| /* Long (arbitrary precision) integer object implementation */ | 
 |  | 
 | /* XXX The functional organization of this file is terrible */ | 
 |  | 
 | #include "Python.h" | 
 | #include "longintrepr.h" | 
 |  | 
 | #include "formatter_unicode.h" | 
 |  | 
 | #include <ctype.h> | 
 |  | 
 | #ifndef NSMALLPOSINTS | 
 | #define NSMALLPOSINTS		257 | 
 | #endif | 
 | #ifndef NSMALLNEGINTS | 
 | #define NSMALLNEGINTS		5 | 
 | #endif | 
 | #if NSMALLNEGINTS + NSMALLPOSINTS > 0 | 
 | /* Small integers are preallocated in this array so that they | 
 |    can be shared. | 
 |    The integers that are preallocated are those in the range | 
 |    -NSMALLNEGINTS (inclusive) to NSMALLPOSINTS (not inclusive). | 
 | */ | 
 | static PyLongObject small_ints[NSMALLNEGINTS + NSMALLPOSINTS]; | 
 | #ifdef COUNT_ALLOCS | 
 | int quick_int_allocs, quick_neg_int_allocs; | 
 | #endif | 
 |  | 
 | static PyObject * | 
 | get_small_int(int ival) | 
 | { | 
 | 	PyObject *v = (PyObject*)(small_ints + ival + NSMALLNEGINTS); | 
 | 	Py_INCREF(v); | 
 | #ifdef COUNT_ALLOCS | 
 | 	if (ival >= 0) | 
 | 		quick_int_allocs++; | 
 | 	else | 
 | 		quick_neg_int_allocs++; | 
 | #endif | 
 | 	return v; | 
 | } | 
 | #define CHECK_SMALL_INT(ival) \ | 
 | 	do if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) { \ | 
 | 		return get_small_int(ival); \ | 
 | 	} while(0) | 
 |  | 
 | #else | 
 | #define CHECK_SMALL_INT(ival) | 
 | #endif | 
 |  | 
 | #define MEDIUM_VALUE(x) (Py_SIZE(x) < 0 ? -(x)->ob_digit[0] : (Py_SIZE(x) == 0 ? 0 : (x)->ob_digit[0])) | 
 | /* If a freshly-allocated long is already shared, it must | 
 |    be a small integer, so negating it must go to PyLong_FromLong */ | 
 | #define NEGATE(x) \ | 
 | 	do if (Py_REFCNT(x) == 1) Py_SIZE(x) = -Py_SIZE(x);  \ | 
 | 	   else { PyObject* tmp=PyLong_FromLong(-MEDIUM_VALUE(x));  \ | 
 | 		   Py_DECREF(x); (x) = (PyLongObject*)tmp; }	   \ | 
 |         while(0) | 
 | /* For long multiplication, use the O(N**2) school algorithm unless | 
 |  * both operands contain more than KARATSUBA_CUTOFF digits (this | 
 |  * being an internal Python long digit, in base BASE). | 
 |  */ | 
 | #define KARATSUBA_CUTOFF 70 | 
 | #define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF) | 
 |  | 
 | /* For exponentiation, use the binary left-to-right algorithm | 
 |  * unless the exponent contains more than FIVEARY_CUTOFF digits. | 
 |  * In that case, do 5 bits at a time.  The potential drawback is that | 
 |  * a table of 2**5 intermediate results is computed. | 
 |  */ | 
 | #define FIVEARY_CUTOFF 8 | 
 |  | 
 | #define ABS(x) ((x) < 0 ? -(x) : (x)) | 
 |  | 
 | #undef MIN | 
 | #undef MAX | 
 | #define MAX(x, y) ((x) < (y) ? (y) : (x)) | 
 | #define MIN(x, y) ((x) > (y) ? (y) : (x)) | 
 |  | 
 | /* Forward */ | 
 | static PyLongObject *long_normalize(PyLongObject *); | 
 | static PyLongObject *mul1(PyLongObject *, wdigit); | 
 | static PyLongObject *muladd1(PyLongObject *, wdigit, wdigit); | 
 | static PyLongObject *divrem1(PyLongObject *, digit, digit *); | 
 |  | 
 | #define SIGCHECK(PyTryBlock) \ | 
 | 	if (--_Py_Ticker < 0) { \ | 
 | 		_Py_Ticker = _Py_CheckInterval; \ | 
 | 		if (PyErr_CheckSignals()) PyTryBlock \ | 
 | 	} | 
 |  | 
 | /* Normalize (remove leading zeros from) a long int object. | 
 |    Doesn't attempt to free the storage--in most cases, due to the nature | 
 |    of the algorithms used, this could save at most be one word anyway. */ | 
 |  | 
 | static PyLongObject * | 
 | long_normalize(register PyLongObject *v) | 
 | { | 
 | 	Py_ssize_t j = ABS(Py_SIZE(v)); | 
 | 	Py_ssize_t i = j; | 
 |  | 
 | 	while (i > 0 && v->ob_digit[i-1] == 0) | 
 | 		--i; | 
 | 	if (i != j) | 
 | 		Py_SIZE(v) = (Py_SIZE(v) < 0) ? -(i) : i; | 
 | 	return v; | 
 | } | 
 |  | 
 | /* Allocate a new long int object with size digits. | 
 |    Return NULL and set exception if we run out of memory. */ | 
 |  | 
 | PyLongObject * | 
 | _PyLong_New(Py_ssize_t size) | 
 | { | 
 | 	PyLongObject *result; | 
 | 	/* Can't use sizeof(PyLongObject) here, since the | 
 | 	   compiler takes padding at the end into account. | 
 | 	   As the consequence, this would waste 2 bytes on | 
 | 	   a 32-bit system, and 6 bytes on a 64-bit system. | 
 | 	   This computation would be incorrect on systems | 
 | 	   which have padding before the digits; with 16-bit | 
 | 	   digits this should not happen. */ | 
 | 	result = PyObject_MALLOC(sizeof(PyVarObject) +  | 
 | 				 size*sizeof(digit)); | 
 | 	if (!result) { | 
 | 		PyErr_NoMemory(); | 
 | 		return NULL; | 
 | 	} | 
 | 	return (PyLongObject*)PyObject_INIT_VAR(result, &PyLong_Type, size); | 
 | } | 
 |  | 
 | PyObject * | 
 | _PyLong_Copy(PyLongObject *src) | 
 | { | 
 | 	PyLongObject *result; | 
 | 	Py_ssize_t i; | 
 |  | 
 | 	assert(src != NULL); | 
 | 	i = Py_SIZE(src); | 
 | 	if (i < 0) | 
 | 		i = -(i); | 
 | 	if (i < 2) { | 
 | 		int ival = src->ob_digit[0]; | 
 | 		if (Py_SIZE(src) < 0) | 
 | 			ival = -ival; | 
 | 		CHECK_SMALL_INT(ival); | 
 | 	} | 
 | 	result = _PyLong_New(i); | 
 | 	if (result != NULL) { | 
 | 		Py_SIZE(result) = Py_SIZE(src); | 
 | 		while (--i >= 0) | 
 | 			result->ob_digit[i] = src->ob_digit[i]; | 
 | 	} | 
 | 	return (PyObject *)result; | 
 | } | 
 |  | 
 | /* Create a new long int object from a C long int */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromLong(long ival) | 
 | { | 
 | 	PyLongObject *v; | 
 |         unsigned long abs_ival; | 
 | 	unsigned long t;  /* unsigned so >> doesn't propagate sign bit */ | 
 | 	int ndigits = 0; | 
 | 	int sign = 1; | 
 |  | 
 | 	CHECK_SMALL_INT(ival); | 
 |  | 
 | 	if (ival < 0) { | 
 | 		/* if LONG_MIN == -LONG_MAX-1 (true on most platforms) then | 
 | 		   ANSI C says that the result of -ival is undefined when ival | 
 | 		   == LONG_MIN.  Hence the following workaround. */ | 
 | 		abs_ival = (unsigned long)(-1-ival) + 1; | 
 | 		sign = -1; | 
 | 	} | 
 | 	else { | 
 | 		abs_ival = (unsigned long)ival; | 
 | 	} | 
 |  | 
 | 	/* Fast path for single-digits ints */ | 
 | 	if (!(ival>>PyLong_SHIFT)) { | 
 | 		v = _PyLong_New(1); | 
 | 		if (v) { | 
 | 			Py_SIZE(v) = sign; | 
 | 			v->ob_digit[0] = ival; | 
 | 		} | 
 | 		return (PyObject*)v; | 
 | 	} | 
 |  | 
 | 	/* 2 digits */ | 
 | 	if (!(ival >> 2*PyLong_SHIFT)) { | 
 | 		v = _PyLong_New(2); | 
 | 		if (v) { | 
 | 			Py_SIZE(v) = 2*sign; | 
 | 			v->ob_digit[0] = (digit)ival & PyLong_MASK; | 
 | 			v->ob_digit[1] = ival >> PyLong_SHIFT; | 
 | 		} | 
 | 		return (PyObject*)v; | 
 | 	} | 
 |  | 
 | 	/* Larger numbers: loop to determine number of digits */ | 
 | 	t = abs_ival; | 
 | 	while (t) { | 
 | 		++ndigits; | 
 | 		t >>= PyLong_SHIFT; | 
 | 	} | 
 | 	v = _PyLong_New(ndigits); | 
 | 	if (v != NULL) { | 
 | 		digit *p = v->ob_digit; | 
 | 		Py_SIZE(v) = ndigits*sign; | 
 | 		t = abs_ival; | 
 | 		while (t) { | 
 | 			*p++ = (digit)(t & PyLong_MASK); | 
 | 			t >>= PyLong_SHIFT; | 
 | 		} | 
 | 	} | 
 | 	return (PyObject *)v; | 
 | } | 
 |  | 
 | /* Create a new long int object from a C unsigned long int */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromUnsignedLong(unsigned long ival) | 
 | { | 
 | 	PyLongObject *v; | 
 | 	unsigned long t; | 
 | 	int ndigits = 0; | 
 |  | 
 | 	if (ival < PyLong_BASE) | 
 | 		return PyLong_FromLong(ival); | 
 | 	/* Count the number of Python digits. */ | 
 | 	t = (unsigned long)ival; | 
 | 	while (t) { | 
 | 		++ndigits; | 
 | 		t >>= PyLong_SHIFT; | 
 | 	} | 
 | 	v = _PyLong_New(ndigits); | 
 | 	if (v != NULL) { | 
 | 		digit *p = v->ob_digit; | 
 | 		Py_SIZE(v) = ndigits; | 
 | 		while (ival) { | 
 | 			*p++ = (digit)(ival & PyLong_MASK); | 
 | 			ival >>= PyLong_SHIFT; | 
 | 		} | 
 | 	} | 
 | 	return (PyObject *)v; | 
 | } | 
 |  | 
 | /* Create a new long int object from a C double */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromDouble(double dval) | 
 | { | 
 | 	PyLongObject *v; | 
 | 	double frac; | 
 | 	int i, ndig, expo, neg; | 
 | 	neg = 0; | 
 | 	if (Py_IS_INFINITY(dval)) { | 
 | 		PyErr_SetString(PyExc_OverflowError, | 
 | 			"cannot convert float infinity to int"); | 
 | 		return NULL; | 
 | 	} | 
 | 	if (Py_IS_NAN(dval)) { | 
 | 		PyErr_SetString(PyExc_OverflowError, | 
 | 			"cannot convert float NaN to int"); | 
 | 		return NULL; | 
 | 	} | 
 | 	if (dval < 0.0) { | 
 | 		neg = 1; | 
 | 		dval = -dval; | 
 | 	} | 
 | 	frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */ | 
 | 	if (expo <= 0) | 
 | 		return PyLong_FromLong(0L); | 
 | 	ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */ | 
 | 	v = _PyLong_New(ndig); | 
 | 	if (v == NULL) | 
 | 		return NULL; | 
 | 	frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1); | 
 | 	for (i = ndig; --i >= 0; ) { | 
 | 		long bits = (long)frac; | 
 | 		v->ob_digit[i] = (digit) bits; | 
 | 		frac = frac - (double)bits; | 
 | 		frac = ldexp(frac, PyLong_SHIFT); | 
 | 	} | 
 | 	if (neg) | 
 | 		Py_SIZE(v) = -(Py_SIZE(v)); | 
 | 	return (PyObject *)v; | 
 | } | 
 |  | 
 | /* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define | 
 |  * anything about what happens when a signed integer operation overflows, | 
 |  * and some compilers think they're doing you a favor by being "clever" | 
 |  * then.  The bit pattern for the largest postive signed long is | 
 |  * (unsigned long)LONG_MAX, and for the smallest negative signed long | 
 |  * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN. | 
 |  * However, some other compilers warn about applying unary minus to an | 
 |  * unsigned operand.  Hence the weird "0-". | 
 |  */ | 
 | #define PY_ABS_LONG_MIN		(0-(unsigned long)LONG_MIN) | 
 | #define PY_ABS_SSIZE_T_MIN	(0-(size_t)PY_SSIZE_T_MIN) | 
 |  | 
 | /* Get a C long int from a long int object. | 
 |    Returns -1 and sets an error condition if overflow occurs. */ | 
 |  | 
 | long | 
 | PyLong_AsLongAndOverflow(PyObject *vv, int *overflow) | 
 | { | 
 | 	/* This version by Tim Peters */ | 
 | 	register PyLongObject *v; | 
 | 	unsigned long x, prev; | 
 | 	long res; | 
 | 	Py_ssize_t i; | 
 | 	int sign; | 
 | 	int do_decref = 0; /* if nb_int was called */ | 
 |  | 
 | 	*overflow = 0; | 
 | 	if (vv == NULL) { | 
 | 		PyErr_BadInternalCall(); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	if (!PyLong_Check(vv)) { | 
 | 		PyNumberMethods *nb; | 
 | 		if ((nb = vv->ob_type->tp_as_number) == NULL || | 
 | 		    nb->nb_int == NULL) { | 
 | 			PyErr_SetString(PyExc_TypeError, "an integer is required"); | 
 | 			return -1; | 
 | 		} | 
 | 		vv = (*nb->nb_int) (vv); | 
 | 		if (vv == NULL) | 
 | 			return -1; | 
 | 		do_decref = 1; | 
 | 		if (!PyLong_Check(vv)) { | 
 | 			Py_DECREF(vv); | 
 | 			PyErr_SetString(PyExc_TypeError, | 
 | 					"nb_int should return int object"); | 
 | 			return -1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	res = -1; | 
 | 	v = (PyLongObject *)vv; | 
 | 	i = Py_SIZE(v); | 
 |  | 
 | 	switch (i) { | 
 | 	case -1: | 
 | 		res = -v->ob_digit[0]; | 
 | 		break; | 
 | 	case 0: | 
 | 		res = 0; | 
 | 		break; | 
 | 	case 1: | 
 | 		res = v->ob_digit[0]; | 
 | 		break; | 
 | 	default: | 
 | 		sign = 1; | 
 | 		x = 0; | 
 | 		if (i < 0) { | 
 | 			sign = -1; | 
 | 			i = -(i); | 
 | 		} | 
 | 		while (--i >= 0) { | 
 | 			prev = x; | 
 | 			x = (x << PyLong_SHIFT) + v->ob_digit[i]; | 
 | 			if ((x >> PyLong_SHIFT) != prev) { | 
 | 				*overflow = Py_SIZE(v) > 0 ? 1 : -1; | 
 | 				goto exit; | 
 | 			} | 
 | 		} | 
 | 		/* Haven't lost any bits, but casting to long requires extra care | 
 | 		 * (see comment above). | 
 | 	         */ | 
 | 		if (x <= (unsigned long)LONG_MAX) { | 
 | 			res = (long)x * sign; | 
 | 		} | 
 | 		else if (sign < 0 && x == PY_ABS_LONG_MIN) { | 
 | 			res = LONG_MIN; | 
 | 		} | 
 | 		else { | 
 | 			*overflow = Py_SIZE(v) > 0 ? 1 : -1; | 
 | 			/* res is already set to -1 */ | 
 | 		}	 | 
 | 	} | 
 |  exit: | 
 | 	if (do_decref) { | 
 | 		Py_DECREF(vv); | 
 | 	} | 
 | 	return res; | 
 | } | 
 |  | 
 | long  | 
 | PyLong_AsLong(PyObject *obj) | 
 | { | 
 | 	int overflow; | 
 | 	long result = PyLong_AsLongAndOverflow(obj, &overflow); | 
 | 	if (overflow) { | 
 | 		/* XXX: could be cute and give a different  | 
 | 		   message for overflow == -1 */ | 
 | 		PyErr_SetString(PyExc_OverflowError, | 
 | 				"Python int too large to convert to C long"); | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Get a Py_ssize_t from a long int object. | 
 |    Returns -1 and sets an error condition if overflow occurs. */ | 
 |  | 
 | Py_ssize_t | 
 | PyLong_AsSsize_t(PyObject *vv) { | 
 | 	register PyLongObject *v; | 
 | 	size_t x, prev; | 
 | 	Py_ssize_t i; | 
 | 	int sign; | 
 |  | 
 | 	if (vv == NULL || !PyLong_Check(vv)) { | 
 | 		PyErr_BadInternalCall(); | 
 | 		return -1; | 
 | 	} | 
 | 	v = (PyLongObject *)vv; | 
 | 	i = Py_SIZE(v); | 
 | 	switch (i) { | 
 | 	case -1: return -v->ob_digit[0]; | 
 | 	case 0: return 0; | 
 | 	case 1: return v->ob_digit[0]; | 
 | 	} | 
 | 	sign = 1; | 
 | 	x = 0; | 
 | 	if (i < 0) { | 
 | 		sign = -1; | 
 | 		i = -(i); | 
 | 	} | 
 | 	while (--i >= 0) { | 
 | 		prev = x; | 
 | 		x = (x << PyLong_SHIFT) + v->ob_digit[i]; | 
 | 		if ((x >> PyLong_SHIFT) != prev) | 
 | 			goto overflow; | 
 | 	} | 
 | 	/* Haven't lost any bits, but casting to a signed type requires | 
 | 	 * extra care (see comment above). | 
 | 	 */ | 
 | 	if (x <= (size_t)PY_SSIZE_T_MAX) { | 
 | 		return (Py_ssize_t)x * sign; | 
 | 	} | 
 | 	else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) { | 
 | 		return PY_SSIZE_T_MIN; | 
 | 	} | 
 | 	/* else overflow */ | 
 |  | 
 |  overflow: | 
 | 	PyErr_SetString(PyExc_OverflowError, | 
 | 			"Python int too large to convert to C ssize_t"); | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Get a C unsigned long int from a long int object. | 
 |    Returns -1 and sets an error condition if overflow occurs. */ | 
 |  | 
 | unsigned long | 
 | PyLong_AsUnsignedLong(PyObject *vv) | 
 | { | 
 | 	register PyLongObject *v; | 
 | 	unsigned long x, prev; | 
 | 	Py_ssize_t i; | 
 |  | 
 | 	if (vv == NULL || !PyLong_Check(vv)) { | 
 | 		PyErr_BadInternalCall(); | 
 | 		return (unsigned long) -1; | 
 | 	} | 
 | 	v = (PyLongObject *)vv; | 
 | 	i = Py_SIZE(v); | 
 | 	x = 0; | 
 | 	if (i < 0) { | 
 | 		PyErr_SetString(PyExc_OverflowError, | 
 | 			   "can't convert negative value to unsigned int"); | 
 | 		return (unsigned long) -1; | 
 | 	} | 
 | 	switch (i) { | 
 | 	case 0: return 0; | 
 | 	case 1: return v->ob_digit[0]; | 
 | 	} | 
 | 	while (--i >= 0) { | 
 | 		prev = x; | 
 | 		x = (x << PyLong_SHIFT) + v->ob_digit[i]; | 
 | 		if ((x >> PyLong_SHIFT) != prev) { | 
 | 			PyErr_SetString(PyExc_OverflowError, | 
 | 			 "python int too large to convert to C unsigned long"); | 
 | 			return (unsigned long) -1; | 
 | 		} | 
 | 	} | 
 | 	return x; | 
 | } | 
 |  | 
 | /* Get a C unsigned long int from a long int object. | 
 |    Returns -1 and sets an error condition if overflow occurs. */ | 
 |  | 
 | size_t | 
 | PyLong_AsSize_t(PyObject *vv) | 
 | { | 
 | 	register PyLongObject *v; | 
 | 	size_t x, prev; | 
 | 	Py_ssize_t i; | 
 |  | 
 | 	if (vv == NULL || !PyLong_Check(vv)) { | 
 | 		PyErr_BadInternalCall(); | 
 | 		return (unsigned long) -1; | 
 | 	} | 
 | 	v = (PyLongObject *)vv; | 
 | 	i = Py_SIZE(v); | 
 | 	x = 0; | 
 | 	if (i < 0) { | 
 | 		PyErr_SetString(PyExc_OverflowError, | 
 | 			   "can't convert negative value to size_t"); | 
 | 		return (size_t) -1; | 
 | 	} | 
 | 	switch (i) { | 
 | 	case 0: return 0; | 
 | 	case 1: return v->ob_digit[0]; | 
 | 	} | 
 | 	while (--i >= 0) { | 
 | 		prev = x; | 
 | 		x = (x << PyLong_SHIFT) + v->ob_digit[i]; | 
 | 		if ((x >> PyLong_SHIFT) != prev) { | 
 | 			PyErr_SetString(PyExc_OverflowError, | 
 | 			    "Python int too large to convert to C size_t"); | 
 | 			return (unsigned long) -1; | 
 | 		} | 
 | 	} | 
 | 	return x; | 
 | } | 
 |  | 
 | /* Get a C unsigned long int from a long int object, ignoring the high bits. | 
 |    Returns -1 and sets an error condition if an error occurs. */ | 
 |  | 
 | static unsigned long | 
 | _PyLong_AsUnsignedLongMask(PyObject *vv) | 
 | { | 
 | 	register PyLongObject *v; | 
 | 	unsigned long x; | 
 | 	Py_ssize_t i; | 
 | 	int sign; | 
 |  | 
 | 	if (vv == NULL || !PyLong_Check(vv)) { | 
 | 		PyErr_BadInternalCall(); | 
 | 		return (unsigned long) -1; | 
 | 	} | 
 | 	v = (PyLongObject *)vv; | 
 | 	i = Py_SIZE(v); | 
 | 	switch (i) { | 
 | 	case 0: return 0; | 
 | 	case 1: return v->ob_digit[0]; | 
 | 	} | 
 | 	sign = 1; | 
 | 	x = 0; | 
 | 	if (i < 0) { | 
 | 		sign = -1; | 
 | 		i = -i; | 
 | 	} | 
 | 	while (--i >= 0) { | 
 | 		x = (x << PyLong_SHIFT) + v->ob_digit[i]; | 
 | 	} | 
 | 	return x * sign; | 
 | } | 
 |  | 
 | unsigned long | 
 | PyLong_AsUnsignedLongMask(register PyObject *op) | 
 | { | 
 | 	PyNumberMethods *nb; | 
 | 	PyLongObject *lo; | 
 | 	unsigned long val; | 
 |  | 
 | 	if (op && PyLong_Check(op)) | 
 | 		return _PyLong_AsUnsignedLongMask(op); | 
 |  | 
 | 	if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL || | 
 | 	    nb->nb_int == NULL) { | 
 | 		PyErr_SetString(PyExc_TypeError, "an integer is required"); | 
 | 		return (unsigned long)-1; | 
 | 	} | 
 |  | 
 | 	lo = (PyLongObject*) (*nb->nb_int) (op); | 
 | 	if (lo == NULL) | 
 | 		return (unsigned long)-1; | 
 | 	if (PyLong_Check(lo)) { | 
 | 		val = _PyLong_AsUnsignedLongMask((PyObject *)lo); | 
 | 		Py_DECREF(lo); | 
 | 		if (PyErr_Occurred()) | 
 | 			return (unsigned long)-1; | 
 | 		return val; | 
 | 	} | 
 | 	else | 
 | 	{ | 
 | 		Py_DECREF(lo); | 
 | 		PyErr_SetString(PyExc_TypeError, | 
 | 				"nb_int should return int object"); | 
 | 		return (unsigned long)-1; | 
 | 	} | 
 | } | 
 |  | 
 | int | 
 | _PyLong_Sign(PyObject *vv) | 
 | { | 
 | 	PyLongObject *v = (PyLongObject *)vv; | 
 |  | 
 | 	assert(v != NULL); | 
 | 	assert(PyLong_Check(v)); | 
 |  | 
 | 	return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1); | 
 | } | 
 |  | 
 | size_t | 
 | _PyLong_NumBits(PyObject *vv) | 
 | { | 
 | 	PyLongObject *v = (PyLongObject *)vv; | 
 | 	size_t result = 0; | 
 | 	Py_ssize_t ndigits; | 
 |  | 
 | 	assert(v != NULL); | 
 | 	assert(PyLong_Check(v)); | 
 | 	ndigits = ABS(Py_SIZE(v)); | 
 | 	assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0); | 
 | 	if (ndigits > 0) { | 
 | 		digit msd = v->ob_digit[ndigits - 1]; | 
 |  | 
 | 		result = (ndigits - 1) * PyLong_SHIFT; | 
 | 		if (result / PyLong_SHIFT != (size_t)(ndigits - 1)) | 
 | 			goto Overflow; | 
 | 		do { | 
 | 			++result; | 
 | 			if (result == 0) | 
 | 				goto Overflow; | 
 | 			msd >>= 1; | 
 | 		} while (msd); | 
 | 	} | 
 | 	return result; | 
 |  | 
 | Overflow: | 
 | 	PyErr_SetString(PyExc_OverflowError, "int has too many bits " | 
 | 			"to express in a platform size_t"); | 
 | 	return (size_t)-1; | 
 | } | 
 |  | 
 | PyObject * | 
 | _PyLong_FromByteArray(const unsigned char* bytes, size_t n, | 
 | 		      int little_endian, int is_signed) | 
 | { | 
 | 	const unsigned char* pstartbyte;/* LSB of bytes */ | 
 | 	int incr;			/* direction to move pstartbyte */ | 
 | 	const unsigned char* pendbyte;	/* MSB of bytes */ | 
 | 	size_t numsignificantbytes;	/* number of bytes that matter */ | 
 | 	size_t ndigits;			/* number of Python long digits */ | 
 | 	PyLongObject* v;		/* result */ | 
 | 	int idigit = 0;  		/* next free index in v->ob_digit */ | 
 |  | 
 | 	if (n == 0) | 
 | 		return PyLong_FromLong(0L); | 
 |  | 
 | 	if (little_endian) { | 
 | 		pstartbyte = bytes; | 
 | 		pendbyte = bytes + n - 1; | 
 | 		incr = 1; | 
 | 	} | 
 | 	else { | 
 | 		pstartbyte = bytes + n - 1; | 
 | 		pendbyte = bytes; | 
 | 		incr = -1; | 
 | 	} | 
 |  | 
 | 	if (is_signed) | 
 | 		is_signed = *pendbyte >= 0x80; | 
 |  | 
 | 	/* Compute numsignificantbytes.  This consists of finding the most | 
 | 	   significant byte.  Leading 0 bytes are insignficant if the number | 
 | 	   is positive, and leading 0xff bytes if negative. */ | 
 | 	{ | 
 | 		size_t i; | 
 | 		const unsigned char* p = pendbyte; | 
 | 		const int pincr = -incr;  /* search MSB to LSB */ | 
 | 		const unsigned char insignficant = is_signed ? 0xff : 0x00; | 
 |  | 
 | 		for (i = 0; i < n; ++i, p += pincr) { | 
 | 			if (*p != insignficant) | 
 | 				break; | 
 | 		} | 
 | 		numsignificantbytes = n - i; | 
 | 		/* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so | 
 | 		   actually has 2 significant bytes.  OTOH, 0xff0001 == | 
 | 		   -0x00ffff, so we wouldn't *need* to bump it there; but we | 
 | 		   do for 0xffff = -0x0001.  To be safe without bothering to | 
 | 		   check every case, bump it regardless. */ | 
 | 		if (is_signed && numsignificantbytes < n) | 
 | 			++numsignificantbytes; | 
 | 	} | 
 |  | 
 | 	/* How many Python long digits do we need?  We have | 
 | 	   8*numsignificantbytes bits, and each Python long digit has PyLong_SHIFT | 
 | 	   bits, so it's the ceiling of the quotient. */ | 
 | 	ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT; | 
 | 	if (ndigits > (size_t)INT_MAX) | 
 | 		return PyErr_NoMemory(); | 
 | 	v = _PyLong_New((int)ndigits); | 
 | 	if (v == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	/* Copy the bits over.  The tricky parts are computing 2's-comp on | 
 | 	   the fly for signed numbers, and dealing with the mismatch between | 
 | 	   8-bit bytes and (probably) 15-bit Python digits.*/ | 
 | 	{ | 
 | 		size_t i; | 
 | 		twodigits carry = 1;		/* for 2's-comp calculation */ | 
 | 		twodigits accum = 0;		/* sliding register */ | 
 | 		unsigned int accumbits = 0; 	/* number of bits in accum */ | 
 | 		const unsigned char* p = pstartbyte; | 
 |  | 
 | 		for (i = 0; i < numsignificantbytes; ++i, p += incr) { | 
 | 			twodigits thisbyte = *p; | 
 | 			/* Compute correction for 2's comp, if needed. */ | 
 | 			if (is_signed) { | 
 | 				thisbyte = (0xff ^ thisbyte) + carry; | 
 | 				carry = thisbyte >> 8; | 
 | 				thisbyte &= 0xff; | 
 | 			} | 
 | 			/* Because we're going LSB to MSB, thisbyte is | 
 | 			   more significant than what's already in accum, | 
 | 			   so needs to be prepended to accum. */ | 
 | 			accum |= thisbyte << accumbits; | 
 | 			accumbits += 8; | 
 | 			if (accumbits >= PyLong_SHIFT) { | 
 | 				/* There's enough to fill a Python digit. */ | 
 | 				assert(idigit < (int)ndigits); | 
 | 				v->ob_digit[idigit] = (digit)(accum & PyLong_MASK); | 
 | 				++idigit; | 
 | 				accum >>= PyLong_SHIFT; | 
 | 				accumbits -= PyLong_SHIFT; | 
 | 				assert(accumbits < PyLong_SHIFT); | 
 | 			} | 
 | 		} | 
 | 		assert(accumbits < PyLong_SHIFT); | 
 | 		if (accumbits) { | 
 | 			assert(idigit < (int)ndigits); | 
 | 			v->ob_digit[idigit] = (digit)accum; | 
 | 			++idigit; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	Py_SIZE(v) = is_signed ? -idigit : idigit; | 
 | 	return (PyObject *)long_normalize(v); | 
 | } | 
 |  | 
 | int | 
 | _PyLong_AsByteArray(PyLongObject* v, | 
 | 		    unsigned char* bytes, size_t n, | 
 | 		    int little_endian, int is_signed) | 
 | { | 
 | 	int i;			/* index into v->ob_digit */ | 
 | 	Py_ssize_t ndigits;		/* |v->ob_size| */ | 
 | 	twodigits accum;	/* sliding register */ | 
 | 	unsigned int accumbits; /* # bits in accum */ | 
 | 	int do_twos_comp;	/* store 2's-comp?  is_signed and v < 0 */ | 
 | 	twodigits carry;	/* for computing 2's-comp */ | 
 | 	size_t j;		/* # bytes filled */ | 
 | 	unsigned char* p;	/* pointer to next byte in bytes */ | 
 | 	int pincr;		/* direction to move p */ | 
 |  | 
 | 	assert(v != NULL && PyLong_Check(v)); | 
 |  | 
 | 	if (Py_SIZE(v) < 0) { | 
 | 		ndigits = -(Py_SIZE(v)); | 
 | 		if (!is_signed) { | 
 | 			PyErr_SetString(PyExc_TypeError, | 
 | 				"can't convert negative int to unsigned"); | 
 | 			return -1; | 
 | 		} | 
 | 		do_twos_comp = 1; | 
 | 	} | 
 | 	else { | 
 | 		ndigits = Py_SIZE(v); | 
 | 		do_twos_comp = 0; | 
 | 	} | 
 |  | 
 | 	if (little_endian) { | 
 | 		p = bytes; | 
 | 		pincr = 1; | 
 | 	} | 
 | 	else { | 
 | 		p = bytes + n - 1; | 
 | 		pincr = -1; | 
 | 	} | 
 |  | 
 | 	/* Copy over all the Python digits. | 
 | 	   It's crucial that every Python digit except for the MSD contribute | 
 | 	   exactly PyLong_SHIFT bits to the total, so first assert that the long is | 
 | 	   normalized. */ | 
 | 	assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0); | 
 | 	j = 0; | 
 | 	accum = 0; | 
 | 	accumbits = 0; | 
 | 	carry = do_twos_comp ? 1 : 0; | 
 | 	for (i = 0; i < ndigits; ++i) { | 
 | 		twodigits thisdigit = v->ob_digit[i]; | 
 | 		if (do_twos_comp) { | 
 | 			thisdigit = (thisdigit ^ PyLong_MASK) + carry; | 
 | 			carry = thisdigit >> PyLong_SHIFT; | 
 | 			thisdigit &= PyLong_MASK; | 
 | 		} | 
 | 		/* Because we're going LSB to MSB, thisdigit is more | 
 | 		   significant than what's already in accum, so needs to be | 
 | 		   prepended to accum. */ | 
 | 		accum |= thisdigit << accumbits; | 
 | 		accumbits += PyLong_SHIFT; | 
 |  | 
 | 		/* The most-significant digit may be (probably is) at least | 
 | 		   partly empty. */ | 
 | 		if (i == ndigits - 1) { | 
 | 			/* Count # of sign bits -- they needn't be stored, | 
 | 			 * although for signed conversion we need later to | 
 | 			 * make sure at least one sign bit gets stored. | 
 | 			 * First shift conceptual sign bit to real sign bit. | 
 | 			 */ | 
 | 			stwodigits s = (stwodigits)(thisdigit << | 
 | 				(8*sizeof(stwodigits) - PyLong_SHIFT)); | 
 | 			unsigned int nsignbits = 0; | 
 | 			while ((s < 0) == do_twos_comp && nsignbits < PyLong_SHIFT) { | 
 | 				++nsignbits; | 
 | 				s <<= 1; | 
 | 			} | 
 | 			accumbits -= nsignbits; | 
 | 		} | 
 |  | 
 | 		/* Store as many bytes as possible. */ | 
 | 		while (accumbits >= 8) { | 
 | 			if (j >= n) | 
 | 				goto Overflow; | 
 | 			++j; | 
 | 			*p = (unsigned char)(accum & 0xff); | 
 | 			p += pincr; | 
 | 			accumbits -= 8; | 
 | 			accum >>= 8; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Store the straggler (if any). */ | 
 | 	assert(accumbits < 8); | 
 | 	assert(carry == 0);  /* else do_twos_comp and *every* digit was 0 */ | 
 | 	if (accumbits > 0) { | 
 | 		if (j >= n) | 
 | 			goto Overflow; | 
 | 		++j; | 
 | 		if (do_twos_comp) { | 
 | 			/* Fill leading bits of the byte with sign bits | 
 | 			   (appropriately pretending that the long had an | 
 | 			   infinite supply of sign bits). */ | 
 | 			accum |= (~(twodigits)0) << accumbits; | 
 | 		} | 
 | 		*p = (unsigned char)(accum & 0xff); | 
 | 		p += pincr; | 
 | 	} | 
 | 	else if (j == n && n > 0 && is_signed) { | 
 | 		/* The main loop filled the byte array exactly, so the code | 
 | 		   just above didn't get to ensure there's a sign bit, and the | 
 | 		   loop below wouldn't add one either.  Make sure a sign bit | 
 | 		   exists. */ | 
 | 		unsigned char msb = *(p - pincr); | 
 | 		int sign_bit_set = msb >= 0x80; | 
 | 		assert(accumbits == 0); | 
 | 		if (sign_bit_set == do_twos_comp) | 
 | 			return 0; | 
 | 		else | 
 | 			goto Overflow; | 
 | 	} | 
 |  | 
 | 	/* Fill remaining bytes with copies of the sign bit. */ | 
 | 	{ | 
 | 		unsigned char signbyte = do_twos_comp ? 0xffU : 0U; | 
 | 		for ( ; j < n; ++j, p += pincr) | 
 | 			*p = signbyte; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | Overflow: | 
 | 	PyErr_SetString(PyExc_OverflowError, "int too big to convert"); | 
 | 	return -1; | 
 |  | 
 | } | 
 |  | 
 | double | 
 | _PyLong_AsScaledDouble(PyObject *vv, int *exponent) | 
 | { | 
 | /* NBITS_WANTED should be > the number of bits in a double's precision, | 
 |    but small enough so that 2**NBITS_WANTED is within the normal double | 
 |    range.  nbitsneeded is set to 1 less than that because the most-significant | 
 |    Python digit contains at least 1 significant bit, but we don't want to | 
 |    bother counting them (catering to the worst case cheaply). | 
 |  | 
 |    57 is one more than VAX-D double precision; I (Tim) don't know of a double | 
 |    format with more precision than that; it's 1 larger so that we add in at | 
 |    least one round bit to stand in for the ignored least-significant bits. | 
 | */ | 
 | #define NBITS_WANTED 57 | 
 | 	PyLongObject *v; | 
 | 	double x; | 
 | 	const double multiplier = (double)(1L << PyLong_SHIFT); | 
 | 	Py_ssize_t i; | 
 | 	int sign; | 
 | 	int nbitsneeded; | 
 |  | 
 | 	if (vv == NULL || !PyLong_Check(vv)) { | 
 | 		PyErr_BadInternalCall(); | 
 | 		return -1; | 
 | 	} | 
 | 	v = (PyLongObject *)vv; | 
 | 	i = Py_SIZE(v); | 
 | 	sign = 1; | 
 | 	if (i < 0) { | 
 | 		sign = -1; | 
 | 		i = -(i); | 
 | 	} | 
 | 	else if (i == 0) { | 
 | 		*exponent = 0; | 
 | 		return 0.0; | 
 | 	} | 
 | 	--i; | 
 | 	x = (double)v->ob_digit[i]; | 
 | 	nbitsneeded = NBITS_WANTED - 1; | 
 | 	/* Invariant:  i Python digits remain unaccounted for. */ | 
 | 	while (i > 0 && nbitsneeded > 0) { | 
 | 		--i; | 
 | 		x = x * multiplier + (double)v->ob_digit[i]; | 
 | 		nbitsneeded -= PyLong_SHIFT; | 
 | 	} | 
 | 	/* There are i digits we didn't shift in.  Pretending they're all | 
 | 	   zeroes, the true value is x * 2**(i*PyLong_SHIFT). */ | 
 | 	*exponent = i; | 
 | 	assert(x > 0.0); | 
 | 	return x * sign; | 
 | #undef NBITS_WANTED | 
 | } | 
 |  | 
 | /* Get a C double from a long int object. */ | 
 |  | 
 | double | 
 | PyLong_AsDouble(PyObject *vv) | 
 | { | 
 | 	int e = -1; | 
 | 	double x; | 
 |  | 
 | 	if (vv == NULL || !PyLong_Check(vv)) { | 
 | 		PyErr_BadInternalCall(); | 
 | 		return -1; | 
 | 	} | 
 | 	x = _PyLong_AsScaledDouble(vv, &e); | 
 | 	if (x == -1.0 && PyErr_Occurred()) | 
 | 		return -1.0; | 
 | 	/* 'e' initialized to -1 to silence gcc-4.0.x, but it should be | 
 | 	   set correctly after a successful _PyLong_AsScaledDouble() call */ | 
 | 	assert(e >= 0); | 
 | 	if (e > INT_MAX / PyLong_SHIFT) | 
 | 		goto overflow; | 
 | 	errno = 0; | 
 | 	x = ldexp(x, e * PyLong_SHIFT); | 
 | 	if (Py_OVERFLOWED(x)) | 
 | 		goto overflow; | 
 | 	return x; | 
 |  | 
 | overflow: | 
 | 	PyErr_SetString(PyExc_OverflowError, | 
 | 		"Python int too large to convert to C double"); | 
 | 	return -1.0; | 
 | } | 
 |  | 
 | /* Create a new long (or int) object from a C pointer */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromVoidPtr(void *p) | 
 | { | 
 | #ifndef HAVE_LONG_LONG | 
 | #   error "PyLong_FromVoidPtr: sizeof(void*) > sizeof(long), but no long long" | 
 | #endif | 
 | #if SIZEOF_LONG_LONG < SIZEOF_VOID_P | 
 | #   error "PyLong_FromVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)" | 
 | #endif | 
 | 	/* special-case null pointer */ | 
 | 	if (!p) | 
 | 		return PyLong_FromLong(0); | 
 | 	return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG)(Py_uintptr_t)p); | 
 |  | 
 | } | 
 |  | 
 | /* Get a C pointer from a long object (or an int object in some cases) */ | 
 |  | 
 | void * | 
 | PyLong_AsVoidPtr(PyObject *vv) | 
 | { | 
 | 	/* This function will allow int or long objects. If vv is neither, | 
 | 	   then the PyLong_AsLong*() functions will raise the exception: | 
 | 	   PyExc_SystemError, "bad argument to internal function" | 
 | 	*/ | 
 | #if SIZEOF_VOID_P <= SIZEOF_LONG | 
 | 	long x; | 
 |  | 
 | 	if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0) | 
 | 		x = PyLong_AsLong(vv); | 
 | 	else | 
 | 		x = PyLong_AsUnsignedLong(vv); | 
 | #else | 
 |  | 
 | #ifndef HAVE_LONG_LONG | 
 | #   error "PyLong_AsVoidPtr: sizeof(void*) > sizeof(long), but no long long" | 
 | #endif | 
 | #if SIZEOF_LONG_LONG < SIZEOF_VOID_P | 
 | #   error "PyLong_AsVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)" | 
 | #endif | 
 | 	PY_LONG_LONG x; | 
 |  | 
 | 	if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0) | 
 | 		x = PyLong_AsLongLong(vv); | 
 | 	else | 
 | 		x = PyLong_AsUnsignedLongLong(vv); | 
 |  | 
 | #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */ | 
 |  | 
 | 	if (x == -1 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	return (void *)x; | 
 | } | 
 |  | 
 | #ifdef HAVE_LONG_LONG | 
 |  | 
 | /* Initial PY_LONG_LONG support by Chris Herborth (chrish@qnx.com), later | 
 |  * rewritten to use the newer PyLong_{As,From}ByteArray API. | 
 |  */ | 
 |  | 
 | #define IS_LITTLE_ENDIAN (int)*(unsigned char*)&one | 
 |  | 
 | /* Create a new long int object from a C PY_LONG_LONG int. */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromLongLong(PY_LONG_LONG ival) | 
 | { | 
 | 	PyLongObject *v; | 
 | 	unsigned PY_LONG_LONG abs_ival; | 
 | 	unsigned PY_LONG_LONG t;  /* unsigned so >> doesn't propagate sign bit */ | 
 | 	int ndigits = 0; | 
 | 	int negative = 0; | 
 |  | 
 | 	CHECK_SMALL_INT(ival); | 
 | 	if (ival < 0) { | 
 | 		/* avoid signed overflow on negation;  see comments | 
 | 		   in PyLong_FromLong above. */ | 
 | 		abs_ival = (unsigned PY_LONG_LONG)(-1-ival) + 1; | 
 | 		negative = 1; | 
 | 	} | 
 | 	else { | 
 | 		abs_ival = (unsigned PY_LONG_LONG)ival; | 
 | 	} | 
 |  | 
 | 	/* Count the number of Python digits. | 
 | 	   We used to pick 5 ("big enough for anything"), but that's a | 
 | 	   waste of time and space given that 5*15 = 75 bits are rarely | 
 | 	   needed. */ | 
 | 	t = abs_ival; | 
 | 	while (t) { | 
 | 		++ndigits; | 
 | 		t >>= PyLong_SHIFT; | 
 | 	} | 
 | 	v = _PyLong_New(ndigits); | 
 | 	if (v != NULL) { | 
 | 		digit *p = v->ob_digit; | 
 | 		Py_SIZE(v) = negative ? -ndigits : ndigits; | 
 | 		t = abs_ival; | 
 | 		while (t) { | 
 | 			*p++ = (digit)(t & PyLong_MASK); | 
 | 			t >>= PyLong_SHIFT; | 
 | 		} | 
 | 	} | 
 | 	return (PyObject *)v; | 
 | } | 
 |  | 
 | /* Create a new long int object from a C unsigned PY_LONG_LONG int. */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG ival) | 
 | { | 
 | 	PyLongObject *v; | 
 | 	unsigned PY_LONG_LONG t; | 
 | 	int ndigits = 0; | 
 |  | 
 | 	if (ival < PyLong_BASE) | 
 | 		return PyLong_FromLong(ival); | 
 | 	/* Count the number of Python digits. */ | 
 | 	t = (unsigned PY_LONG_LONG)ival; | 
 | 	while (t) { | 
 | 		++ndigits; | 
 | 		t >>= PyLong_SHIFT; | 
 | 	} | 
 | 	v = _PyLong_New(ndigits); | 
 | 	if (v != NULL) { | 
 | 		digit *p = v->ob_digit; | 
 | 		Py_SIZE(v) = ndigits; | 
 | 		while (ival) { | 
 | 			*p++ = (digit)(ival & PyLong_MASK); | 
 | 			ival >>= PyLong_SHIFT; | 
 | 		} | 
 | 	} | 
 | 	return (PyObject *)v; | 
 | } | 
 |  | 
 | /* Create a new long int object from a C Py_ssize_t. */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromSsize_t(Py_ssize_t ival) | 
 | { | 
 | 	PyLongObject *v; | 
 | 	size_t abs_ival; | 
 | 	size_t t;  /* unsigned so >> doesn't propagate sign bit */ | 
 | 	int ndigits = 0; | 
 | 	int negative = 0; | 
 |  | 
 | 	CHECK_SMALL_INT(ival); | 
 | 	if (ival < 0) { | 
 | 		/* avoid signed overflow when ival = SIZE_T_MIN */ | 
 | 		abs_ival = (size_t)(-1-ival)+1; | 
 | 		negative = 1; | 
 | 	} | 
 | 	else { | 
 | 		abs_ival = (size_t)ival; | 
 | 	} | 
 |  | 
 | 	/* Count the number of Python digits. */ | 
 | 	t = abs_ival; | 
 | 	while (t) { | 
 | 		++ndigits; | 
 | 		t >>= PyLong_SHIFT; | 
 | 	} | 
 | 	v = _PyLong_New(ndigits); | 
 | 	if (v != NULL) { | 
 | 		digit *p = v->ob_digit; | 
 | 		Py_SIZE(v) = negative ? -ndigits : ndigits; | 
 | 		t = abs_ival; | 
 | 		while (t) { | 
 | 			*p++ = (digit)(t & PyLong_MASK); | 
 | 			t >>= PyLong_SHIFT; | 
 | 		} | 
 | 	} | 
 | 	return (PyObject *)v; | 
 | } | 
 |  | 
 | /* Create a new long int object from a C size_t. */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromSize_t(size_t ival) | 
 | { | 
 | 	PyLongObject *v; | 
 | 	size_t t; | 
 | 	int ndigits = 0; | 
 |  | 
 | 	if (ival < PyLong_BASE) | 
 | 		return PyLong_FromLong(ival); | 
 | 	/* Count the number of Python digits. */ | 
 | 	t = ival; | 
 | 	while (t) { | 
 | 		++ndigits; | 
 | 		t >>= PyLong_SHIFT; | 
 | 	} | 
 | 	v = _PyLong_New(ndigits); | 
 | 	if (v != NULL) { | 
 | 		digit *p = v->ob_digit; | 
 | 		Py_SIZE(v) = ndigits; | 
 | 		while (ival) { | 
 | 			*p++ = (digit)(ival & PyLong_MASK); | 
 | 			ival >>= PyLong_SHIFT; | 
 | 		} | 
 | 	} | 
 | 	return (PyObject *)v; | 
 | } | 
 |  | 
 | /* Get a C PY_LONG_LONG int from a long int object. | 
 |    Return -1 and set an error if overflow occurs. */ | 
 |  | 
 | PY_LONG_LONG | 
 | PyLong_AsLongLong(PyObject *vv) | 
 | { | 
 | 	PyLongObject *v; | 
 | 	PY_LONG_LONG bytes; | 
 | 	int one = 1; | 
 | 	int res; | 
 |  | 
 | 	if (vv == NULL) { | 
 | 		PyErr_BadInternalCall(); | 
 | 		return -1; | 
 | 	} | 
 | 	if (!PyLong_Check(vv)) { | 
 | 		PyNumberMethods *nb; | 
 | 		PyObject *io; | 
 | 		if ((nb = vv->ob_type->tp_as_number) == NULL || | 
 | 		    nb->nb_int == NULL) { | 
 | 			PyErr_SetString(PyExc_TypeError, "an integer is required"); | 
 | 			return -1; | 
 | 		} | 
 | 		io = (*nb->nb_int) (vv); | 
 | 		if (io == NULL) | 
 | 			return -1; | 
 | 		if (PyLong_Check(io)) { | 
 | 			bytes = PyLong_AsLongLong(io); | 
 | 			Py_DECREF(io); | 
 | 			return bytes; | 
 | 		} | 
 | 		Py_DECREF(io); | 
 | 		PyErr_SetString(PyExc_TypeError, "integer conversion failed"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	v = (PyLongObject*)vv; | 
 | 	switch(Py_SIZE(v)) { | 
 | 	case -1: return -v->ob_digit[0]; | 
 | 	case 0: return 0; | 
 | 	case 1: return v->ob_digit[0]; | 
 | 	} | 
 | 	res = _PyLong_AsByteArray( | 
 | 			(PyLongObject *)vv, (unsigned char *)&bytes, | 
 | 			SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1); | 
 |  | 
 | 	/* Plan 9 can't handle PY_LONG_LONG in ? : expressions */ | 
 | 	if (res < 0) | 
 | 		return (PY_LONG_LONG)-1; | 
 | 	else | 
 | 		return bytes; | 
 | } | 
 |  | 
 | /* Get a C unsigned PY_LONG_LONG int from a long int object. | 
 |    Return -1 and set an error if overflow occurs. */ | 
 |  | 
 | unsigned PY_LONG_LONG | 
 | PyLong_AsUnsignedLongLong(PyObject *vv) | 
 | { | 
 | 	PyLongObject *v; | 
 | 	unsigned PY_LONG_LONG bytes; | 
 | 	int one = 1; | 
 | 	int res; | 
 |  | 
 | 	if (vv == NULL || !PyLong_Check(vv)) { | 
 | 		PyErr_BadInternalCall(); | 
 | 		return (unsigned PY_LONG_LONG)-1; | 
 | 	} | 
 |  | 
 | 	v = (PyLongObject*)vv; | 
 | 	switch(Py_SIZE(v)) { | 
 | 	case 0: return 0; | 
 | 	case 1: return v->ob_digit[0]; | 
 | 	} | 
 |  | 
 | 	res = _PyLong_AsByteArray( | 
 | 			(PyLongObject *)vv, (unsigned char *)&bytes, | 
 | 			SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0); | 
 |  | 
 | 	/* Plan 9 can't handle PY_LONG_LONG in ? : expressions */ | 
 | 	if (res < 0) | 
 | 		return (unsigned PY_LONG_LONG)res; | 
 | 	else | 
 | 		return bytes; | 
 | } | 
 |  | 
 | /* Get a C unsigned long int from a long int object, ignoring the high bits. | 
 |    Returns -1 and sets an error condition if an error occurs. */ | 
 |  | 
 | static unsigned PY_LONG_LONG | 
 | _PyLong_AsUnsignedLongLongMask(PyObject *vv) | 
 | { | 
 | 	register PyLongObject *v; | 
 | 	unsigned PY_LONG_LONG x; | 
 | 	Py_ssize_t i; | 
 | 	int sign; | 
 |  | 
 | 	if (vv == NULL || !PyLong_Check(vv)) { | 
 | 		PyErr_BadInternalCall(); | 
 | 		return (unsigned long) -1; | 
 | 	} | 
 | 	v = (PyLongObject *)vv; | 
 | 	switch(Py_SIZE(v)) { | 
 | 	case 0: return 0; | 
 | 	case 1: return v->ob_digit[0]; | 
 | 	} | 
 | 	i = Py_SIZE(v); | 
 | 	sign = 1; | 
 | 	x = 0; | 
 | 	if (i < 0) { | 
 | 		sign = -1; | 
 | 		i = -i; | 
 | 	} | 
 | 	while (--i >= 0) { | 
 | 		x = (x << PyLong_SHIFT) + v->ob_digit[i]; | 
 | 	} | 
 | 	return x * sign; | 
 | } | 
 |  | 
 | unsigned PY_LONG_LONG | 
 | PyLong_AsUnsignedLongLongMask(register PyObject *op) | 
 | { | 
 | 	PyNumberMethods *nb; | 
 | 	PyLongObject *lo; | 
 | 	unsigned PY_LONG_LONG val; | 
 |  | 
 | 	if (op && PyLong_Check(op)) | 
 | 		return _PyLong_AsUnsignedLongLongMask(op); | 
 |  | 
 | 	if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL || | 
 | 	    nb->nb_int == NULL) { | 
 | 		PyErr_SetString(PyExc_TypeError, "an integer is required"); | 
 | 		return (unsigned PY_LONG_LONG)-1; | 
 | 	} | 
 |  | 
 | 	lo = (PyLongObject*) (*nb->nb_int) (op); | 
 | 	if (lo == NULL) | 
 | 		return (unsigned PY_LONG_LONG)-1; | 
 | 	if (PyLong_Check(lo)) { | 
 | 		val = _PyLong_AsUnsignedLongLongMask((PyObject *)lo); | 
 | 		Py_DECREF(lo); | 
 | 		if (PyErr_Occurred()) | 
 | 			return (unsigned PY_LONG_LONG)-1; | 
 | 		return val; | 
 | 	} | 
 | 	else | 
 | 	{ | 
 | 		Py_DECREF(lo); | 
 | 		PyErr_SetString(PyExc_TypeError, | 
 | 				"nb_int should return int object"); | 
 | 		return (unsigned PY_LONG_LONG)-1; | 
 | 	} | 
 | } | 
 | #undef IS_LITTLE_ENDIAN | 
 |  | 
 | #endif /* HAVE_LONG_LONG */ | 
 |  | 
 | #define CHECK_BINOP(v,w) \ | 
 | 	if (!PyLong_Check(v) || !PyLong_Check(w)) { \ | 
 | 		Py_INCREF(Py_NotImplemented); \ | 
 | 		return Py_NotImplemented; \ | 
 | 	} | 
 |  | 
 | /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n] | 
 |  * is modified in place, by adding y to it.  Carries are propagated as far as | 
 |  * x[m-1], and the remaining carry (0 or 1) is returned. | 
 |  */ | 
 | static digit | 
 | v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n) | 
 | { | 
 | 	int i; | 
 | 	digit carry = 0; | 
 |  | 
 | 	assert(m >= n); | 
 | 	for (i = 0; i < n; ++i) { | 
 | 		carry += x[i] + y[i]; | 
 | 		x[i] = carry & PyLong_MASK; | 
 | 		carry >>= PyLong_SHIFT; | 
 | 		assert((carry & 1) == carry); | 
 | 	} | 
 | 	for (; carry && i < m; ++i) { | 
 | 		carry += x[i]; | 
 | 		x[i] = carry & PyLong_MASK; | 
 | 		carry >>= PyLong_SHIFT; | 
 | 		assert((carry & 1) == carry); | 
 | 	} | 
 | 	return carry; | 
 | } | 
 |  | 
 | /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n] | 
 |  * is modified in place, by subtracting y from it.  Borrows are propagated as | 
 |  * far as x[m-1], and the remaining borrow (0 or 1) is returned. | 
 |  */ | 
 | static digit | 
 | v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n) | 
 | { | 
 | 	int i; | 
 | 	digit borrow = 0; | 
 |  | 
 | 	assert(m >= n); | 
 | 	for (i = 0; i < n; ++i) { | 
 | 		borrow = x[i] - y[i] - borrow; | 
 | 		x[i] = borrow & PyLong_MASK; | 
 | 		borrow >>= PyLong_SHIFT; | 
 | 		borrow &= 1;	/* keep only 1 sign bit */ | 
 | 	} | 
 | 	for (; borrow && i < m; ++i) { | 
 | 		borrow = x[i] - borrow; | 
 | 		x[i] = borrow & PyLong_MASK; | 
 | 		borrow >>= PyLong_SHIFT; | 
 | 		borrow &= 1; | 
 | 	} | 
 | 	return borrow; | 
 | } | 
 |  | 
 | /* Multiply by a single digit, ignoring the sign. */ | 
 |  | 
 | static PyLongObject * | 
 | mul1(PyLongObject *a, wdigit n) | 
 | { | 
 | 	return muladd1(a, n, (digit)0); | 
 | } | 
 |  | 
 | /* Multiply by a single digit and add a single digit, ignoring the sign. */ | 
 |  | 
 | static PyLongObject * | 
 | muladd1(PyLongObject *a, wdigit n, wdigit extra) | 
 | { | 
 | 	Py_ssize_t size_a = ABS(Py_SIZE(a)); | 
 | 	PyLongObject *z = _PyLong_New(size_a+1); | 
 | 	twodigits carry = extra; | 
 | 	Py_ssize_t i; | 
 |  | 
 | 	if (z == NULL) | 
 | 		return NULL; | 
 | 	for (i = 0; i < size_a; ++i) { | 
 | 		carry += (twodigits)a->ob_digit[i] * n; | 
 | 		z->ob_digit[i] = (digit) (carry & PyLong_MASK); | 
 | 		carry >>= PyLong_SHIFT; | 
 | 	} | 
 | 	z->ob_digit[i] = (digit) carry; | 
 | 	return long_normalize(z); | 
 | } | 
 |  | 
 | /* Divide long pin, w/ size digits, by non-zero digit n, storing quotient | 
 |    in pout, and returning the remainder.  pin and pout point at the LSD. | 
 |    It's OK for pin == pout on entry, which saves oodles of mallocs/frees in | 
 |    _PyLong_Format, but that should be done with great care since longs are | 
 |    immutable. */ | 
 |  | 
 | static digit | 
 | inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n) | 
 | { | 
 | 	twodigits rem = 0; | 
 |  | 
 | 	assert(n > 0 && n <= PyLong_MASK); | 
 | 	pin += size; | 
 | 	pout += size; | 
 | 	while (--size >= 0) { | 
 | 		digit hi; | 
 | 		rem = (rem << PyLong_SHIFT) + *--pin; | 
 | 		*--pout = hi = (digit)(rem / n); | 
 | 		rem -= hi * n; | 
 | 	} | 
 | 	return (digit)rem; | 
 | } | 
 |  | 
 | /* Divide a long integer by a digit, returning both the quotient | 
 |    (as function result) and the remainder (through *prem). | 
 |    The sign of a is ignored; n should not be zero. */ | 
 |  | 
 | static PyLongObject * | 
 | divrem1(PyLongObject *a, digit n, digit *prem) | 
 | { | 
 | 	const Py_ssize_t size = ABS(Py_SIZE(a)); | 
 | 	PyLongObject *z; | 
 |  | 
 | 	assert(n > 0 && n <= PyLong_MASK); | 
 | 	z = _PyLong_New(size); | 
 | 	if (z == NULL) | 
 | 		return NULL; | 
 | 	*prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n); | 
 | 	return long_normalize(z); | 
 | } | 
 |  | 
 | /* Convert a long int object to a string, using a given conversion base. | 
 |    Return a string object. | 
 |    If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'. */ | 
 |  | 
 | PyObject * | 
 | _PyLong_Format(PyObject *aa, int base) | 
 | { | 
 | 	register PyLongObject *a = (PyLongObject *)aa; | 
 | 	PyObject *str; | 
 | 	Py_ssize_t i, j, sz; | 
 | 	Py_ssize_t size_a; | 
 | 	Py_UNICODE *p; | 
 | 	int bits; | 
 | 	char sign = '\0'; | 
 |  | 
 | 	if (a == NULL || !PyLong_Check(a)) { | 
 | 		PyErr_BadInternalCall(); | 
 | 		return NULL; | 
 | 	} | 
 | 	assert(base >= 2 && base <= 36); | 
 | 	size_a = ABS(Py_SIZE(a)); | 
 |  | 
 | 	/* Compute a rough upper bound for the length of the string */ | 
 | 	i = base; | 
 | 	bits = 0; | 
 | 	while (i > 1) { | 
 | 		++bits; | 
 | 		i >>= 1; | 
 | 	} | 
 | 	i = 5; | 
 | 	j = size_a*PyLong_SHIFT + bits-1; | 
 | 	sz = i + j / bits; | 
 | 	if (j / PyLong_SHIFT < size_a || sz < i) { | 
 | 		PyErr_SetString(PyExc_OverflowError, | 
 | 				"int is too large to format"); | 
 | 		return NULL; | 
 | 	} | 
 | 	str = PyUnicode_FromUnicode(NULL, sz); | 
 | 	if (str == NULL) | 
 | 		return NULL; | 
 | 	p = PyUnicode_AS_UNICODE(str) + sz; | 
 | 	*p = '\0'; | 
 | 	if (Py_SIZE(a) < 0) | 
 | 		sign = '-'; | 
 |  | 
 | 	if (Py_SIZE(a) == 0) { | 
 | 		*--p = '0'; | 
 | 	} | 
 | 	else if ((base & (base - 1)) == 0) { | 
 | 		/* JRH: special case for power-of-2 bases */ | 
 | 		twodigits accum = 0; | 
 | 		int accumbits = 0;	/* # of bits in accum */ | 
 | 		int basebits = 1;	/* # of bits in base-1 */ | 
 | 		i = base; | 
 | 		while ((i >>= 1) > 1) | 
 | 			++basebits; | 
 |  | 
 | 		for (i = 0; i < size_a; ++i) { | 
 | 			accum |= (twodigits)a->ob_digit[i] << accumbits; | 
 | 			accumbits += PyLong_SHIFT; | 
 | 			assert(accumbits >= basebits); | 
 | 			do { | 
 | 				char cdigit = (char)(accum & (base - 1)); | 
 | 				cdigit += (cdigit < 10) ? '0' : 'a'-10; | 
 | 				assert(p > PyUnicode_AS_UNICODE(str)); | 
 | 				*--p = cdigit; | 
 | 				accumbits -= basebits; | 
 | 				accum >>= basebits; | 
 | 			} while (i < size_a-1 ? accumbits >= basebits : | 
 | 					 	accum > 0); | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		/* Not 0, and base not a power of 2.  Divide repeatedly by | 
 | 		   base, but for speed use the highest power of base that | 
 | 		   fits in a digit. */ | 
 | 		Py_ssize_t size = size_a; | 
 | 		digit *pin = a->ob_digit; | 
 | 		PyLongObject *scratch; | 
 | 		/* powbasw <- largest power of base that fits in a digit. */ | 
 | 		digit powbase = base;  /* powbase == base ** power */ | 
 | 		int power = 1; | 
 | 		for (;;) { | 
 | 			unsigned long newpow = powbase * (unsigned long)base; | 
 | 			if (newpow >> PyLong_SHIFT)  /* doesn't fit in a digit */ | 
 | 				break; | 
 | 			powbase = (digit)newpow; | 
 | 			++power; | 
 | 		} | 
 |  | 
 | 		/* Get a scratch area for repeated division. */ | 
 | 		scratch = _PyLong_New(size); | 
 | 		if (scratch == NULL) { | 
 | 			Py_DECREF(str); | 
 | 			return NULL; | 
 | 		} | 
 |  | 
 | 		/* Repeatedly divide by powbase. */ | 
 | 		do { | 
 | 			int ntostore = power; | 
 | 			digit rem = inplace_divrem1(scratch->ob_digit, | 
 | 						     pin, size, powbase); | 
 | 			pin = scratch->ob_digit; /* no need to use a again */ | 
 | 			if (pin[size - 1] == 0) | 
 | 				--size; | 
 | 			SIGCHECK({ | 
 | 				Py_DECREF(scratch); | 
 | 				Py_DECREF(str); | 
 | 				return NULL; | 
 | 			}) | 
 |  | 
 | 			/* Break rem into digits. */ | 
 | 			assert(ntostore > 0); | 
 | 			do { | 
 | 				digit nextrem = (digit)(rem / base); | 
 | 				char c = (char)(rem - nextrem * base); | 
 | 				assert(p > PyUnicode_AS_UNICODE(str)); | 
 | 				c += (c < 10) ? '0' : 'a'-10; | 
 | 				*--p = c; | 
 | 				rem = nextrem; | 
 | 				--ntostore; | 
 | 				/* Termination is a bit delicate:  must not | 
 | 				   store leading zeroes, so must get out if | 
 | 				   remaining quotient and rem are both 0. */ | 
 | 			} while (ntostore && (size || rem)); | 
 | 		} while (size != 0); | 
 | 		Py_DECREF(scratch); | 
 | 	} | 
 |  | 
 | 	if (base == 16) { | 
 | 		*--p = 'x'; | 
 | 		*--p = '0'; | 
 | 	} | 
 | 	else if (base == 8) { | 
 | 		*--p = 'o'; | 
 | 		*--p = '0'; | 
 | 	} | 
 | 	else if (base == 2) { | 
 | 		*--p = 'b'; | 
 | 		*--p = '0'; | 
 | 	} | 
 | 	else if (base != 10) { | 
 | 		*--p = '#'; | 
 | 		*--p = '0' + base%10; | 
 | 		if (base > 10) | 
 | 			*--p = '0' + base/10; | 
 | 	} | 
 | 	if (sign) | 
 | 		*--p = sign; | 
 | 	if (p != PyUnicode_AS_UNICODE(str)) { | 
 | 		Py_UNICODE *q = PyUnicode_AS_UNICODE(str); | 
 | 		assert(p > q); | 
 | 		do { | 
 | 		} while ((*q++ = *p++) != '\0'); | 
 | 		q--; | 
 | 		if (PyUnicode_Resize(&str, (Py_ssize_t) (q - PyUnicode_AS_UNICODE(str)))) { | 
 | 			Py_DECREF(str); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 | 	return (PyObject *)str; | 
 | } | 
 |  | 
 | /* Table of digit values for 8-bit string -> integer conversion. | 
 |  * '0' maps to 0, ..., '9' maps to 9. | 
 |  * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35. | 
 |  * All other indices map to 37. | 
 |  * Note that when converting a base B string, a char c is a legitimate | 
 |  * base B digit iff _PyLong_DigitValue[Py_CHARPyLong_MASK(c)] < B. | 
 |  */ | 
 | int _PyLong_DigitValue[256] = { | 
 | 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 | 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 | 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 | 	0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  37, 37, 37, 37, 37, 37, | 
 | 	37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, | 
 | 	25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37, | 
 | 	37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, | 
 | 	25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37, | 
 | 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 | 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 | 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 | 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 | 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 | 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 | 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 | 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | 
 | }; | 
 |  | 
 | /* *str points to the first digit in a string of base `base` digits.  base | 
 |  * is a power of 2 (2, 4, 8, 16, or 32).  *str is set to point to the first | 
 |  * non-digit (which may be *str!).  A normalized long is returned. | 
 |  * The point to this routine is that it takes time linear in the number of | 
 |  * string characters. | 
 |  */ | 
 | static PyLongObject * | 
 | long_from_binary_base(char **str, int base) | 
 | { | 
 | 	char *p = *str; | 
 | 	char *start = p; | 
 | 	int bits_per_char; | 
 | 	Py_ssize_t n; | 
 | 	PyLongObject *z; | 
 | 	twodigits accum; | 
 | 	int bits_in_accum; | 
 | 	digit *pdigit; | 
 |  | 
 | 	assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0); | 
 | 	n = base; | 
 | 	for (bits_per_char = -1; n; ++bits_per_char) | 
 | 		n >>= 1; | 
 | 	/* n <- total # of bits needed, while setting p to end-of-string */ | 
 | 	n = 0; | 
 | 	while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base) | 
 | 		++p; | 
 | 	*str = p; | 
 | 	/* n <- # of Python digits needed, = ceiling(n/PyLong_SHIFT). */ | 
 | 	n = (p - start) * bits_per_char + PyLong_SHIFT - 1; | 
 | 	if (n / bits_per_char < p - start) { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"int string too large to convert"); | 
 | 		return NULL; | 
 | 	} | 
 | 	n = n / PyLong_SHIFT; | 
 | 	z = _PyLong_New(n); | 
 | 	if (z == NULL) | 
 | 		return NULL; | 
 | 	/* Read string from right, and fill in long from left; i.e., | 
 | 	 * from least to most significant in both. | 
 | 	 */ | 
 | 	accum = 0; | 
 | 	bits_in_accum = 0; | 
 | 	pdigit = z->ob_digit; | 
 | 	while (--p >= start) { | 
 | 		int k = _PyLong_DigitValue[Py_CHARMASK(*p)]; | 
 | 		assert(k >= 0 && k < base); | 
 | 		accum |= (twodigits)(k << bits_in_accum); | 
 | 		bits_in_accum += bits_per_char; | 
 | 		if (bits_in_accum >= PyLong_SHIFT) { | 
 | 			*pdigit++ = (digit)(accum & PyLong_MASK); | 
 | 			assert(pdigit - z->ob_digit <= (int)n); | 
 | 			accum >>= PyLong_SHIFT; | 
 | 			bits_in_accum -= PyLong_SHIFT; | 
 | 			assert(bits_in_accum < PyLong_SHIFT); | 
 | 		} | 
 | 	} | 
 | 	if (bits_in_accum) { | 
 | 		assert(bits_in_accum <= PyLong_SHIFT); | 
 | 		*pdigit++ = (digit)accum; | 
 | 		assert(pdigit - z->ob_digit <= (int)n); | 
 | 	} | 
 | 	while (pdigit - z->ob_digit < n) | 
 | 		*pdigit++ = 0; | 
 | 	return long_normalize(z); | 
 | } | 
 |  | 
 | PyObject * | 
 | PyLong_FromString(char *str, char **pend, int base) | 
 | { | 
 | 	int sign = 1, error_if_nonzero = 0; | 
 | 	char *start, *orig_str = str; | 
 | 	PyLongObject *z = NULL; | 
 | 	PyObject *strobj; | 
 | 	Py_ssize_t slen; | 
 |  | 
 | 	if ((base != 0 && base < 2) || base > 36) { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"int() arg 2 must be >= 2 and <= 36"); | 
 | 		return NULL; | 
 | 	} | 
 | 	while (*str != '\0' && isspace(Py_CHARMASK(*str))) | 
 | 		str++; | 
 | 	if (*str == '+') | 
 | 		++str; | 
 | 	else if (*str == '-') { | 
 | 		++str; | 
 | 		sign = -1; | 
 | 	} | 
 | 	if (base == 0) { | 
 | 		if (str[0] != '0') | 
 | 			base = 10; | 
 | 		else if (str[1] == 'x' || str[1] == 'X') | 
 | 			base = 16; | 
 | 		else if (str[1] == 'o' || str[1] == 'O') | 
 | 			base = 8; | 
 | 		else if (str[1] == 'b' || str[1] == 'B') | 
 | 			base = 2; | 
 | 		else { | 
 | 			/* "old" (C-style) octal literal, now invalid. | 
 | 			   it might still be zero though */ | 
 | 			error_if_nonzero = 1; | 
 | 			base = 10; | 
 | 		} | 
 | 	} | 
 | 	if (str[0] == '0' && | 
 | 	    ((base == 16 && (str[1] == 'x' || str[1] == 'X')) || | 
 | 	     (base == 8  && (str[1] == 'o' || str[1] == 'O')) || | 
 | 	     (base == 2  && (str[1] == 'b' || str[1] == 'B')))) | 
 | 		str += 2; | 
 |  | 
 | 	start = str; | 
 | 	if ((base & (base - 1)) == 0) | 
 | 		z = long_from_binary_base(&str, base); | 
 | 	else { | 
 | /*** | 
 | Binary bases can be converted in time linear in the number of digits, because | 
 | Python's representation base is binary.  Other bases (including decimal!) use | 
 | the simple quadratic-time algorithm below, complicated by some speed tricks. | 
 |  | 
 | First some math:  the largest integer that can be expressed in N base-B digits | 
 | is B**N-1.  Consequently, if we have an N-digit input in base B, the worst- | 
 | case number of Python digits needed to hold it is the smallest integer n s.t. | 
 |  | 
 |     BASE**n-1 >= B**N-1  [or, adding 1 to both sides] | 
 |     BASE**n >= B**N      [taking logs to base BASE] | 
 |     n >= log(B**N)/log(BASE) = N * log(B)/log(BASE) | 
 |  | 
 | The static array log_base_BASE[base] == log(base)/log(BASE) so we can compute | 
 | this quickly.  A Python long with that much space is reserved near the start, | 
 | and the result is computed into it. | 
 |  | 
 | The input string is actually treated as being in base base**i (i.e., i digits | 
 | are processed at a time), where two more static arrays hold: | 
 |  | 
 |     convwidth_base[base] = the largest integer i such that base**i <= BASE | 
 |     convmultmax_base[base] = base ** convwidth_base[base] | 
 |  | 
 | The first of these is the largest i such that i consecutive input digits | 
 | must fit in a single Python digit.  The second is effectively the input | 
 | base we're really using. | 
 |  | 
 | Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base | 
 | convmultmax_base[base], the result is "simply" | 
 |  | 
 |    (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1 | 
 |  | 
 | where B = convmultmax_base[base]. | 
 |  | 
 | Error analysis:  as above, the number of Python digits `n` needed is worst- | 
 | case | 
 |  | 
 |     n >= N * log(B)/log(BASE) | 
 |  | 
 | where `N` is the number of input digits in base `B`.  This is computed via | 
 |  | 
 |     size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1; | 
 |  | 
 | below.  Two numeric concerns are how much space this can waste, and whether | 
 | the computed result can be too small.  To be concrete, assume BASE = 2**15, | 
 | which is the default (and it's unlikely anyone changes that). | 
 |  | 
 | Waste isn't a problem:  provided the first input digit isn't 0, the difference | 
 | between the worst-case input with N digits and the smallest input with N | 
 | digits is about a factor of B, but B is small compared to BASE so at most | 
 | one allocated Python digit can remain unused on that count.  If | 
 | N*log(B)/log(BASE) is mathematically an exact integer, then truncating that | 
 | and adding 1 returns a result 1 larger than necessary.  However, that can't | 
 | happen:  whenever B is a power of 2, long_from_binary_base() is called | 
 | instead, and it's impossible for B**i to be an integer power of 2**15 when | 
 | B is not a power of 2 (i.e., it's impossible for N*log(B)/log(BASE) to be | 
 | an exact integer when B is not a power of 2, since B**i has a prime factor | 
 | other than 2 in that case, but (2**15)**j's only prime factor is 2). | 
 |  | 
 | The computed result can be too small if the true value of N*log(B)/log(BASE) | 
 | is a little bit larger than an exact integer, but due to roundoff errors (in | 
 | computing log(B), log(BASE), their quotient, and/or multiplying that by N) | 
 | yields a numeric result a little less than that integer.  Unfortunately, "how | 
 | close can a transcendental function get to an integer over some range?" | 
 | questions are generally theoretically intractable.  Computer analysis via | 
 | continued fractions is practical:  expand log(B)/log(BASE) via continued | 
 | fractions, giving a sequence i/j of "the best" rational approximations.  Then | 
 | j*log(B)/log(BASE) is approximately equal to (the integer) i.  This shows that | 
 | we can get very close to being in trouble, but very rarely.  For example, | 
 | 76573 is a denominator in one of the continued-fraction approximations to | 
 | log(10)/log(2**15), and indeed: | 
 |  | 
 |     >>> log(10)/log(2**15)*76573 | 
 |     16958.000000654003 | 
 |  | 
 | is very close to an integer.  If we were working with IEEE single-precision, | 
 | rounding errors could kill us.  Finding worst cases in IEEE double-precision | 
 | requires better-than-double-precision log() functions, and Tim didn't bother. | 
 | Instead the code checks to see whether the allocated space is enough as each | 
 | new Python digit is added, and copies the whole thing to a larger long if not. | 
 | This should happen extremely rarely, and in fact I don't have a test case | 
 | that triggers it(!).  Instead the code was tested by artificially allocating | 
 | just 1 digit at the start, so that the copying code was exercised for every | 
 | digit beyond the first. | 
 | ***/ | 
 | 		register twodigits c;	/* current input character */ | 
 | 		Py_ssize_t size_z; | 
 | 		int i; | 
 | 		int convwidth; | 
 | 		twodigits convmultmax, convmult; | 
 | 		digit *pz, *pzstop; | 
 | 		char* scan; | 
 |  | 
 | 		static double log_base_BASE[37] = {0.0e0,}; | 
 | 		static int convwidth_base[37] = {0,}; | 
 | 		static twodigits convmultmax_base[37] = {0,}; | 
 |  | 
 | 		if (log_base_BASE[base] == 0.0) { | 
 | 			twodigits convmax = base; | 
 | 			int i = 1; | 
 |  | 
 | 			log_base_BASE[base] = log((double)base) / | 
 | 						log((double)PyLong_BASE); | 
 | 			for (;;) { | 
 | 				twodigits next = convmax * base; | 
 | 				if (next > PyLong_BASE) | 
 | 					break; | 
 | 				convmax = next; | 
 | 				++i; | 
 | 			} | 
 | 			convmultmax_base[base] = convmax; | 
 | 			assert(i > 0); | 
 | 			convwidth_base[base] = i; | 
 | 		} | 
 |  | 
 | 		/* Find length of the string of numeric characters. */ | 
 | 		scan = str; | 
 | 		while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base) | 
 | 			++scan; | 
 |  | 
 | 		/* Create a long object that can contain the largest possible | 
 | 		 * integer with this base and length.  Note that there's no | 
 | 		 * need to initialize z->ob_digit -- no slot is read up before | 
 | 		 * being stored into. | 
 | 		 */ | 
 | 		size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1; | 
 | 		/* Uncomment next line to test exceedingly rare copy code */ | 
 | 		/* size_z = 1; */ | 
 | 		assert(size_z > 0); | 
 | 		z = _PyLong_New(size_z); | 
 | 		if (z == NULL) | 
 | 			return NULL; | 
 | 		Py_SIZE(z) = 0; | 
 |  | 
 | 		/* `convwidth` consecutive input digits are treated as a single | 
 | 		 * digit in base `convmultmax`. | 
 | 		 */ | 
 | 		convwidth = convwidth_base[base]; | 
 | 		convmultmax = convmultmax_base[base]; | 
 |  | 
 | 		/* Work ;-) */ | 
 | 		while (str < scan) { | 
 | 			/* grab up to convwidth digits from the input string */ | 
 | 			c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)]; | 
 | 			for (i = 1; i < convwidth && str != scan; ++i, ++str) { | 
 | 				c = (twodigits)(c *  base + | 
 | 					_PyLong_DigitValue[Py_CHARMASK(*str)]); | 
 | 				assert(c < PyLong_BASE); | 
 | 			} | 
 |  | 
 | 			convmult = convmultmax; | 
 | 			/* Calculate the shift only if we couldn't get | 
 | 			 * convwidth digits. | 
 | 			 */ | 
 | 			if (i != convwidth) { | 
 | 				convmult = base; | 
 | 				for ( ; i > 1; --i) | 
 | 					convmult *= base; | 
 | 			} | 
 |  | 
 | 			/* Multiply z by convmult, and add c. */ | 
 | 			pz = z->ob_digit; | 
 | 			pzstop = pz + Py_SIZE(z); | 
 | 			for (; pz < pzstop; ++pz) { | 
 | 				c += (twodigits)*pz * convmult; | 
 | 				*pz = (digit)(c & PyLong_MASK); | 
 | 				c >>= PyLong_SHIFT; | 
 | 			} | 
 | 			/* carry off the current end? */ | 
 | 			if (c) { | 
 | 				assert(c < PyLong_BASE); | 
 | 				if (Py_SIZE(z) < size_z) { | 
 | 					*pz = (digit)c; | 
 | 					++Py_SIZE(z); | 
 | 				} | 
 | 				else { | 
 | 					PyLongObject *tmp; | 
 | 					/* Extremely rare.  Get more space. */ | 
 | 					assert(Py_SIZE(z) == size_z); | 
 | 					tmp = _PyLong_New(size_z + 1); | 
 | 					if (tmp == NULL) { | 
 | 						Py_DECREF(z); | 
 | 						return NULL; | 
 | 					} | 
 | 					memcpy(tmp->ob_digit, | 
 | 					       z->ob_digit, | 
 | 					       sizeof(digit) * size_z); | 
 | 					Py_DECREF(z); | 
 | 					z = tmp; | 
 | 					z->ob_digit[size_z] = (digit)c; | 
 | 					++size_z; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	if (z == NULL) | 
 | 		return NULL; | 
 | 	if (error_if_nonzero) { | 
 | 		/* reset the base to 0, else the exception message | 
 | 		   doesn't make too much sense */ | 
 | 		base = 0; | 
 | 		if (Py_SIZE(z) != 0) | 
 | 			goto onError; | 
 | 		/* there might still be other problems, therefore base | 
 | 		   remains zero here for the same reason */ | 
 | 	} | 
 | 	if (str == start) | 
 | 		goto onError; | 
 | 	if (sign < 0) | 
 | 		Py_SIZE(z) = -(Py_SIZE(z)); | 
 | 	if (*str == 'L' || *str == 'l') | 
 | 		str++; | 
 | 	while (*str && isspace(Py_CHARMASK(*str))) | 
 | 		str++; | 
 | 	if (*str != '\0') | 
 | 		goto onError; | 
 | 	if (pend) | 
 | 		*pend = str; | 
 | 	return (PyObject *) z; | 
 |  | 
 |  onError: | 
 | 	Py_XDECREF(z); | 
 | 	slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200; | 
 | 	strobj = PyUnicode_FromStringAndSize(orig_str, slen); | 
 | 	if (strobj == NULL) | 
 | 		return NULL; | 
 | 	PyErr_Format(PyExc_ValueError, | 
 | 		     "invalid literal for int() with base %d: %R", | 
 | 		     base, strobj); | 
 | 	Py_DECREF(strobj); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | PyObject * | 
 | PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base) | 
 | { | 
 | 	PyObject *result; | 
 | 	char *buffer = (char *)PyMem_MALLOC(length+1); | 
 |  | 
 | 	if (buffer == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	if (PyUnicode_EncodeDecimal(u, length, buffer, NULL)) { | 
 | 		PyMem_FREE(buffer); | 
 | 		return NULL; | 
 | 	} | 
 | 	result = PyLong_FromString(buffer, NULL, base); | 
 | 	PyMem_FREE(buffer); | 
 | 	return result; | 
 | } | 
 |  | 
 | /* forward */ | 
 | static PyLongObject *x_divrem | 
 | 	(PyLongObject *, PyLongObject *, PyLongObject **); | 
 | static PyObject *long_long(PyObject *v); | 
 | static int long_divrem(PyLongObject *, PyLongObject *, | 
 | 	PyLongObject **, PyLongObject **); | 
 |  | 
 | /* Long division with remainder, top-level routine */ | 
 |  | 
 | static int | 
 | long_divrem(PyLongObject *a, PyLongObject *b, | 
 | 	    PyLongObject **pdiv, PyLongObject **prem) | 
 | { | 
 | 	Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); | 
 | 	PyLongObject *z; | 
 |  | 
 | 	if (size_b == 0) { | 
 | 		PyErr_SetString(PyExc_ZeroDivisionError, | 
 | 				"integer division or modulo by zero"); | 
 | 		return -1; | 
 | 	} | 
 | 	if (size_a < size_b || | 
 | 	    (size_a == size_b && | 
 | 	     a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) { | 
 | 		/* |a| < |b|. */ | 
 | 		*pdiv = (PyLongObject*)PyLong_FromLong(0); | 
 | 		if (*pdiv == NULL) | 
 | 			return -1; | 
 | 		Py_INCREF(a); | 
 | 		*prem = (PyLongObject *) a; | 
 | 		return 0; | 
 | 	} | 
 | 	if (size_b == 1) { | 
 | 		digit rem = 0; | 
 | 		z = divrem1(a, b->ob_digit[0], &rem); | 
 | 		if (z == NULL) | 
 | 			return -1; | 
 | 		*prem = (PyLongObject *) PyLong_FromLong((long)rem); | 
 | 		if (*prem == NULL) { | 
 | 			Py_DECREF(z); | 
 | 			return -1; | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		z = x_divrem(a, b, prem); | 
 | 		if (z == NULL) | 
 | 			return -1; | 
 | 	} | 
 | 	/* Set the signs. | 
 | 	   The quotient z has the sign of a*b; | 
 | 	   the remainder r has the sign of a, | 
 | 	   so a = b*z + r. */ | 
 | 	if ((Py_SIZE(a) < 0) != (Py_SIZE(b) < 0)) | 
 | 		NEGATE(z); | 
 | 	if (Py_SIZE(a) < 0 && Py_SIZE(*prem) != 0) | 
 | 		NEGATE(*prem); | 
 | 	*pdiv = z; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Unsigned long division with remainder -- the algorithm */ | 
 |  | 
 | static PyLongObject * | 
 | x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem) | 
 | { | 
 | 	Py_ssize_t size_v = ABS(Py_SIZE(v1)), size_w = ABS(Py_SIZE(w1)); | 
 | 	digit d = (digit) ((twodigits)PyLong_BASE / (w1->ob_digit[size_w-1] + 1)); | 
 | 	PyLongObject *v = mul1(v1, d); | 
 | 	PyLongObject *w = mul1(w1, d); | 
 | 	PyLongObject *a; | 
 | 	Py_ssize_t j, k; | 
 |  | 
 | 	if (v == NULL || w == NULL) { | 
 | 		Py_XDECREF(v); | 
 | 		Py_XDECREF(w); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	assert(size_v >= size_w && size_w > 1); /* Assert checks by div() */ | 
 | 	assert(Py_REFCNT(v) == 1); /* Since v will be used as accumulator! */ | 
 | 	assert(size_w == ABS(Py_SIZE(w))); /* That's how d was calculated */ | 
 |  | 
 | 	size_v = ABS(Py_SIZE(v)); | 
 | 	k = size_v - size_w; | 
 | 	a = _PyLong_New(k + 1); | 
 |  | 
 | 	for (j = size_v; a != NULL && k >= 0; --j, --k) { | 
 | 		digit vj = (j >= size_v) ? 0 : v->ob_digit[j]; | 
 | 		twodigits q; | 
 | 		stwodigits carry = 0; | 
 | 		int i; | 
 |  | 
 | 		SIGCHECK({ | 
 | 			Py_DECREF(a); | 
 | 			a = NULL; | 
 | 			break; | 
 | 		}) | 
 | 		if (vj == w->ob_digit[size_w-1]) | 
 | 			q = PyLong_MASK; | 
 | 		else | 
 | 			q = (((twodigits)vj << PyLong_SHIFT) + v->ob_digit[j-1]) / | 
 | 				w->ob_digit[size_w-1]; | 
 |  | 
 | 		while (w->ob_digit[size_w-2]*q > | 
 | 				(( | 
 | 					((twodigits)vj << PyLong_SHIFT) | 
 | 					+ v->ob_digit[j-1] | 
 | 					- q*w->ob_digit[size_w-1] | 
 | 								) << PyLong_SHIFT) | 
 | 				+ v->ob_digit[j-2]) | 
 | 			--q; | 
 |  | 
 | 		for (i = 0; i < size_w && i+k < size_v; ++i) { | 
 | 			twodigits z = w->ob_digit[i] * q; | 
 | 			digit zz = (digit) (z >> PyLong_SHIFT); | 
 | 			carry += v->ob_digit[i+k] - z | 
 | 				+ ((twodigits)zz << PyLong_SHIFT); | 
 | 			v->ob_digit[i+k] = (digit)(carry & PyLong_MASK); | 
 | 			carry = Py_ARITHMETIC_RIGHT_SHIFT(BASE_TWODIGITS_TYPE, | 
 | 							  carry, PyLong_SHIFT); | 
 | 			carry -= zz; | 
 | 		} | 
 |  | 
 | 		if (i+k < size_v) { | 
 | 			carry += v->ob_digit[i+k]; | 
 | 			v->ob_digit[i+k] = 0; | 
 | 		} | 
 |  | 
 | 		if (carry == 0) | 
 | 			a->ob_digit[k] = (digit) q; | 
 | 		else { | 
 | 			assert(carry == -1); | 
 | 			a->ob_digit[k] = (digit) q-1; | 
 | 			carry = 0; | 
 | 			for (i = 0; i < size_w && i+k < size_v; ++i) { | 
 | 				carry += v->ob_digit[i+k] + w->ob_digit[i]; | 
 | 				v->ob_digit[i+k] = (digit)(carry & PyLong_MASK); | 
 | 				carry = Py_ARITHMETIC_RIGHT_SHIFT( | 
 | 						BASE_TWODIGITS_TYPE, | 
 | 						carry, PyLong_SHIFT); | 
 | 			} | 
 | 		} | 
 | 	} /* for j, k */ | 
 |  | 
 | 	if (a == NULL) | 
 | 		*prem = NULL; | 
 | 	else { | 
 | 		a = long_normalize(a); | 
 | 		*prem = divrem1(v, d, &d); | 
 | 		/* d receives the (unused) remainder */ | 
 | 		if (*prem == NULL) { | 
 | 			Py_DECREF(a); | 
 | 			a = NULL; | 
 | 		} | 
 | 	} | 
 | 	Py_DECREF(v); | 
 | 	Py_DECREF(w); | 
 | 	return a; | 
 | } | 
 |  | 
 | /* Methods */ | 
 |  | 
 | static void | 
 | long_dealloc(PyObject *v) | 
 | { | 
 | 	Py_TYPE(v)->tp_free(v); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_repr(PyObject *v) | 
 | { | 
 | 	return _PyLong_Format(v, 10); | 
 | } | 
 |  | 
 | static int | 
 | long_compare(PyLongObject *a, PyLongObject *b) | 
 | { | 
 | 	Py_ssize_t sign; | 
 |  | 
 | 	if (Py_SIZE(a) != Py_SIZE(b)) { | 
 | 		if (ABS(Py_SIZE(a)) == 0 && ABS(Py_SIZE(b)) == 0) | 
 | 			sign = 0; | 
 | 		else | 
 | 			sign = Py_SIZE(a) - Py_SIZE(b); | 
 | 	} | 
 | 	else { | 
 | 		Py_ssize_t i = ABS(Py_SIZE(a)); | 
 | 		while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i]) | 
 | 			; | 
 | 		if (i < 0) | 
 | 			sign = 0; | 
 | 		else { | 
 | 			sign = (int)a->ob_digit[i] - (int)b->ob_digit[i]; | 
 | 			if (Py_SIZE(a) < 0) | 
 | 				sign = -sign; | 
 | 		} | 
 | 	} | 
 | 	return sign < 0 ? -1 : sign > 0 ? 1 : 0; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_richcompare(PyObject *self, PyObject *other, int op) | 
 | { | 
 | 	PyObject *result; | 
 | 	CHECK_BINOP(self, other); | 
 | 	result = Py_CmpToRich(op, long_compare((PyLongObject*)self,  | 
 | 					       (PyLongObject*)other)); | 
 | 	return result; | 
 | } | 
 |  | 
 | static long | 
 | long_hash(PyLongObject *v) | 
 | { | 
 | 	long x; | 
 | 	Py_ssize_t i; | 
 | 	int sign; | 
 |  | 
 | 	/* This is designed so that Python ints and longs with the | 
 | 	   same value hash to the same value, otherwise comparisons | 
 | 	   of mapping keys will turn out weird */ | 
 | 	i = Py_SIZE(v); | 
 | 	switch(i) { | 
 | 	case -1: return v->ob_digit[0]==1 ? -2 : -v->ob_digit[0]; | 
 | 	case 0: return 0; | 
 | 	case 1: return v->ob_digit[0]; | 
 | 	} | 
 | 	sign = 1; | 
 | 	x = 0; | 
 | 	if (i < 0) { | 
 | 		sign = -1; | 
 | 		i = -(i); | 
 | 	} | 
 | #define LONG_BIT_PyLong_SHIFT	(8*sizeof(long) - PyLong_SHIFT) | 
 | 	/* The following loop produces a C long x such that (unsigned long)x | 
 | 	   is congruent to the absolute value of v modulo ULONG_MAX.  The | 
 | 	   resulting x is nonzero if and only if v is. */ | 
 | 	while (--i >= 0) { | 
 | 		/* Force a native long #-bits (32 or 64) circular shift */ | 
 | 		x = ((x << PyLong_SHIFT) & ~PyLong_MASK) | ((x >> LONG_BIT_PyLong_SHIFT) & PyLong_MASK); | 
 | 		x += v->ob_digit[i]; | 
 | 		/* If the addition above overflowed (thinking of x as | 
 | 		   unsigned), we compensate by incrementing.  This preserves | 
 | 		   the value modulo ULONG_MAX. */ | 
 | 		if ((unsigned long)x < v->ob_digit[i]) | 
 | 			x++; | 
 | 	} | 
 | #undef LONG_BIT_PyLong_SHIFT | 
 | 	x = x * sign; | 
 | 	if (x == -1) | 
 | 		x = -2; | 
 | 	return x; | 
 | } | 
 |  | 
 |  | 
 | /* Add the absolute values of two long integers. */ | 
 |  | 
 | static PyLongObject * | 
 | x_add(PyLongObject *a, PyLongObject *b) | 
 | { | 
 | 	Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); | 
 | 	PyLongObject *z; | 
 | 	int i; | 
 | 	digit carry = 0; | 
 |  | 
 | 	/* Ensure a is the larger of the two: */ | 
 | 	if (size_a < size_b) { | 
 | 		{ PyLongObject *temp = a; a = b; b = temp; } | 
 | 		{ Py_ssize_t size_temp = size_a; | 
 | 		  size_a = size_b; | 
 | 		  size_b = size_temp; } | 
 | 	} | 
 | 	z = _PyLong_New(size_a+1); | 
 | 	if (z == NULL) | 
 | 		return NULL; | 
 | 	for (i = 0; i < size_b; ++i) { | 
 | 		carry += a->ob_digit[i] + b->ob_digit[i]; | 
 | 		z->ob_digit[i] = carry & PyLong_MASK; | 
 | 		carry >>= PyLong_SHIFT; | 
 | 	} | 
 | 	for (; i < size_a; ++i) { | 
 | 		carry += a->ob_digit[i]; | 
 | 		z->ob_digit[i] = carry & PyLong_MASK; | 
 | 		carry >>= PyLong_SHIFT; | 
 | 	} | 
 | 	z->ob_digit[i] = carry; | 
 | 	return long_normalize(z); | 
 | } | 
 |  | 
 | /* Subtract the absolute values of two integers. */ | 
 |  | 
 | static PyLongObject * | 
 | x_sub(PyLongObject *a, PyLongObject *b) | 
 | { | 
 | 	Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); | 
 | 	PyLongObject *z; | 
 | 	Py_ssize_t i; | 
 | 	int sign = 1; | 
 | 	digit borrow = 0; | 
 |  | 
 | 	/* Ensure a is the larger of the two: */ | 
 | 	if (size_a < size_b) { | 
 | 		sign = -1; | 
 | 		{ PyLongObject *temp = a; a = b; b = temp; } | 
 | 		{ Py_ssize_t size_temp = size_a; | 
 | 		  size_a = size_b; | 
 | 		  size_b = size_temp; } | 
 | 	} | 
 | 	else if (size_a == size_b) { | 
 | 		/* Find highest digit where a and b differ: */ | 
 | 		i = size_a; | 
 | 		while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i]) | 
 | 			; | 
 | 		if (i < 0) | 
 | 			return _PyLong_New(0); | 
 | 		if (a->ob_digit[i] < b->ob_digit[i]) { | 
 | 			sign = -1; | 
 | 			{ PyLongObject *temp = a; a = b; b = temp; } | 
 | 		} | 
 | 		size_a = size_b = i+1; | 
 | 	} | 
 | 	z = _PyLong_New(size_a); | 
 | 	if (z == NULL) | 
 | 		return NULL; | 
 | 	for (i = 0; i < size_b; ++i) { | 
 | 		/* The following assumes unsigned arithmetic | 
 | 		   works module 2**N for some N>PyLong_SHIFT. */ | 
 | 		borrow = a->ob_digit[i] - b->ob_digit[i] - borrow; | 
 | 		z->ob_digit[i] = borrow & PyLong_MASK; | 
 | 		borrow >>= PyLong_SHIFT; | 
 | 		borrow &= 1; /* Keep only one sign bit */ | 
 | 	} | 
 | 	for (; i < size_a; ++i) { | 
 | 		borrow = a->ob_digit[i] - borrow; | 
 | 		z->ob_digit[i] = borrow & PyLong_MASK; | 
 | 		borrow >>= PyLong_SHIFT; | 
 | 		borrow &= 1; /* Keep only one sign bit */ | 
 | 	} | 
 | 	assert(borrow == 0); | 
 | 	if (sign < 0) | 
 | 		NEGATE(z); | 
 | 	return long_normalize(z); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_add(PyLongObject *a, PyLongObject *b) | 
 | { | 
 | 	PyLongObject *z; | 
 |  | 
 | 	CHECK_BINOP(a, b); | 
 |  | 
 | 	if (ABS(Py_SIZE(a)) <= 1 && ABS(Py_SIZE(b)) <= 1) { | 
 | 		PyObject *result = PyLong_FromLong(MEDIUM_VALUE(a) + | 
 | 						  MEDIUM_VALUE(b)); | 
 | 		return result; | 
 | 	} | 
 | 	if (Py_SIZE(a) < 0) { | 
 | 		if (Py_SIZE(b) < 0) { | 
 | 			z = x_add(a, b); | 
 | 			if (z != NULL && Py_SIZE(z) != 0) | 
 | 				Py_SIZE(z) = -(Py_SIZE(z)); | 
 | 		} | 
 | 		else | 
 | 			z = x_sub(b, a); | 
 | 	} | 
 | 	else { | 
 | 		if (Py_SIZE(b) < 0) | 
 | 			z = x_sub(a, b); | 
 | 		else | 
 | 			z = x_add(a, b); | 
 | 	} | 
 | 	return (PyObject *)z; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_sub(PyLongObject *a, PyLongObject *b) | 
 | { | 
 | 	PyLongObject *z; | 
 |  | 
 | 	CHECK_BINOP(a, b); | 
 |  | 
 | 	if (ABS(Py_SIZE(a)) <= 1 && ABS(Py_SIZE(b)) <= 1) { | 
 | 		PyObject* r; | 
 | 		r = PyLong_FromLong(MEDIUM_VALUE(a)-MEDIUM_VALUE(b)); | 
 | 		return r; | 
 | 	} | 
 | 	if (Py_SIZE(a) < 0) { | 
 | 		if (Py_SIZE(b) < 0) | 
 | 			z = x_sub(a, b); | 
 | 		else | 
 | 			z = x_add(a, b); | 
 | 		if (z != NULL && Py_SIZE(z) != 0) | 
 | 			Py_SIZE(z) = -(Py_SIZE(z)); | 
 | 	} | 
 | 	else { | 
 | 		if (Py_SIZE(b) < 0) | 
 | 			z = x_add(a, b); | 
 | 		else | 
 | 			z = x_sub(a, b); | 
 | 	} | 
 | 	return (PyObject *)z; | 
 | } | 
 |  | 
 | /* Grade school multiplication, ignoring the signs. | 
 |  * Returns the absolute value of the product, or NULL if error. | 
 |  */ | 
 | static PyLongObject * | 
 | x_mul(PyLongObject *a, PyLongObject *b) | 
 | { | 
 | 	PyLongObject *z; | 
 | 	Py_ssize_t size_a = ABS(Py_SIZE(a)); | 
 | 	Py_ssize_t size_b = ABS(Py_SIZE(b)); | 
 | 	Py_ssize_t i; | 
 |  | 
 |      	z = _PyLong_New(size_a + size_b); | 
 | 	if (z == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	memset(z->ob_digit, 0, Py_SIZE(z) * sizeof(digit)); | 
 | 	if (a == b) { | 
 | 		/* Efficient squaring per HAC, Algorithm 14.16: | 
 | 		 * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf | 
 | 		 * Gives slightly less than a 2x speedup when a == b, | 
 | 		 * via exploiting that each entry in the multiplication | 
 | 		 * pyramid appears twice (except for the size_a squares). | 
 | 		 */ | 
 | 		for (i = 0; i < size_a; ++i) { | 
 | 			twodigits carry; | 
 | 			twodigits f = a->ob_digit[i]; | 
 | 			digit *pz = z->ob_digit + (i << 1); | 
 | 			digit *pa = a->ob_digit + i + 1; | 
 | 			digit *paend = a->ob_digit + size_a; | 
 |  | 
 | 			SIGCHECK({ | 
 | 				Py_DECREF(z); | 
 | 				return NULL; | 
 | 			}) | 
 |  | 
 | 			carry = *pz + f * f; | 
 | 			*pz++ = (digit)(carry & PyLong_MASK); | 
 | 			carry >>= PyLong_SHIFT; | 
 | 			assert(carry <= PyLong_MASK); | 
 |  | 
 | 			/* Now f is added in twice in each column of the | 
 | 			 * pyramid it appears.  Same as adding f<<1 once. | 
 | 			 */ | 
 | 			f <<= 1; | 
 | 			while (pa < paend) { | 
 | 				carry += *pz + *pa++ * f; | 
 | 				*pz++ = (digit)(carry & PyLong_MASK); | 
 | 				carry >>= PyLong_SHIFT; | 
 | 				assert(carry <= (PyLong_MASK << 1)); | 
 | 			} | 
 | 			if (carry) { | 
 | 				carry += *pz; | 
 | 				*pz++ = (digit)(carry & PyLong_MASK); | 
 | 				carry >>= PyLong_SHIFT; | 
 | 			} | 
 | 			if (carry) | 
 | 				*pz += (digit)(carry & PyLong_MASK); | 
 | 			assert((carry >> PyLong_SHIFT) == 0); | 
 | 		} | 
 | 	} | 
 | 	else {	/* a is not the same as b -- gradeschool long mult */ | 
 | 		for (i = 0; i < size_a; ++i) { | 
 | 			twodigits carry = 0; | 
 | 			twodigits f = a->ob_digit[i]; | 
 | 			digit *pz = z->ob_digit + i; | 
 | 			digit *pb = b->ob_digit; | 
 | 			digit *pbend = b->ob_digit + size_b; | 
 |  | 
 | 			SIGCHECK({ | 
 | 				Py_DECREF(z); | 
 | 				return NULL; | 
 | 			}) | 
 |  | 
 | 			while (pb < pbend) { | 
 | 				carry += *pz + *pb++ * f; | 
 | 				*pz++ = (digit)(carry & PyLong_MASK); | 
 | 				carry >>= PyLong_SHIFT; | 
 | 				assert(carry <= PyLong_MASK); | 
 | 			} | 
 | 			if (carry) | 
 | 				*pz += (digit)(carry & PyLong_MASK); | 
 | 			assert((carry >> PyLong_SHIFT) == 0); | 
 | 		} | 
 | 	} | 
 | 	return long_normalize(z); | 
 | } | 
 |  | 
 | /* A helper for Karatsuba multiplication (k_mul). | 
 |    Takes a long "n" and an integer "size" representing the place to | 
 |    split, and sets low and high such that abs(n) == (high << size) + low, | 
 |    viewing the shift as being by digits.  The sign bit is ignored, and | 
 |    the return values are >= 0. | 
 |    Returns 0 on success, -1 on failure. | 
 | */ | 
 | static int | 
 | kmul_split(PyLongObject *n, Py_ssize_t size, PyLongObject **high, PyLongObject **low) | 
 | { | 
 | 	PyLongObject *hi, *lo; | 
 | 	Py_ssize_t size_lo, size_hi; | 
 | 	const Py_ssize_t size_n = ABS(Py_SIZE(n)); | 
 |  | 
 | 	size_lo = MIN(size_n, size); | 
 | 	size_hi = size_n - size_lo; | 
 |  | 
 | 	if ((hi = _PyLong_New(size_hi)) == NULL) | 
 | 		return -1; | 
 | 	if ((lo = _PyLong_New(size_lo)) == NULL) { | 
 | 		Py_DECREF(hi); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit)); | 
 | 	memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit)); | 
 |  | 
 | 	*high = long_normalize(hi); | 
 | 	*low = long_normalize(lo); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b); | 
 |  | 
 | /* Karatsuba multiplication.  Ignores the input signs, and returns the | 
 |  * absolute value of the product (or NULL if error). | 
 |  * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295). | 
 |  */ | 
 | static PyLongObject * | 
 | k_mul(PyLongObject *a, PyLongObject *b) | 
 | { | 
 | 	Py_ssize_t asize = ABS(Py_SIZE(a)); | 
 | 	Py_ssize_t bsize = ABS(Py_SIZE(b)); | 
 | 	PyLongObject *ah = NULL; | 
 | 	PyLongObject *al = NULL; | 
 | 	PyLongObject *bh = NULL; | 
 | 	PyLongObject *bl = NULL; | 
 | 	PyLongObject *ret = NULL; | 
 | 	PyLongObject *t1, *t2, *t3; | 
 | 	Py_ssize_t shift;	/* the number of digits we split off */ | 
 | 	Py_ssize_t i; | 
 |  | 
 | 	/* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl | 
 | 	 * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh  + ah*bh + al*bl | 
 | 	 * Then the original product is | 
 | 	 *     ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl | 
 | 	 * By picking X to be a power of 2, "*X" is just shifting, and it's | 
 | 	 * been reduced to 3 multiplies on numbers half the size. | 
 | 	 */ | 
 |  | 
 | 	/* We want to split based on the larger number; fiddle so that b | 
 | 	 * is largest. | 
 | 	 */ | 
 | 	if (asize > bsize) { | 
 | 		t1 = a; | 
 | 		a = b; | 
 | 		b = t1; | 
 |  | 
 | 		i = asize; | 
 | 		asize = bsize; | 
 | 		bsize = i; | 
 | 	} | 
 |  | 
 | 	/* Use gradeschool math when either number is too small. */ | 
 | 	i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF; | 
 | 	if (asize <= i) { | 
 | 		if (asize == 0) | 
 | 			return _PyLong_New(0); | 
 | 		else | 
 | 			return x_mul(a, b); | 
 | 	} | 
 |  | 
 | 	/* If a is small compared to b, splitting on b gives a degenerate | 
 | 	 * case with ah==0, and Karatsuba may be (even much) less efficient | 
 | 	 * than "grade school" then.  However, we can still win, by viewing | 
 | 	 * b as a string of "big digits", each of width a->ob_size.  That | 
 | 	 * leads to a sequence of balanced calls to k_mul. | 
 | 	 */ | 
 | 	if (2 * asize <= bsize) | 
 | 		return k_lopsided_mul(a, b); | 
 |  | 
 | 	/* Split a & b into hi & lo pieces. */ | 
 | 	shift = bsize >> 1; | 
 | 	if (kmul_split(a, shift, &ah, &al) < 0) goto fail; | 
 | 	assert(Py_SIZE(ah) > 0);	/* the split isn't degenerate */ | 
 |  | 
 | 	if (a == b) { | 
 | 		bh = ah; | 
 | 		bl = al; | 
 | 		Py_INCREF(bh); | 
 | 		Py_INCREF(bl); | 
 | 	} | 
 | 	else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail; | 
 |  | 
 | 	/* The plan: | 
 | 	 * 1. Allocate result space (asize + bsize digits:  that's always | 
 | 	 *    enough). | 
 | 	 * 2. Compute ah*bh, and copy into result at 2*shift. | 
 | 	 * 3. Compute al*bl, and copy into result at 0.  Note that this | 
 | 	 *    can't overlap with #2. | 
 | 	 * 4. Subtract al*bl from the result, starting at shift.  This may | 
 | 	 *    underflow (borrow out of the high digit), but we don't care: | 
 | 	 *    we're effectively doing unsigned arithmetic mod | 
 | 	 *    BASE**(sizea + sizeb), and so long as the *final* result fits, | 
 | 	 *    borrows and carries out of the high digit can be ignored. | 
 | 	 * 5. Subtract ah*bh from the result, starting at shift. | 
 | 	 * 6. Compute (ah+al)*(bh+bl), and add it into the result starting | 
 | 	 *    at shift. | 
 | 	 */ | 
 |  | 
 | 	/* 1. Allocate result space. */ | 
 | 	ret = _PyLong_New(asize + bsize); | 
 | 	if (ret == NULL) goto fail; | 
 | #ifdef Py_DEBUG | 
 | 	/* Fill with trash, to catch reference to uninitialized digits. */ | 
 | 	memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit)); | 
 | #endif | 
 |  | 
 | 	/* 2. t1 <- ah*bh, and copy into high digits of result. */ | 
 | 	if ((t1 = k_mul(ah, bh)) == NULL) goto fail; | 
 | 	assert(Py_SIZE(t1) >= 0); | 
 | 	assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret)); | 
 | 	memcpy(ret->ob_digit + 2*shift, t1->ob_digit, | 
 | 	       Py_SIZE(t1) * sizeof(digit)); | 
 |  | 
 | 	/* Zero-out the digits higher than the ah*bh copy. */ | 
 | 	i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1); | 
 | 	if (i) | 
 | 		memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0, | 
 | 		       i * sizeof(digit)); | 
 |  | 
 | 	/* 3. t2 <- al*bl, and copy into the low digits. */ | 
 | 	if ((t2 = k_mul(al, bl)) == NULL) { | 
 | 		Py_DECREF(t1); | 
 | 		goto fail; | 
 | 	} | 
 | 	assert(Py_SIZE(t2) >= 0); | 
 | 	assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */ | 
 | 	memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit)); | 
 |  | 
 | 	/* Zero out remaining digits. */ | 
 | 	i = 2*shift - Py_SIZE(t2);	/* number of uninitialized digits */ | 
 | 	if (i) | 
 | 		memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit)); | 
 |  | 
 | 	/* 4 & 5. Subtract ah*bh (t1) and al*bl (t2).  We do al*bl first | 
 | 	 * because it's fresher in cache. | 
 | 	 */ | 
 | 	i = Py_SIZE(ret) - shift;  /* # digits after shift */ | 
 | 	(void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2)); | 
 | 	Py_DECREF(t2); | 
 |  | 
 | 	(void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1)); | 
 | 	Py_DECREF(t1); | 
 |  | 
 | 	/* 6. t3 <- (ah+al)(bh+bl), and add into result. */ | 
 | 	if ((t1 = x_add(ah, al)) == NULL) goto fail; | 
 | 	Py_DECREF(ah); | 
 | 	Py_DECREF(al); | 
 | 	ah = al = NULL; | 
 |  | 
 | 	if (a == b) { | 
 | 		t2 = t1; | 
 | 		Py_INCREF(t2); | 
 | 	} | 
 | 	else if ((t2 = x_add(bh, bl)) == NULL) { | 
 | 		Py_DECREF(t1); | 
 | 		goto fail; | 
 | 	} | 
 | 	Py_DECREF(bh); | 
 | 	Py_DECREF(bl); | 
 | 	bh = bl = NULL; | 
 |  | 
 | 	t3 = k_mul(t1, t2); | 
 | 	Py_DECREF(t1); | 
 | 	Py_DECREF(t2); | 
 | 	if (t3 == NULL) goto fail; | 
 | 	assert(Py_SIZE(t3) >= 0); | 
 |  | 
 | 	/* Add t3.  It's not obvious why we can't run out of room here. | 
 | 	 * See the (*) comment after this function. | 
 | 	 */ | 
 | 	(void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3)); | 
 | 	Py_DECREF(t3); | 
 |  | 
 | 	return long_normalize(ret); | 
 |  | 
 |  fail: | 
 |  	Py_XDECREF(ret); | 
 | 	Py_XDECREF(ah); | 
 | 	Py_XDECREF(al); | 
 | 	Py_XDECREF(bh); | 
 | 	Py_XDECREF(bl); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* (*) Why adding t3 can't "run out of room" above. | 
 |  | 
 | Let f(x) mean the floor of x and c(x) mean the ceiling of x.  Some facts | 
 | to start with: | 
 |  | 
 | 1. For any integer i, i = c(i/2) + f(i/2).  In particular, | 
 |    bsize = c(bsize/2) + f(bsize/2). | 
 | 2. shift = f(bsize/2) | 
 | 3. asize <= bsize | 
 | 4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this | 
 |    routine, so asize > bsize/2 >= f(bsize/2) in this routine. | 
 |  | 
 | We allocated asize + bsize result digits, and add t3 into them at an offset | 
 | of shift.  This leaves asize+bsize-shift allocated digit positions for t3 | 
 | to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) = | 
 | asize + c(bsize/2) available digit positions. | 
 |  | 
 | bh has c(bsize/2) digits, and bl at most f(size/2) digits.  So bh+hl has | 
 | at most c(bsize/2) digits + 1 bit. | 
 |  | 
 | If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2) | 
 | digits, and al has at most f(bsize/2) digits in any case.  So ah+al has at | 
 | most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit. | 
 |  | 
 | The product (ah+al)*(bh+bl) therefore has at most | 
 |  | 
 |     c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits | 
 |  | 
 | and we have asize + c(bsize/2) available digit positions.  We need to show | 
 | this is always enough.  An instance of c(bsize/2) cancels out in both, so | 
 | the question reduces to whether asize digits is enough to hold | 
 | (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits.  If asize < bsize, | 
 | then we're asking whether asize digits >= f(bsize/2) digits + 2 bits.  By #4, | 
 | asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1 | 
 | digit is enough to hold 2 bits.  This is so since PyLong_SHIFT=15 >= 2.  If | 
 | asize == bsize, then we're asking whether bsize digits is enough to hold | 
 | c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits | 
 | is enough to hold 2 bits.  This is so if bsize >= 2, which holds because | 
 | bsize >= KARATSUBA_CUTOFF >= 2. | 
 |  | 
 | Note that since there's always enough room for (ah+al)*(bh+bl), and that's | 
 | clearly >= each of ah*bh and al*bl, there's always enough room to subtract | 
 | ah*bh and al*bl too. | 
 | */ | 
 |  | 
 | /* b has at least twice the digits of a, and a is big enough that Karatsuba | 
 |  * would pay off *if* the inputs had balanced sizes.  View b as a sequence | 
 |  * of slices, each with a->ob_size digits, and multiply the slices by a, | 
 |  * one at a time.  This gives k_mul balanced inputs to work with, and is | 
 |  * also cache-friendly (we compute one double-width slice of the result | 
 |  * at a time, then move on, never bactracking except for the helpful | 
 |  * single-width slice overlap between successive partial sums). | 
 |  */ | 
 | static PyLongObject * | 
 | k_lopsided_mul(PyLongObject *a, PyLongObject *b) | 
 | { | 
 | 	const Py_ssize_t asize = ABS(Py_SIZE(a)); | 
 | 	Py_ssize_t bsize = ABS(Py_SIZE(b)); | 
 | 	Py_ssize_t nbdone;	/* # of b digits already multiplied */ | 
 | 	PyLongObject *ret; | 
 | 	PyLongObject *bslice = NULL; | 
 |  | 
 | 	assert(asize > KARATSUBA_CUTOFF); | 
 | 	assert(2 * asize <= bsize); | 
 |  | 
 | 	/* Allocate result space, and zero it out. */ | 
 | 	ret = _PyLong_New(asize + bsize); | 
 | 	if (ret == NULL) | 
 | 		return NULL; | 
 | 	memset(ret->ob_digit, 0, Py_SIZE(ret) * sizeof(digit)); | 
 |  | 
 | 	/* Successive slices of b are copied into bslice. */ | 
 | 	bslice = _PyLong_New(asize); | 
 | 	if (bslice == NULL) | 
 | 		goto fail; | 
 |  | 
 | 	nbdone = 0; | 
 | 	while (bsize > 0) { | 
 | 		PyLongObject *product; | 
 | 		const Py_ssize_t nbtouse = MIN(bsize, asize); | 
 |  | 
 | 		/* Multiply the next slice of b by a. */ | 
 | 		memcpy(bslice->ob_digit, b->ob_digit + nbdone, | 
 | 		       nbtouse * sizeof(digit)); | 
 | 		Py_SIZE(bslice) = nbtouse; | 
 | 		product = k_mul(a, bslice); | 
 | 		if (product == NULL) | 
 | 			goto fail; | 
 |  | 
 | 		/* Add into result. */ | 
 | 		(void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone, | 
 | 			     product->ob_digit, Py_SIZE(product)); | 
 | 		Py_DECREF(product); | 
 |  | 
 | 		bsize -= nbtouse; | 
 | 		nbdone += nbtouse; | 
 | 	} | 
 |  | 
 | 	Py_DECREF(bslice); | 
 | 	return long_normalize(ret); | 
 |  | 
 |  fail: | 
 | 	Py_DECREF(ret); | 
 | 	Py_XDECREF(bslice); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_mul(PyLongObject *a, PyLongObject *b) | 
 | { | 
 | 	PyLongObject *z; | 
 |  | 
 | 	CHECK_BINOP(a, b); | 
 |  | 
 | 	if (ABS(Py_SIZE(a)) <= 1 && ABS(Py_SIZE(b)) <= 1) { | 
 | 		PyObject *r; | 
 | 		r = PyLong_FromLong(MEDIUM_VALUE(a)*MEDIUM_VALUE(b)); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	z = k_mul(a, b); | 
 | 	/* Negate if exactly one of the inputs is negative. */ | 
 | 	if (((Py_SIZE(a) ^ Py_SIZE(b)) < 0) && z) | 
 | 		NEGATE(z); | 
 | 	return (PyObject *)z; | 
 | } | 
 |  | 
 | /* The / and % operators are now defined in terms of divmod(). | 
 |    The expression a mod b has the value a - b*floor(a/b). | 
 |    The long_divrem function gives the remainder after division of | 
 |    |a| by |b|, with the sign of a.  This is also expressed | 
 |    as a - b*trunc(a/b), if trunc truncates towards zero. | 
 |    Some examples: | 
 |    	 a	 b	a rem b		a mod b | 
 |    	 13	 10	 3		 3 | 
 |    	-13	 10	-3		 7 | 
 |    	 13	-10	 3		-7 | 
 |    	-13	-10	-3		-3 | 
 |    So, to get from rem to mod, we have to add b if a and b | 
 |    have different signs.  We then subtract one from the 'div' | 
 |    part of the outcome to keep the invariant intact. */ | 
 |  | 
 | /* Compute | 
 |  *     *pdiv, *pmod = divmod(v, w) | 
 |  * NULL can be passed for pdiv or pmod, in which case that part of | 
 |  * the result is simply thrown away.  The caller owns a reference to | 
 |  * each of these it requests (does not pass NULL for). | 
 |  */ | 
 | static int | 
 | l_divmod(PyLongObject *v, PyLongObject *w, | 
 | 	 PyLongObject **pdiv, PyLongObject **pmod) | 
 | { | 
 | 	PyLongObject *div, *mod; | 
 |  | 
 | 	if (long_divrem(v, w, &div, &mod) < 0) | 
 | 		return -1; | 
 | 	if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) || | 
 | 	    (Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) { | 
 | 		PyLongObject *temp; | 
 | 		PyLongObject *one; | 
 | 		temp = (PyLongObject *) long_add(mod, w); | 
 | 		Py_DECREF(mod); | 
 | 		mod = temp; | 
 | 		if (mod == NULL) { | 
 | 			Py_DECREF(div); | 
 | 			return -1; | 
 | 		} | 
 | 		one = (PyLongObject *) PyLong_FromLong(1L); | 
 | 		if (one == NULL || | 
 | 		    (temp = (PyLongObject *) long_sub(div, one)) == NULL) { | 
 | 			Py_DECREF(mod); | 
 | 			Py_DECREF(div); | 
 | 			Py_XDECREF(one); | 
 | 			return -1; | 
 | 		} | 
 | 		Py_DECREF(one); | 
 | 		Py_DECREF(div); | 
 | 		div = temp; | 
 | 	} | 
 | 	if (pdiv != NULL) | 
 | 		*pdiv = div; | 
 | 	else | 
 | 		Py_DECREF(div); | 
 |  | 
 | 	if (pmod != NULL) | 
 | 		*pmod = mod; | 
 | 	else | 
 | 		Py_DECREF(mod); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_div(PyObject *a, PyObject *b) | 
 | { | 
 | 	PyLongObject *div; | 
 |  | 
 | 	CHECK_BINOP(a, b); | 
 | 	if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, NULL) < 0) | 
 | 		div = NULL; | 
 | 	return (PyObject *)div; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_true_divide(PyObject *a, PyObject *b) | 
 | { | 
 | 	double ad, bd; | 
 | 	int failed, aexp = -1, bexp = -1; | 
 |  | 
 | 	CHECK_BINOP(a, b); | 
 | 	ad = _PyLong_AsScaledDouble((PyObject *)a, &aexp); | 
 | 	bd = _PyLong_AsScaledDouble((PyObject *)b, &bexp); | 
 | 	failed = (ad == -1.0 || bd == -1.0) && PyErr_Occurred(); | 
 | 	if (failed) | 
 | 		return NULL; | 
 | 	/* 'aexp' and 'bexp' were initialized to -1 to silence gcc-4.0.x, | 
 | 	   but should really be set correctly after sucessful calls to | 
 | 	   _PyLong_AsScaledDouble() */ | 
 | 	assert(aexp >= 0 && bexp >= 0); | 
 |  | 
 | 	if (bd == 0.0) { | 
 | 		PyErr_SetString(PyExc_ZeroDivisionError, | 
 | 			"int division or modulo by zero"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* True value is very close to ad/bd * 2**(PyLong_SHIFT*(aexp-bexp)) */ | 
 | 	ad /= bd;	/* overflow/underflow impossible here */ | 
 | 	aexp -= bexp; | 
 | 	if (aexp > INT_MAX / PyLong_SHIFT) | 
 | 		goto overflow; | 
 | 	else if (aexp < -(INT_MAX / PyLong_SHIFT)) | 
 | 		return PyFloat_FromDouble(0.0);	/* underflow to 0 */ | 
 | 	errno = 0; | 
 | 	ad = ldexp(ad, aexp * PyLong_SHIFT); | 
 | 	if (Py_OVERFLOWED(ad)) /* ignore underflow to 0.0 */ | 
 | 		goto overflow; | 
 | 	return PyFloat_FromDouble(ad); | 
 |  | 
 | overflow: | 
 | 	PyErr_SetString(PyExc_OverflowError, | 
 | 		"int/int too large for a float"); | 
 | 	return NULL; | 
 |  | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_mod(PyObject *a, PyObject *b) | 
 | { | 
 | 	PyLongObject *mod; | 
 | 	 | 
 | 	CHECK_BINOP(a, b); | 
 |  | 
 | 	if (l_divmod((PyLongObject*)a, (PyLongObject*)b, NULL, &mod) < 0) | 
 | 		mod = NULL; | 
 | 	return (PyObject *)mod; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_divmod(PyObject *a, PyObject *b) | 
 | { | 
 | 	PyLongObject *div, *mod; | 
 | 	PyObject *z; | 
 |  | 
 | 	CHECK_BINOP(a, b); | 
 |  | 
 | 	if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, &mod) < 0) { | 
 | 		return NULL; | 
 | 	} | 
 | 	z = PyTuple_New(2); | 
 | 	if (z != NULL) { | 
 | 		PyTuple_SetItem(z, 0, (PyObject *) div); | 
 | 		PyTuple_SetItem(z, 1, (PyObject *) mod); | 
 | 	} | 
 | 	else { | 
 | 		Py_DECREF(div); | 
 | 		Py_DECREF(mod); | 
 | 	} | 
 | 	return z; | 
 | } | 
 |  | 
 | /* pow(v, w, x) */ | 
 | static PyObject * | 
 | long_pow(PyObject *v, PyObject *w, PyObject *x) | 
 | { | 
 | 	PyLongObject *a, *b, *c; /* a,b,c = v,w,x */ | 
 | 	int negativeOutput = 0;  /* if x<0 return negative output */ | 
 |  | 
 | 	PyLongObject *z = NULL;  /* accumulated result */ | 
 | 	Py_ssize_t i, j, k;             /* counters */ | 
 | 	PyLongObject *temp = NULL; | 
 |  | 
 | 	/* 5-ary values.  If the exponent is large enough, table is | 
 | 	 * precomputed so that table[i] == a**i % c for i in range(32). | 
 | 	 */ | 
 | 	PyLongObject *table[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | 
 | 				   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | 
 |  | 
 | 	/* a, b, c = v, w, x */ | 
 | 	CHECK_BINOP(v, w); | 
 | 	a = (PyLongObject*)v; Py_INCREF(a); | 
 | 	b = (PyLongObject*)w; Py_INCREF(b); | 
 | 	if (PyLong_Check(x)) { | 
 | 		c = (PyLongObject *)x; | 
 | 		Py_INCREF(x); | 
 | 	} | 
 | 	else if (x == Py_None) | 
 | 		c = NULL; | 
 | 	else { | 
 | 		Py_DECREF(a); | 
 | 		Py_DECREF(b); | 
 | 		Py_INCREF(Py_NotImplemented); | 
 | 		return Py_NotImplemented; | 
 | 	} | 
 |  | 
 | 	if (Py_SIZE(b) < 0) {  /* if exponent is negative */ | 
 | 		if (c) { | 
 | 			PyErr_SetString(PyExc_TypeError, "pow() 2nd argument " | 
 | 			    "cannot be negative when 3rd argument specified"); | 
 | 			goto Error; | 
 | 		} | 
 | 		else { | 
 | 			/* else return a float.  This works because we know | 
 | 			   that this calls float_pow() which converts its | 
 | 			   arguments to double. */ | 
 | 			Py_DECREF(a); | 
 | 			Py_DECREF(b); | 
 | 			return PyFloat_Type.tp_as_number->nb_power(v, w, x); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (c) { | 
 | 		/* if modulus == 0: | 
 | 		       raise ValueError() */ | 
 | 		if (Py_SIZE(c) == 0) { | 
 | 			PyErr_SetString(PyExc_ValueError, | 
 | 					"pow() 3rd argument cannot be 0"); | 
 | 			goto Error; | 
 | 		} | 
 |  | 
 | 		/* if modulus < 0: | 
 | 		       negativeOutput = True | 
 | 		       modulus = -modulus */ | 
 | 		if (Py_SIZE(c) < 0) { | 
 | 			negativeOutput = 1; | 
 | 			temp = (PyLongObject *)_PyLong_Copy(c); | 
 | 			if (temp == NULL) | 
 | 				goto Error; | 
 | 			Py_DECREF(c); | 
 | 			c = temp; | 
 | 			temp = NULL; | 
 | 			NEGATE(c); | 
 | 		} | 
 |  | 
 | 		/* if modulus == 1: | 
 | 		       return 0 */ | 
 | 		if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) { | 
 | 			z = (PyLongObject *)PyLong_FromLong(0L); | 
 | 			goto Done; | 
 | 		} | 
 |  | 
 | 		/* if base < 0: | 
 | 		       base = base % modulus | 
 | 		   Having the base positive just makes things easier. */ | 
 | 		if (Py_SIZE(a) < 0) { | 
 | 			if (l_divmod(a, c, NULL, &temp) < 0) | 
 | 				goto Error; | 
 | 			Py_DECREF(a); | 
 | 			a = temp; | 
 | 			temp = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* At this point a, b, and c are guaranteed non-negative UNLESS | 
 | 	   c is NULL, in which case a may be negative. */ | 
 |  | 
 | 	z = (PyLongObject *)PyLong_FromLong(1L); | 
 | 	if (z == NULL) | 
 | 		goto Error; | 
 |  | 
 | 	/* Perform a modular reduction, X = X % c, but leave X alone if c | 
 | 	 * is NULL. | 
 | 	 */ | 
 | #define REDUCE(X)					\ | 
 | 	if (c != NULL) {				\ | 
 | 		if (l_divmod(X, c, NULL, &temp) < 0)	\ | 
 | 			goto Error;			\ | 
 | 		Py_XDECREF(X);				\ | 
 | 		X = temp;				\ | 
 | 		temp = NULL;				\ | 
 | 	} | 
 |  | 
 | 	/* Multiply two values, then reduce the result: | 
 | 	   result = X*Y % c.  If c is NULL, skip the mod. */ | 
 | #define MULT(X, Y, result)				\ | 
 | {							\ | 
 | 	temp = (PyLongObject *)long_mul(X, Y);		\ | 
 | 	if (temp == NULL)				\ | 
 | 		goto Error;				\ | 
 | 	Py_XDECREF(result);				\ | 
 | 	result = temp;					\ | 
 | 	temp = NULL;					\ | 
 | 	REDUCE(result)					\ | 
 | } | 
 |  | 
 | 	if (Py_SIZE(b) <= FIVEARY_CUTOFF) { | 
 | 		/* Left-to-right binary exponentiation (HAC Algorithm 14.79) */ | 
 | 		/* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf    */ | 
 | 		for (i = Py_SIZE(b) - 1; i >= 0; --i) { | 
 | 			digit bi = b->ob_digit[i]; | 
 |  | 
 | 			for (j = 1 << (PyLong_SHIFT-1); j != 0; j >>= 1) { | 
 | 				MULT(z, z, z) | 
 | 				if (bi & j) | 
 | 					MULT(z, a, z) | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		/* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */ | 
 | 		Py_INCREF(z);	/* still holds 1L */ | 
 | 		table[0] = z; | 
 | 		for (i = 1; i < 32; ++i) | 
 | 			MULT(table[i-1], a, table[i]) | 
 |  | 
 | 		for (i = Py_SIZE(b) - 1; i >= 0; --i) { | 
 | 			const digit bi = b->ob_digit[i]; | 
 |  | 
 | 			for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) { | 
 | 				const int index = (bi >> j) & 0x1f; | 
 | 				for (k = 0; k < 5; ++k) | 
 | 					MULT(z, z, z) | 
 | 				if (index) | 
 | 					MULT(z, table[index], z) | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (negativeOutput && (Py_SIZE(z) != 0)) { | 
 | 		temp = (PyLongObject *)long_sub(z, c); | 
 | 		if (temp == NULL) | 
 | 			goto Error; | 
 | 		Py_DECREF(z); | 
 | 		z = temp; | 
 | 		temp = NULL; | 
 | 	} | 
 | 	goto Done; | 
 |  | 
 |  Error: | 
 |  	if (z != NULL) { | 
 |  		Py_DECREF(z); | 
 |  		z = NULL; | 
 |  	} | 
 | 	/* fall through */ | 
 |  Done: | 
 | 	if (Py_SIZE(b) > FIVEARY_CUTOFF) { | 
 | 		for (i = 0; i < 32; ++i) | 
 | 			Py_XDECREF(table[i]); | 
 | 	} | 
 | 	Py_DECREF(a); | 
 | 	Py_DECREF(b); | 
 | 	Py_XDECREF(c); | 
 | 	Py_XDECREF(temp); | 
 | 	return (PyObject *)z; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_invert(PyLongObject *v) | 
 | { | 
 | 	/* Implement ~x as -(x+1) */ | 
 | 	PyLongObject *x; | 
 | 	PyLongObject *w; | 
 | 	if (ABS(Py_SIZE(v)) <=1) | 
 | 		return PyLong_FromLong(-(MEDIUM_VALUE(v)+1)); | 
 | 	w = (PyLongObject *)PyLong_FromLong(1L); | 
 | 	if (w == NULL) | 
 | 		return NULL; | 
 | 	x = (PyLongObject *) long_add(v, w); | 
 | 	Py_DECREF(w); | 
 | 	if (x == NULL) | 
 | 		return NULL; | 
 | 	Py_SIZE(x) = -(Py_SIZE(x)); | 
 | 	return (PyObject *)x; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_neg(PyLongObject *v) | 
 | { | 
 | 	PyLongObject *z; | 
 | 	if (ABS(Py_SIZE(v)) <= 1) | 
 | 		return PyLong_FromLong(-MEDIUM_VALUE(v)); | 
 | 	z = (PyLongObject *)_PyLong_Copy(v); | 
 | 	if (z != NULL) | 
 | 		Py_SIZE(z) = -(Py_SIZE(v)); | 
 | 	return (PyObject *)z; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_abs(PyLongObject *v) | 
 | { | 
 | 	if (Py_SIZE(v) < 0) | 
 | 		return long_neg(v); | 
 | 	else | 
 | 		return long_long((PyObject *)v); | 
 | } | 
 |  | 
 | static int | 
 | long_bool(PyLongObject *v) | 
 | { | 
 | 	return ABS(Py_SIZE(v)) != 0; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_rshift(PyLongObject *a, PyLongObject *b) | 
 | { | 
 | 	PyLongObject *z = NULL; | 
 | 	long shiftby; | 
 | 	Py_ssize_t newsize, wordshift, loshift, hishift, i, j; | 
 | 	digit lomask, himask; | 
 |  | 
 | 	CHECK_BINOP(a, b); | 
 |  | 
 | 	if (Py_SIZE(a) < 0) { | 
 | 		/* Right shifting negative numbers is harder */ | 
 | 		PyLongObject *a1, *a2; | 
 | 		a1 = (PyLongObject *) long_invert(a); | 
 | 		if (a1 == NULL) | 
 | 			goto rshift_error; | 
 | 		a2 = (PyLongObject *) long_rshift(a1, b); | 
 | 		Py_DECREF(a1); | 
 | 		if (a2 == NULL) | 
 | 			goto rshift_error; | 
 | 		z = (PyLongObject *) long_invert(a2); | 
 | 		Py_DECREF(a2); | 
 | 	} | 
 | 	else { | 
 |  | 
 | 		shiftby = PyLong_AsLong((PyObject *)b); | 
 | 		if (shiftby == -1L && PyErr_Occurred()) | 
 | 			goto rshift_error; | 
 | 		if (shiftby < 0) { | 
 | 			PyErr_SetString(PyExc_ValueError, | 
 | 					"negative shift count"); | 
 | 			goto rshift_error; | 
 | 		} | 
 | 		wordshift = shiftby / PyLong_SHIFT; | 
 | 		newsize = ABS(Py_SIZE(a)) - wordshift; | 
 | 		if (newsize <= 0) { | 
 | 			z = _PyLong_New(0); | 
 | 			return (PyObject *)z; | 
 | 		} | 
 | 		loshift = shiftby % PyLong_SHIFT; | 
 | 		hishift = PyLong_SHIFT - loshift; | 
 | 		lomask = ((digit)1 << hishift) - 1; | 
 | 		himask = PyLong_MASK ^ lomask; | 
 | 		z = _PyLong_New(newsize); | 
 | 		if (z == NULL) | 
 | 			goto rshift_error; | 
 | 		if (Py_SIZE(a) < 0) | 
 | 			Py_SIZE(z) = -(Py_SIZE(z)); | 
 | 		for (i = 0, j = wordshift; i < newsize; i++, j++) { | 
 | 			z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask; | 
 | 			if (i+1 < newsize) | 
 | 				z->ob_digit[i] |= | 
 | 				  (a->ob_digit[j+1] << hishift) & himask; | 
 | 		} | 
 | 		z = long_normalize(z); | 
 | 	} | 
 | rshift_error: | 
 | 	return (PyObject *) z; | 
 |  | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_lshift(PyObject *v, PyObject *w) | 
 | { | 
 | 	/* This version due to Tim Peters */ | 
 | 	PyLongObject *a = (PyLongObject*)v; | 
 | 	PyLongObject *b = (PyLongObject*)w; | 
 | 	PyLongObject *z = NULL; | 
 | 	long shiftby; | 
 | 	Py_ssize_t oldsize, newsize, wordshift, remshift, i, j; | 
 | 	twodigits accum; | 
 |  | 
 | 	CHECK_BINOP(a, b); | 
 |  | 
 | 	shiftby = PyLong_AsLong((PyObject *)b); | 
 | 	if (shiftby == -1L && PyErr_Occurred()) | 
 | 		goto lshift_error; | 
 | 	if (shiftby < 0) { | 
 | 		PyErr_SetString(PyExc_ValueError, "negative shift count"); | 
 | 		goto lshift_error; | 
 | 	} | 
 | 	if ((long)(int)shiftby != shiftby) { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"outrageous left shift count"); | 
 | 		goto lshift_error; | 
 | 	} | 
 | 	/* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */ | 
 | 	wordshift = (int)shiftby / PyLong_SHIFT; | 
 | 	remshift  = (int)shiftby - wordshift * PyLong_SHIFT; | 
 |  | 
 | 	oldsize = ABS(Py_SIZE(a)); | 
 | 	newsize = oldsize + wordshift; | 
 | 	if (remshift) | 
 | 		++newsize; | 
 | 	z = _PyLong_New(newsize); | 
 | 	if (z == NULL) | 
 | 		goto lshift_error; | 
 | 	if (Py_SIZE(a) < 0) | 
 | 		NEGATE(z); | 
 | 	for (i = 0; i < wordshift; i++) | 
 | 		z->ob_digit[i] = 0; | 
 | 	accum = 0; | 
 | 	for (i = wordshift, j = 0; j < oldsize; i++, j++) { | 
 | 		accum |= (twodigits)a->ob_digit[j] << remshift; | 
 | 		z->ob_digit[i] = (digit)(accum & PyLong_MASK); | 
 | 		accum >>= PyLong_SHIFT; | 
 | 	} | 
 | 	if (remshift) | 
 | 		z->ob_digit[newsize-1] = (digit)accum; | 
 | 	else | 
 | 		assert(!accum); | 
 | 	z = long_normalize(z); | 
 | lshift_error: | 
 | 	return (PyObject *) z; | 
 | } | 
 |  | 
 |  | 
 | /* Bitwise and/xor/or operations */ | 
 |  | 
 | static PyObject * | 
 | long_bitwise(PyLongObject *a, | 
 | 	     int op,  /* '&', '|', '^' */ | 
 | 	     PyLongObject *b) | 
 | { | 
 | 	digit maska, maskb; /* 0 or PyLong_MASK */ | 
 | 	int negz; | 
 | 	Py_ssize_t size_a, size_b, size_z; | 
 | 	PyLongObject *z; | 
 | 	int i; | 
 | 	digit diga, digb; | 
 | 	PyObject *v; | 
 |  | 
 | 	if (Py_SIZE(a) < 0) { | 
 | 		a = (PyLongObject *) long_invert(a); | 
 | 		if (a == NULL) | 
 | 			return NULL; | 
 | 		maska = PyLong_MASK; | 
 | 	} | 
 | 	else { | 
 | 		Py_INCREF(a); | 
 | 		maska = 0; | 
 | 	} | 
 | 	if (Py_SIZE(b) < 0) { | 
 | 		b = (PyLongObject *) long_invert(b); | 
 | 		if (b == NULL) { | 
 | 			Py_DECREF(a); | 
 | 			return NULL; | 
 | 		} | 
 | 		maskb = PyLong_MASK; | 
 | 	} | 
 | 	else { | 
 | 		Py_INCREF(b); | 
 | 		maskb = 0; | 
 | 	} | 
 |  | 
 | 	negz = 0; | 
 | 	switch (op) { | 
 | 	case '^': | 
 | 		if (maska != maskb) { | 
 | 			maska ^= PyLong_MASK; | 
 | 			negz = -1; | 
 | 		} | 
 | 		break; | 
 | 	case '&': | 
 | 		if (maska && maskb) { | 
 | 			op = '|'; | 
 | 			maska ^= PyLong_MASK; | 
 | 			maskb ^= PyLong_MASK; | 
 | 			negz = -1; | 
 | 		} | 
 | 		break; | 
 | 	case '|': | 
 | 		if (maska || maskb) { | 
 | 			op = '&'; | 
 | 			maska ^= PyLong_MASK; | 
 | 			maskb ^= PyLong_MASK; | 
 | 			negz = -1; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* JRH: The original logic here was to allocate the result value (z) | 
 | 	   as the longer of the two operands.  However, there are some cases | 
 | 	   where the result is guaranteed to be shorter than that: AND of two | 
 | 	   positives, OR of two negatives: use the shorter number.  AND with | 
 | 	   mixed signs: use the positive number.  OR with mixed signs: use the | 
 | 	   negative number.  After the transformations above, op will be '&' | 
 | 	   iff one of these cases applies, and mask will be non-0 for operands | 
 | 	   whose length should be ignored. | 
 | 	*/ | 
 |  | 
 | 	size_a = Py_SIZE(a); | 
 | 	size_b = Py_SIZE(b); | 
 | 	size_z = op == '&' | 
 | 		? (maska | 
 | 		   ? size_b | 
 | 		   : (maskb ? size_a : MIN(size_a, size_b))) | 
 | 		: MAX(size_a, size_b); | 
 | 	z = _PyLong_New(size_z); | 
 | 	if (z == NULL) { | 
 | 		Py_DECREF(a); | 
 | 		Py_DECREF(b); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < size_z; ++i) { | 
 | 		diga = (i < size_a ? a->ob_digit[i] : 0) ^ maska; | 
 | 		digb = (i < size_b ? b->ob_digit[i] : 0) ^ maskb; | 
 | 		switch (op) { | 
 | 		case '&': z->ob_digit[i] = diga & digb; break; | 
 | 		case '|': z->ob_digit[i] = diga | digb; break; | 
 | 		case '^': z->ob_digit[i] = diga ^ digb; break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	Py_DECREF(a); | 
 | 	Py_DECREF(b); | 
 | 	z = long_normalize(z); | 
 | 	if (negz == 0) | 
 | 		return (PyObject *) z; | 
 | 	v = long_invert(z); | 
 | 	Py_DECREF(z); | 
 | 	return v; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_and(PyObject *a, PyObject *b) | 
 | { | 
 | 	PyObject *c; | 
 | 	CHECK_BINOP(a, b); | 
 | 	c = long_bitwise((PyLongObject*)a, '&', (PyLongObject*)b); | 
 | 	return c; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_xor(PyObject *a, PyObject *b) | 
 | { | 
 | 	PyObject *c; | 
 | 	CHECK_BINOP(a, b); | 
 | 	c = long_bitwise((PyLongObject*)a, '^', (PyLongObject*)b); | 
 | 	return c; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_or(PyObject *a, PyObject *b) | 
 | { | 
 | 	PyObject *c; | 
 | 	CHECK_BINOP(a, b); | 
 | 	c = long_bitwise((PyLongObject*)a, '|', (PyLongObject*)b); | 
 | 	return c; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_long(PyObject *v) | 
 | { | 
 | 	if (PyLong_CheckExact(v)) | 
 | 		Py_INCREF(v); | 
 | 	else | 
 | 		v = _PyLong_Copy((PyLongObject *)v); | 
 | 	return v; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_float(PyObject *v) | 
 | { | 
 | 	double result; | 
 | 	result = PyLong_AsDouble(v); | 
 | 	if (result == -1.0 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	return PyFloat_FromDouble(result); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds); | 
 |  | 
 | static PyObject * | 
 | long_new(PyTypeObject *type, PyObject *args, PyObject *kwds) | 
 | { | 
 | 	PyObject *x = NULL; | 
 | 	int base = -909;		     /* unlikely! */ | 
 | 	static char *kwlist[] = {"x", "base", 0}; | 
 |  | 
 | 	if (type != &PyLong_Type) | 
 | 		return long_subtype_new(type, args, kwds); /* Wimp out */ | 
 | 	if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:int", kwlist, | 
 | 					 &x, &base)) | 
 | 		return NULL; | 
 | 	if (x == NULL) | 
 | 		return PyLong_FromLong(0L); | 
 | 	if (base == -909) | 
 | 		return PyNumber_Long(x); | 
 | 	else if (PyUnicode_Check(x)) | 
 | 		return PyLong_FromUnicode(PyUnicode_AS_UNICODE(x), | 
 | 					  PyUnicode_GET_SIZE(x), | 
 | 					  base); | 
 | 	else if (PyByteArray_Check(x) || PyBytes_Check(x)) { | 
 | 		/* Since PyLong_FromString doesn't have a length parameter, | 
 | 		 * check here for possible NULs in the string. */ | 
 | 		char *string; | 
 | 		int size = Py_SIZE(x); | 
 | 		if (PyByteArray_Check(x)) | 
 | 			string = PyByteArray_AS_STRING(x); | 
 | 		else | 
 | 			string = PyBytes_AS_STRING(x); | 
 | 		if (strlen(string) != size) { | 
 | 			/* We only see this if there's a null byte in x, | 
 | 			   x is a bytes or buffer, *and* a base is given. */ | 
 | 			PyErr_Format(PyExc_ValueError, | 
 | 			    "invalid literal for int() with base %d: %R", | 
 | 			    base, x); | 
 | 			return NULL; | 
 | 		} | 
 | 		return PyLong_FromString(string, NULL, base); | 
 | 	} | 
 | 	else { | 
 | 		PyErr_SetString(PyExc_TypeError, | 
 | 			"int() can't convert non-string with explicit base"); | 
 | 		return NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* Wimpy, slow approach to tp_new calls for subtypes of long: | 
 |    first create a regular long from whatever arguments we got, | 
 |    then allocate a subtype instance and initialize it from | 
 |    the regular long.  The regular long is then thrown away. | 
 | */ | 
 | static PyObject * | 
 | long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds) | 
 | { | 
 | 	PyLongObject *tmp, *newobj; | 
 | 	Py_ssize_t i, n; | 
 |  | 
 | 	assert(PyType_IsSubtype(type, &PyLong_Type)); | 
 | 	tmp = (PyLongObject *)long_new(&PyLong_Type, args, kwds); | 
 | 	if (tmp == NULL) | 
 | 		return NULL; | 
 | 	assert(PyLong_CheckExact(tmp)); | 
 | 	n = Py_SIZE(tmp); | 
 | 	if (n < 0) | 
 | 		n = -n; | 
 | 	newobj = (PyLongObject *)type->tp_alloc(type, n); | 
 | 	if (newobj == NULL) { | 
 | 		Py_DECREF(tmp); | 
 | 		return NULL; | 
 | 	} | 
 | 	assert(PyLong_Check(newobj)); | 
 | 	Py_SIZE(newobj) = Py_SIZE(tmp); | 
 | 	for (i = 0; i < n; i++) | 
 | 		newobj->ob_digit[i] = tmp->ob_digit[i]; | 
 | 	Py_DECREF(tmp); | 
 | 	return (PyObject *)newobj; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_getnewargs(PyLongObject *v) | 
 | { | 
 | 	return Py_BuildValue("(N)", _PyLong_Copy(v)); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_getN(PyLongObject *v, void *context) { | 
 | 	return PyLong_FromLong((Py_intptr_t)context); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long__format__(PyObject *self, PyObject *args) | 
 | { | 
 |     /* when back porting this to 2.6, check type of the format_spec | 
 |        and call either unicode_long__format__ or | 
 |        string_long__format__ */ | 
 |     return unicode_long__format__(self, args); | 
 | } | 
 |  | 
 |  | 
 | static PyObject * | 
 | long_round(PyObject *self, PyObject *args) | 
 | { | 
 | #define UNDEF_NDIGITS (-0x7fffffff) /* Unlikely ndigits value */ | 
 | 	int ndigits = UNDEF_NDIGITS; | 
 | 	double x; | 
 | 	PyObject *res; | 
 | 	 | 
 | 	if (!PyArg_ParseTuple(args, "|i", &ndigits)) | 
 | 		return NULL; | 
 |  | 
 | 	if (ndigits == UNDEF_NDIGITS) | 
 | 		return long_long(self); | 
 |  | 
 | 	/* If called with two args, defer to float.__round__(). */ | 
 | 	x = PyLong_AsDouble(self); | 
 | 	if (x == -1.0 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	self = PyFloat_FromDouble(x); | 
 | 	if (self == NULL) | 
 | 		return NULL; | 
 | 	res = PyObject_CallMethod(self, "__round__", "i", ndigits); | 
 | 	Py_DECREF(self); | 
 | 	return res; | 
 | #undef UNDEF_NDIGITS | 
 | } | 
 |  | 
 | #if 0 | 
 | static PyObject * | 
 | long_is_finite(PyObject *v) | 
 | { | 
 | 	Py_RETURN_TRUE; | 
 | } | 
 | #endif | 
 |  | 
 | static PyMethodDef long_methods[] = { | 
 | 	{"conjugate",	(PyCFunction)long_long,	METH_NOARGS, | 
 | 	 "Returns self, the complex conjugate of any int."}, | 
 | #if 0 | 
 | 	{"is_finite",	(PyCFunction)long_is_finite,	METH_NOARGS, | 
 | 	 "Returns always True."}, | 
 | #endif | 
 | 	{"__trunc__",	(PyCFunction)long_long,	METH_NOARGS, | 
 |          "Truncating an Integral returns itself."}, | 
 | 	{"__floor__",	(PyCFunction)long_long,	METH_NOARGS, | 
 |          "Flooring an Integral returns itself."}, | 
 | 	{"__ceil__",	(PyCFunction)long_long,	METH_NOARGS, | 
 |          "Ceiling of an Integral returns itself."}, | 
 | 	{"__round__",	(PyCFunction)long_round, METH_VARARGS, | 
 |          "Rounding an Integral returns itself.\n" | 
 | 	 "Rounding with an ndigits arguments defers to float.__round__."}, | 
 | 	{"__getnewargs__",	(PyCFunction)long_getnewargs,	METH_NOARGS}, | 
 |         {"__format__", (PyCFunction)long__format__, METH_VARARGS}, | 
 | 	{NULL,		NULL}		/* sentinel */ | 
 | }; | 
 |  | 
 | static PyGetSetDef long_getset[] = { | 
 |     {"real",  | 
 |      (getter)long_long, (setter)NULL, | 
 |      "the real part of a complex number", | 
 |      NULL}, | 
 |     {"imag",  | 
 |      (getter)long_getN, (setter)NULL, | 
 |      "the imaginary part of a complex number", | 
 |      (void*)0}, | 
 |     {"numerator",  | 
 |      (getter)long_long, (setter)NULL, | 
 |      "the numerator of a rational number in lowest terms", | 
 |      NULL}, | 
 |     {"denominator",  | 
 |      (getter)long_getN, (setter)NULL, | 
 |      "the denominator of a rational number in lowest terms", | 
 |      (void*)1}, | 
 |     {NULL}  /* Sentinel */ | 
 | }; | 
 |  | 
 | PyDoc_STRVAR(long_doc, | 
 | "int(x[, base]) -> integer\n\ | 
 | \n\ | 
 | Convert a string or number to an integer, if possible.  A floating\n\ | 
 | point argument will be truncated towards zero (this does not include a\n\ | 
 | string representation of a floating point number!)  When converting a\n\ | 
 | string, use the optional base.  It is an error to supply a base when\n\ | 
 | converting a non-string."); | 
 |  | 
 | static PyNumberMethods long_as_number = { | 
 | 	(binaryfunc)	long_add,	/*nb_add*/ | 
 | 	(binaryfunc)	long_sub,	/*nb_subtract*/ | 
 | 	(binaryfunc)	long_mul,	/*nb_multiply*/ | 
 | 			long_mod,	/*nb_remainder*/ | 
 | 			long_divmod,	/*nb_divmod*/ | 
 | 			long_pow,	/*nb_power*/ | 
 | 	(unaryfunc) 	long_neg,	/*nb_negative*/ | 
 | 	(unaryfunc) 	long_long,	/*tp_positive*/ | 
 | 	(unaryfunc) 	long_abs,	/*tp_absolute*/ | 
 | 	(inquiry)	long_bool,	/*tp_bool*/ | 
 | 	(unaryfunc)	long_invert,	/*nb_invert*/ | 
 | 			long_lshift,	/*nb_lshift*/ | 
 | 	(binaryfunc)	long_rshift,	/*nb_rshift*/ | 
 | 			long_and,	/*nb_and*/ | 
 | 			long_xor,	/*nb_xor*/ | 
 | 			long_or,	/*nb_or*/ | 
 | 			0,		/*nb_reserved*/ | 
 | 			long_long,	/*nb_int*/ | 
 | 			long_long,	/*nb_long*/ | 
 | 			long_float,	/*nb_float*/ | 
 | 			0,		/*nb_oct*/ /* not used */ | 
 | 			0,		/*nb_hex*/ /* not used */ | 
 | 	0,				/* nb_inplace_add */ | 
 | 	0,				/* nb_inplace_subtract */ | 
 | 	0,				/* nb_inplace_multiply */ | 
 | 	0,				/* nb_inplace_remainder */ | 
 | 	0,				/* nb_inplace_power */ | 
 | 	0,				/* nb_inplace_lshift */ | 
 | 	0,				/* nb_inplace_rshift */ | 
 | 	0,				/* nb_inplace_and */ | 
 | 	0,				/* nb_inplace_xor */ | 
 | 	0,				/* nb_inplace_or */ | 
 | 	long_div,			/* nb_floor_divide */ | 
 | 	long_true_divide,		/* nb_true_divide */ | 
 | 	0,				/* nb_inplace_floor_divide */ | 
 | 	0,				/* nb_inplace_true_divide */ | 
 | 	long_long,			/* nb_index */ | 
 | }; | 
 |  | 
 | PyTypeObject PyLong_Type = { | 
 | 	PyVarObject_HEAD_INIT(&PyType_Type, 0) | 
 | 	"int",					/* tp_name */ | 
 | 	/* See _PyLong_New for why this isn't | 
 | 	   sizeof(PyLongObject) - sizeof(digit) */ | 
 | 	sizeof(PyVarObject),			/* tp_basicsize */ | 
 | 	sizeof(digit),				/* tp_itemsize */ | 
 | 	long_dealloc,				/* tp_dealloc */ | 
 | 	0,					/* tp_print */ | 
 | 	0,					/* tp_getattr */ | 
 | 	0,					/* tp_setattr */ | 
 | 	0,					/* tp_compare */ | 
 | 	long_repr,				/* tp_repr */ | 
 | 	&long_as_number,			/* tp_as_number */ | 
 | 	0,					/* tp_as_sequence */ | 
 | 	0,					/* tp_as_mapping */ | 
 | 	(hashfunc)long_hash,			/* tp_hash */ | 
 |         0,              			/* tp_call */ | 
 |         long_repr,				/* tp_str */ | 
 | 	PyObject_GenericGetAttr,		/* tp_getattro */ | 
 | 	0,					/* tp_setattro */ | 
 | 	0,					/* tp_as_buffer */ | 
 | 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | | 
 | 		Py_TPFLAGS_LONG_SUBCLASS,	/* tp_flags */ | 
 | 	long_doc,				/* tp_doc */ | 
 | 	0,					/* tp_traverse */ | 
 | 	0,					/* tp_clear */ | 
 | 	long_richcompare,			/* tp_richcompare */ | 
 | 	0,					/* tp_weaklistoffset */ | 
 | 	0,					/* tp_iter */ | 
 | 	0,					/* tp_iternext */ | 
 | 	long_methods,				/* tp_methods */ | 
 | 	0,					/* tp_members */ | 
 | 	long_getset,				/* tp_getset */ | 
 | 	0,					/* tp_base */ | 
 | 	0,					/* tp_dict */ | 
 | 	0,					/* tp_descr_get */ | 
 | 	0,					/* tp_descr_set */ | 
 | 	0,					/* tp_dictoffset */ | 
 | 	0,					/* tp_init */ | 
 | 	0,					/* tp_alloc */ | 
 | 	long_new,				/* tp_new */ | 
 | 	PyObject_Del,                           /* tp_free */ | 
 | }; | 
 |  | 
 | int | 
 | _PyLong_Init(void) | 
 | { | 
 | #if NSMALLNEGINTS + NSMALLPOSINTS > 0 | 
 | 	int ival, size; | 
 | 	PyLongObject *v = small_ints; | 
 |  | 
 | 	for (ival = -NSMALLNEGINTS; ival <  NSMALLPOSINTS; ival++, v++) { | 
 | 		size = (ival < 0) ? -1 : ((ival == 0) ? 0 : 1); | 
 | 		if (Py_TYPE(v) == &PyLong_Type) { | 
 | 			/* The element is already initialized, most likely | 
 | 			 * the Python interpreter was initialized before. | 
 | 			 */ | 
 | 			Py_ssize_t refcnt; | 
 | 			PyObject* op = (PyObject*)v; | 
 |  | 
 | 			refcnt = Py_REFCNT(op) < 0 ? 0 : Py_REFCNT(op); | 
 | 			_Py_NewReference(op); | 
 | 			/* _Py_NewReference sets the ref count to 1 but | 
 | 			 * the ref count might be larger. Set the refcnt | 
 | 			 * to the original refcnt + 1 */	  | 
 | 			Py_REFCNT(op) = refcnt + 1; | 
 | 			assert(Py_SIZE(op) == size); | 
 | 			assert(v->ob_digit[0] == abs(ival)); | 
 | 		} | 
 | 		else { | 
 | 			PyObject_INIT(v, &PyLong_Type); | 
 | 		} | 
 | 		Py_SIZE(v) = size; | 
 | 		v->ob_digit[0] = abs(ival); | 
 | 	} | 
 | #endif | 
 | 	return 1; | 
 | } | 
 |  | 
 | void | 
 | PyLong_Fini(void) | 
 | { | 
 | 	/* Integers are currently statically allocated. Py_DECREF is not | 
 | 	   needed, but Python must forget about the reference or multiple | 
 | 	   reinitializations will fail. */ | 
 | #if NSMALLNEGINTS + NSMALLPOSINTS > 0 | 
 | 	int i; | 
 | 	PyLongObject *v = small_ints; | 
 | 	for (i = 0; i < NSMALLNEGINTS + NSMALLPOSINTS; i++, v++) { | 
 | 		_Py_DEC_REFTOTAL; | 
 | 		_Py_ForgetReference((PyObject*)v); | 
 | 	} | 
 | #endif | 
 | } |