | 
 |  | 
 | 		if (x < 0) { | 
 | 			sign = 1; | 
 | 			x = -x; | 
 | 		} | 
 | 		else | 
 | 			sign = 0; | 
 |  | 
 | 		f = frexp(x, &e); | 
 |  | 
 | 		/* Normalize f to be in the range [1.0, 2.0) */ | 
 | 		if (0.5 <= f && f < 1.0) { | 
 | 			f *= 2.0; | 
 | 			e--; | 
 | 		} | 
 | 		else if (f == 0.0) | 
 | 			e = 0; | 
 | 		else { | 
 | 			PyErr_SetString(PyExc_SystemError, | 
 | 					"frexp() result out of range"); | 
 | 			return -1; | 
 | 		} | 
 |  | 
 | 		if (e >= 128) | 
 | 			goto Overflow; | 
 | 		else if (e < -126) { | 
 | 			/* Gradual underflow */ | 
 | 			f = ldexp(f, 126 + e); | 
 | 			e = 0; | 
 | 		} | 
 | 		else if (!(e == 0 && f == 0.0)) { | 
 | 			e += 127; | 
 | 			f -= 1.0; /* Get rid of leading 1 */ | 
 | 		} | 
 |  | 
 | 		f *= 8388608.0; /* 2**23 */ | 
 | 		fbits = (unsigned int)(f + 0.5); /* Round */ | 
 | 		assert(fbits <= 8388608); | 
 | 		if (fbits >> 23) { | 
 | 			/* The carry propagated out of a string of 23 1 bits. */ | 
 | 			fbits = 0; | 
 | 			++e; | 
 | 			if (e >= 255) | 
 | 				goto Overflow; | 
 | 		} | 
 |  | 
 | 		/* First byte */ | 
 | 		*p = (sign << 7) | (e >> 1); | 
 | 		p += incr; | 
 |  | 
 | 		/* Second byte */ | 
 | 		*p = (char) (((e & 1) << 7) | (fbits >> 16)); | 
 | 		p += incr; | 
 |  | 
 | 		/* Third byte */ | 
 | 		*p = (fbits >> 8) & 0xFF; | 
 | 		p += incr; | 
 |  | 
 | 		/* Fourth byte */ | 
 | 		*p = fbits & 0xFF; | 
 |  | 
 | 		/* Done */ | 
 | 		return 0; | 
 |  | 
 | 	} | 
 | 	else { | 
 | 		float y = (float)x; | 
 | 		const char *s = (char*)&y; | 
 | 		int i, incr = 1; | 
 |  | 
 | 		if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x)) | 
 | 			goto Overflow; | 
 |  | 
 | 		if ((float_format == ieee_little_endian_format && !le) | 
 | 		    || (float_format == ieee_big_endian_format && le)) { | 
 | 			p += 3; | 
 | 			incr = -1; | 
 | 		} | 
 |  | 
 | 		for (i = 0; i < 4; i++) { | 
 | 			*p = *s++; | 
 | 			p += incr; | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 |   Overflow: | 
 | 	PyErr_SetString(PyExc_OverflowError, | 
 | 			"float too large to pack with f format"); | 
 | 	return -1; | 
 | } | 
 |  | 
 | int | 
 | _PyFloat_Pack8(double x, unsigned char *p, int le) | 
 | { | 
 | 	if (double_format == unknown_format) { | 
 | 		unsigned char sign; | 
 | 		int e; | 
 | 		double f; | 
 | 		unsigned int fhi, flo; | 
 | 		int incr = 1; | 
 |  | 
 | 		if (le) { | 
 | 			p += 7; | 
 | 			incr = -1; | 
 | 		} | 
 |  | 
 | 		if (x < 0) { | 
 | 			sign = 1; | 
 | 			x = -x; | 
 | 		} | 
 | 		else | 
 | 			sign = 0; | 
 |  | 
 | 		f = frexp(x, &e); | 
 |  | 
 | 		/* Normalize f to be in the range [1.0, 2.0) */ | 
 | 		if (0.5 <= f && f < 1.0) { | 
 | 			f *= 2.0; | 
 | 			e--; | 
 | 		} | 
 | 		else if (f == 0.0) | 
 | 			e = 0; | 
 | 		else { | 
 | 			PyErr_SetString(PyExc_SystemError, | 
 | 					"frexp() result out of range"); | 
 | 			return -1; | 
 | 		} | 
 |  | 
 | 		if (e >= 1024) | 
 | 			goto Overflow; | 
 | 		else if (e < -1022) { | 
 | 			/* Gradual underflow */ | 
 | 			f = ldexp(f, 1022 + e); | 
 | 			e = 0; | 
 | 		} | 
 | 		else if (!(e == 0 && f == 0.0)) { | 
 | 			e += 1023; | 
 | 			f -= 1.0; /* Get rid of leading 1 */ | 
 | 		} | 
 |  | 
 | 		/* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */ | 
 | 		f *= 268435456.0; /* 2**28 */ | 
 | 		fhi = (unsigned int)f; /* Truncate */ | 
 | 		assert(fhi < 268435456); | 
 |  | 
 | 		f -= (double)fhi; | 
 | 		f *= 16777216.0; /* 2**24 */ | 
 | 		flo = (unsigned int)(f + 0.5); /* Round */ | 
 | 		assert(flo <= 16777216); | 
 | 		if (flo >> 24) { | 
 | 			/* The carry propagated out of a string of 24 1 bits. */ | 
 | 			flo = 0; | 
 | 			++fhi; | 
 | 			if (fhi >> 28) { | 
 | 				/* And it also progagated out of the next 28 bits. */ | 
 | 				fhi = 0; | 
 | 				++e; | 
 | 				if (e >= 2047) | 
 | 					goto Overflow; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* First byte */ | 
 | 		*p = (sign << 7) | (e >> 4); | 
 | 		p += incr; | 
 |  | 
 | 		/* Second byte */ | 
 | 		*p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24)); | 
 | 		p += incr; | 
 |  | 
 | 		/* Third byte */ | 
 | 		*p = (fhi >> 16) & 0xFF; | 
 | 		p += incr; | 
 |  | 
 | 		/* Fourth byte */ | 
 | 		*p = (fhi >> 8) & 0xFF; | 
 | 		p += incr; | 
 |  | 
 | 		/* Fifth byte */ | 
 | 		*p = fhi & 0xFF; | 
 | 		p += incr; | 
 |  | 
 | 		/* Sixth byte */ | 
 | 		*p = (flo >> 16) & 0xFF; | 
 | 		p += incr; | 
 |  | 
 | 		/* Seventh byte */ | 
 | 		*p = (flo >> 8) & 0xFF; | 
 | 		p += incr; | 
 |  | 
 | 		/* Eighth byte */ | 
 | 		*p = flo & 0xFF; | 
 | 		p += incr; | 
 |  | 
 | 		/* Done */ | 
 | 		return 0; | 
 |  | 
 | 	  Overflow: | 
 | 		PyErr_SetString(PyExc_OverflowError, | 
 | 				"float too large to pack with d format"); | 
 | 		return -1; | 
 | 	} | 
 | 	else { | 
 | 		const char *s = (char*)&x; | 
 | 		int i, incr = 1; | 
 |  | 
 | 		if ((double_format == ieee_little_endian_format && !le) | 
 | 		    || (double_format == ieee_big_endian_format && le)) { | 
 | 			p += 7; | 
 | 			incr = -1; | 
 | 		} | 
 | 		 | 
 | 		for (i = 0; i < 8; i++) { | 
 | 			*p = *s++; | 
 | 			p += incr; | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | double | 
 | _PyFloat_Unpack4(const unsigned char *p, int le) | 
 | { | 
 | 	if (float_format == unknown_format) { | 
 | 		unsigned char sign; | 
 | 		int e; | 
 | 		unsigned int f; | 
 | 		double x; | 
 | 		int incr = 1; | 
 |  | 
 | 		if (le) { | 
 | 			p += 3; | 
 | 			incr = -1; | 
 | 		} | 
 |  | 
 | 		/* First byte */ | 
 | 		sign = (*p >> 7) & 1; | 
 | 		e = (*p & 0x7F) << 1; | 
 | 		p += incr; | 
 |  | 
 | 		/* Second byte */ | 
 | 		e |= (*p >> 7) & 1; | 
 | 		f = (*p & 0x7F) << 16; | 
 | 		p += incr; | 
 |  | 
 | 		if (e == 255) { | 
 | 			PyErr_SetString( | 
 | 				PyExc_ValueError, | 
 | 				"can't unpack IEEE 754 special value " | 
 | 				"on non-IEEE platform"); | 
 | 			return -1; | 
 | 		} | 
 |  | 
 | 		/* Third byte */ | 
 | 		f |= *p << 8; | 
 | 		p += incr; | 
 |  | 
 | 		/* Fourth byte */ | 
 | 		f |= *p; | 
 |  | 
 | 		x = (double)f / 8388608.0; | 
 |  | 
 | 		/* XXX This sadly ignores Inf/NaN issues */ | 
 | 		if (e == 0) | 
 | 			e = -126; | 
 | 		else { | 
 | 			x += 1.0; | 
 | 			e -= 127; | 
 | 		} | 
 | 		x = ldexp(x, e); | 
 |  | 
 | 		if (sign) | 
 | 			x = -x; | 
 |  | 
 | 		return x; | 
 | 	} | 
 | 	else { | 
 | 		float x; | 
 |  | 
 | 		if ((float_format == ieee_little_endian_format && !le) | 
 | 		    || (float_format == ieee_big_endian_format && le)) { | 
 | 			char buf[4]; | 
 | 			char *d = &buf[3]; | 
 | 			int i; | 
 |  | 
 | 			for (i = 0; i < 4; i++) { | 
 | 				*d-- = *p++; | 
 | 			} | 
 | 			memcpy(&x, buf, 4); | 
 | 		} | 
 | 		else { | 
 | 			memcpy(&x, p, 4); | 
 | 		} | 
 |  | 
 | 		return x; | 
 | 	}		 | 
 | } | 
 |  | 
 | double | 
 | _PyFloat_Unpack8(const unsigned char *p, int le) | 
 | { | 
 | 	if (double_format == unknown_format) { | 
 | 		unsigned char sign; | 
 | 		int e; | 
 | 		unsigned int fhi, flo; | 
 | 		double x; | 
 | 		int incr = 1; | 
 |  | 
 | 		if (le) { | 
 | 			p += 7; | 
 | 			incr = -1; | 
 | 		} | 
 |  | 
 | 		/* First byte */ | 
 | 		sign = (*p >> 7) & 1; | 
 | 		e = (*p & 0x7F) << 4; | 
 | 		 | 
 | 		p += incr; | 
 |  | 
 | 		/* Second byte */ | 
 | 		e |= (*p >> 4) & 0xF; | 
 | 		fhi = (*p & 0xF) << 24; | 
 | 		p += incr; | 
 |  | 
 | 		if (e == 2047) { | 
 | 			PyErr_SetString( | 
 | 				PyExc_ValueError, | 
 | 				"can't unpack IEEE 754 special value " | 
 | 				"on non-IEEE platform"); | 
 | 			return -1.0; | 
 | 		} | 
 |  | 
 | 		/* Third byte */ | 
 | 		fhi |= *p << 16; | 
 | 		p += incr; | 
 |  | 
 | 		/* Fourth byte */ | 
 | 		fhi |= *p  << 8; | 
 | 		p += incr; | 
 |  | 
 | 		/* Fifth byte */ | 
 | 		fhi |= *p; | 
 | 		p += incr; | 
 |  | 
 | 		/* Sixth byte */ | 
 | 		flo = *p << 16; | 
 | 		p += incr; | 
 |  | 
 | 		/* Seventh byte */ | 
 | 		flo |= *p << 8; | 
 | 		p += incr; | 
 |  | 
 | 		/* Eighth byte */ | 
 | 		flo |= *p; | 
 |  | 
 | 		x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */ | 
 | 		x /= 268435456.0; /* 2**28 */ | 
 |  | 
 | 		if (e == 0) | 
 | 			e = -1022; | 
 | 		else { | 
 | 			x += 1.0; | 
 | 			e -= 1023; | 
 | 		} | 
 | 		x = ldexp(x, e); | 
 |  | 
 | 		if (sign) | 
 | 			x = -x; | 
 |  | 
 | 		return x; | 
 | 	} | 
 | 	else { | 
 | 		double x; | 
 |  | 
 | 		if ((double_format == ieee_little_endian_format && !le) | 
 | 		    || (double_format == ieee_big_endian_format && le)) { | 
 | 			char buf[8]; | 
 | 			char *d = &buf[7]; | 
 | 			int i; | 
 | 			 | 
 | 			for (i = 0; i < 8; i++) { | 
 | 				*d-- = *p++; | 
 | 			} | 
 | 			memcpy(&x, buf, 8); | 
 | 		} | 
 | 		else { | 
 | 			memcpy(&x, p, 8); | 
 | 		} | 
 |  | 
 | 		return x; | 
 | 	} | 
 | } |