| #!/usr/bin/env python3 | 
 |  | 
 | import unittest | 
 | import random | 
 | import time | 
 | import pickle | 
 | import warnings | 
 | from math import log, exp, pi, fsum, sin | 
 | from test import support | 
 |  | 
 | class TestBasicOps: | 
 |     # Superclass with tests common to all generators. | 
 |     # Subclasses must arrange for self.gen to retrieve the Random instance | 
 |     # to be tested. | 
 |  | 
 |     def randomlist(self, n): | 
 |         """Helper function to make a list of random numbers""" | 
 |         return [self.gen.random() for i in range(n)] | 
 |  | 
 |     def test_autoseed(self): | 
 |         self.gen.seed() | 
 |         state1 = self.gen.getstate() | 
 |         time.sleep(0.1) | 
 |         self.gen.seed()      # diffent seeds at different times | 
 |         state2 = self.gen.getstate() | 
 |         self.assertNotEqual(state1, state2) | 
 |  | 
 |     def test_saverestore(self): | 
 |         N = 1000 | 
 |         self.gen.seed() | 
 |         state = self.gen.getstate() | 
 |         randseq = self.randomlist(N) | 
 |         self.gen.setstate(state)    # should regenerate the same sequence | 
 |         self.assertEqual(randseq, self.randomlist(N)) | 
 |  | 
 |     def test_seedargs(self): | 
 |         # Seed value with a negative hash. | 
 |         class MySeed(object): | 
 |             def __hash__(self): | 
 |                 return -1729 | 
 |         for arg in [None, 0, 0, 1, 1, -1, -1, 10**20, -(10**20), | 
 |                     3.14, 1+2j, 'a', tuple('abc'), MySeed()]: | 
 |             self.gen.seed(arg) | 
 |         for arg in [list(range(3)), dict(one=1)]: | 
 |             self.assertRaises(TypeError, self.gen.seed, arg) | 
 |         self.assertRaises(TypeError, self.gen.seed, 1, 2, 3, 4) | 
 |         self.assertRaises(TypeError, type(self.gen), []) | 
 |  | 
 |     def test_choice(self): | 
 |         choice = self.gen.choice | 
 |         with self.assertRaises(IndexError): | 
 |             choice([]) | 
 |         self.assertEqual(choice([50]), 50) | 
 |         self.assertIn(choice([25, 75]), [25, 75]) | 
 |  | 
 |     def test_sample(self): | 
 |         # For the entire allowable range of 0 <= k <= N, validate that | 
 |         # the sample is of the correct length and contains only unique items | 
 |         N = 100 | 
 |         population = range(N) | 
 |         for k in range(N+1): | 
 |             s = self.gen.sample(population, k) | 
 |             self.assertEqual(len(s), k) | 
 |             uniq = set(s) | 
 |             self.assertEqual(len(uniq), k) | 
 |             self.assertTrue(uniq <= set(population)) | 
 |         self.assertEqual(self.gen.sample([], 0), [])  # test edge case N==k==0 | 
 |  | 
 |     def test_sample_distribution(self): | 
 |         # For the entire allowable range of 0 <= k <= N, validate that | 
 |         # sample generates all possible permutations | 
 |         n = 5 | 
 |         pop = range(n) | 
 |         trials = 10000  # large num prevents false negatives without slowing normal case | 
 |         def factorial(n): | 
 |             if n == 0: | 
 |                 return 1 | 
 |             return n * factorial(n - 1) | 
 |         for k in range(n): | 
 |             expected = factorial(n) // factorial(n-k) | 
 |             perms = {} | 
 |             for i in range(trials): | 
 |                 perms[tuple(self.gen.sample(pop, k))] = None | 
 |                 if len(perms) == expected: | 
 |                     break | 
 |             else: | 
 |                 self.fail() | 
 |  | 
 |     def test_sample_inputs(self): | 
 |         # SF bug #801342 -- population can be any iterable defining __len__() | 
 |         self.gen.sample(set(range(20)), 2) | 
 |         self.gen.sample(range(20), 2) | 
 |         self.gen.sample(range(20), 2) | 
 |         self.gen.sample(str('abcdefghijklmnopqrst'), 2) | 
 |         self.gen.sample(tuple('abcdefghijklmnopqrst'), 2) | 
 |  | 
 |     def test_sample_on_dicts(self): | 
 |         self.assertRaises(TypeError, self.gen.sample, dict.fromkeys('abcdef'), 2) | 
 |  | 
 |     def test_gauss(self): | 
 |         # Ensure that the seed() method initializes all the hidden state.  In | 
 |         # particular, through 2.2.1 it failed to reset a piece of state used | 
 |         # by (and only by) the .gauss() method. | 
 |  | 
 |         for seed in 1, 12, 123, 1234, 12345, 123456, 654321: | 
 |             self.gen.seed(seed) | 
 |             x1 = self.gen.random() | 
 |             y1 = self.gen.gauss(0, 1) | 
 |  | 
 |             self.gen.seed(seed) | 
 |             x2 = self.gen.random() | 
 |             y2 = self.gen.gauss(0, 1) | 
 |  | 
 |             self.assertEqual(x1, x2) | 
 |             self.assertEqual(y1, y2) | 
 |  | 
 |     def test_pickling(self): | 
 |         state = pickle.dumps(self.gen) | 
 |         origseq = [self.gen.random() for i in range(10)] | 
 |         newgen = pickle.loads(state) | 
 |         restoredseq = [newgen.random() for i in range(10)] | 
 |         self.assertEqual(origseq, restoredseq) | 
 |  | 
 |     def test_bug_1727780(self): | 
 |         # verify that version-2-pickles can be loaded | 
 |         # fine, whether they are created on 32-bit or 64-bit | 
 |         # platforms, and that version-3-pickles load fine. | 
 |         files = [("randv2_32.pck", 780), | 
 |                  ("randv2_64.pck", 866), | 
 |                  ("randv3.pck", 343)] | 
 |         for file, value in files: | 
 |             f = open(support.findfile(file),"rb") | 
 |             r = pickle.load(f) | 
 |             f.close() | 
 |             self.assertEqual(int(r.random()*1000), value) | 
 |  | 
 |     def test_bug_9025(self): | 
 |         # Had problem with an uneven distribution in int(n*random()) | 
 |         # Verify the fix by checking that distributions fall within expectations. | 
 |         n = 100000 | 
 |         randrange = self.gen.randrange | 
 |         k = sum(randrange(6755399441055744) % 3 == 2 for i in range(n)) | 
 |         self.assertTrue(0.30 < k/n < .37, (k/n)) | 
 |  | 
 | try: | 
 |     random.SystemRandom().random() | 
 | except NotImplementedError: | 
 |     SystemRandom_available = False | 
 | else: | 
 |     SystemRandom_available = True | 
 |  | 
 | @unittest.skipUnless(SystemRandom_available, "random.SystemRandom not available") | 
 | class SystemRandom_TestBasicOps(TestBasicOps, unittest.TestCase): | 
 |     gen = random.SystemRandom() | 
 |  | 
 |     def test_autoseed(self): | 
 |         # Doesn't need to do anything except not fail | 
 |         self.gen.seed() | 
 |  | 
 |     def test_saverestore(self): | 
 |         self.assertRaises(NotImplementedError, self.gen.getstate) | 
 |         self.assertRaises(NotImplementedError, self.gen.setstate, None) | 
 |  | 
 |     def test_seedargs(self): | 
 |         # Doesn't need to do anything except not fail | 
 |         self.gen.seed(100) | 
 |  | 
 |     def test_gauss(self): | 
 |         self.gen.gauss_next = None | 
 |         self.gen.seed(100) | 
 |         self.assertEqual(self.gen.gauss_next, None) | 
 |  | 
 |     def test_pickling(self): | 
 |         self.assertRaises(NotImplementedError, pickle.dumps, self.gen) | 
 |  | 
 |     def test_53_bits_per_float(self): | 
 |         # This should pass whenever a C double has 53 bit precision. | 
 |         span = 2 ** 53 | 
 |         cum = 0 | 
 |         for i in range(100): | 
 |             cum |= int(self.gen.random() * span) | 
 |         self.assertEqual(cum, span-1) | 
 |  | 
 |     def test_bigrand(self): | 
 |         # The randrange routine should build-up the required number of bits | 
 |         # in stages so that all bit positions are active. | 
 |         span = 2 ** 500 | 
 |         cum = 0 | 
 |         for i in range(100): | 
 |             r = self.gen.randrange(span) | 
 |             self.assertTrue(0 <= r < span) | 
 |             cum |= r | 
 |         self.assertEqual(cum, span-1) | 
 |  | 
 |     def test_bigrand_ranges(self): | 
 |         for i in [40,80, 160, 200, 211, 250, 375, 512, 550]: | 
 |             start = self.gen.randrange(2 ** i) | 
 |             stop = self.gen.randrange(2 ** (i-2)) | 
 |             if stop <= start: | 
 |                 return | 
 |             self.assertTrue(start <= self.gen.randrange(start, stop) < stop) | 
 |  | 
 |     def test_rangelimits(self): | 
 |         for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]: | 
 |             self.assertEqual(set(range(start,stop)), | 
 |                 set([self.gen.randrange(start,stop) for i in range(100)])) | 
 |  | 
 |     def test_genrandbits(self): | 
 |         # Verify ranges | 
 |         for k in range(1, 1000): | 
 |             self.assertTrue(0 <= self.gen.getrandbits(k) < 2**k) | 
 |  | 
 |         # Verify all bits active | 
 |         getbits = self.gen.getrandbits | 
 |         for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]: | 
 |             cum = 0 | 
 |             for i in range(100): | 
 |                 cum |= getbits(span) | 
 |             self.assertEqual(cum, 2**span-1) | 
 |  | 
 |         # Verify argument checking | 
 |         self.assertRaises(TypeError, self.gen.getrandbits) | 
 |         self.assertRaises(TypeError, self.gen.getrandbits, 1, 2) | 
 |         self.assertRaises(ValueError, self.gen.getrandbits, 0) | 
 |         self.assertRaises(ValueError, self.gen.getrandbits, -1) | 
 |         self.assertRaises(TypeError, self.gen.getrandbits, 10.1) | 
 |  | 
 |     def test_randbelow_logic(self, _log=log, int=int): | 
 |         # check bitcount transition points:  2**i and 2**(i+1)-1 | 
 |         # show that: k = int(1.001 + _log(n, 2)) | 
 |         # is equal to or one greater than the number of bits in n | 
 |         for i in range(1, 1000): | 
 |             n = 1 << i # check an exact power of two | 
 |             numbits = i+1 | 
 |             k = int(1.00001 + _log(n, 2)) | 
 |             self.assertEqual(k, numbits) | 
 |             self.assertEqual(n, 2**(k-1)) | 
 |  | 
 |             n += n - 1      # check 1 below the next power of two | 
 |             k = int(1.00001 + _log(n, 2)) | 
 |             self.assertIn(k, [numbits, numbits+1]) | 
 |             self.assertTrue(2**k > n > 2**(k-2)) | 
 |  | 
 |             n -= n >> 15     # check a little farther below the next power of two | 
 |             k = int(1.00001 + _log(n, 2)) | 
 |             self.assertEqual(k, numbits)        # note the stronger assertion | 
 |             self.assertTrue(2**k > n > 2**(k-1))   # note the stronger assertion | 
 |  | 
 |  | 
 | class MersenneTwister_TestBasicOps(TestBasicOps, unittest.TestCase): | 
 |     gen = random.Random() | 
 |  | 
 |     def test_guaranteed_stable(self): | 
 |         # These sequences are guaranteed to stay the same across versions of python | 
 |         self.gen.seed(3456147, version=1) | 
 |         self.assertEqual([self.gen.random().hex() for i in range(4)], | 
 |             ['0x1.ac362300d90d2p-1', '0x1.9d16f74365005p-1', | 
 |              '0x1.1ebb4352e4c4dp-1', '0x1.1a7422abf9c11p-1']) | 
 |         self.gen.seed("the quick brown fox", version=2) | 
 |         self.assertEqual([self.gen.random().hex() for i in range(4)], | 
 |             ['0x1.1239ddfb11b7cp-3', '0x1.b3cbb5c51b120p-4', | 
 |              '0x1.8c4f55116b60fp-1', '0x1.63eb525174a27p-1']) | 
 |  | 
 |     def test_setstate_first_arg(self): | 
 |         self.assertRaises(ValueError, self.gen.setstate, (1, None, None)) | 
 |  | 
 |     def test_setstate_middle_arg(self): | 
 |         # Wrong type, s/b tuple | 
 |         self.assertRaises(TypeError, self.gen.setstate, (2, None, None)) | 
 |         # Wrong length, s/b 625 | 
 |         self.assertRaises(ValueError, self.gen.setstate, (2, (1,2,3), None)) | 
 |         # Wrong type, s/b tuple of 625 ints | 
 |         self.assertRaises(TypeError, self.gen.setstate, (2, ('a',)*625, None)) | 
 |         # Last element s/b an int also | 
 |         self.assertRaises(TypeError, self.gen.setstate, (2, (0,)*624+('a',), None)) | 
 |  | 
 |     def test_referenceImplementation(self): | 
 |         # Compare the python implementation with results from the original | 
 |         # code.  Create 2000 53-bit precision random floats.  Compare only | 
 |         # the last ten entries to show that the independent implementations | 
 |         # are tracking.  Here is the main() function needed to create the | 
 |         # list of expected random numbers: | 
 |         #    void main(void){ | 
 |         #         int i; | 
 |         #         unsigned long init[4]={61731, 24903, 614, 42143}, length=4; | 
 |         #         init_by_array(init, length); | 
 |         #         for (i=0; i<2000; i++) { | 
 |         #           printf("%.15f ", genrand_res53()); | 
 |         #           if (i%5==4) printf("\n"); | 
 |         #         } | 
 |         #     } | 
 |         expected = [0.45839803073713259, | 
 |                     0.86057815201978782, | 
 |                     0.92848331726782152, | 
 |                     0.35932681119782461, | 
 |                     0.081823493762449573, | 
 |                     0.14332226470169329, | 
 |                     0.084297823823520024, | 
 |                     0.53814864671831453, | 
 |                     0.089215024911993401, | 
 |                     0.78486196105372907] | 
 |  | 
 |         self.gen.seed(61731 + (24903<<32) + (614<<64) + (42143<<96)) | 
 |         actual = self.randomlist(2000)[-10:] | 
 |         for a, e in zip(actual, expected): | 
 |             self.assertAlmostEqual(a,e,places=14) | 
 |  | 
 |     def test_strong_reference_implementation(self): | 
 |         # Like test_referenceImplementation, but checks for exact bit-level | 
 |         # equality.  This should pass on any box where C double contains | 
 |         # at least 53 bits of precision (the underlying algorithm suffers | 
 |         # no rounding errors -- all results are exact). | 
 |         from math import ldexp | 
 |  | 
 |         expected = [0x0eab3258d2231f, | 
 |                     0x1b89db315277a5, | 
 |                     0x1db622a5518016, | 
 |                     0x0b7f9af0d575bf, | 
 |                     0x029e4c4db82240, | 
 |                     0x04961892f5d673, | 
 |                     0x02b291598e4589, | 
 |                     0x11388382c15694, | 
 |                     0x02dad977c9e1fe, | 
 |                     0x191d96d4d334c6] | 
 |         self.gen.seed(61731 + (24903<<32) + (614<<64) + (42143<<96)) | 
 |         actual = self.randomlist(2000)[-10:] | 
 |         for a, e in zip(actual, expected): | 
 |             self.assertEqual(int(ldexp(a, 53)), e) | 
 |  | 
 |     def test_long_seed(self): | 
 |         # This is most interesting to run in debug mode, just to make sure | 
 |         # nothing blows up.  Under the covers, a dynamically resized array | 
 |         # is allocated, consuming space proportional to the number of bits | 
 |         # in the seed.  Unfortunately, that's a quadratic-time algorithm, | 
 |         # so don't make this horribly big. | 
 |         seed = (1 << (10000 * 8)) - 1  # about 10K bytes | 
 |         self.gen.seed(seed) | 
 |  | 
 |     def test_53_bits_per_float(self): | 
 |         # This should pass whenever a C double has 53 bit precision. | 
 |         span = 2 ** 53 | 
 |         cum = 0 | 
 |         for i in range(100): | 
 |             cum |= int(self.gen.random() * span) | 
 |         self.assertEqual(cum, span-1) | 
 |  | 
 |     def test_bigrand(self): | 
 |         # The randrange routine should build-up the required number of bits | 
 |         # in stages so that all bit positions are active. | 
 |         span = 2 ** 500 | 
 |         cum = 0 | 
 |         for i in range(100): | 
 |             r = self.gen.randrange(span) | 
 |             self.assertTrue(0 <= r < span) | 
 |             cum |= r | 
 |         self.assertEqual(cum, span-1) | 
 |  | 
 |     def test_bigrand_ranges(self): | 
 |         for i in [40,80, 160, 200, 211, 250, 375, 512, 550]: | 
 |             start = self.gen.randrange(2 ** i) | 
 |             stop = self.gen.randrange(2 ** (i-2)) | 
 |             if stop <= start: | 
 |                 return | 
 |             self.assertTrue(start <= self.gen.randrange(start, stop) < stop) | 
 |  | 
 |     def test_rangelimits(self): | 
 |         for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]: | 
 |             self.assertEqual(set(range(start,stop)), | 
 |                 set([self.gen.randrange(start,stop) for i in range(100)])) | 
 |  | 
 |     def test_genrandbits(self): | 
 |         # Verify cross-platform repeatability | 
 |         self.gen.seed(1234567) | 
 |         self.assertEqual(self.gen.getrandbits(100), | 
 |                          97904845777343510404718956115) | 
 |         # Verify ranges | 
 |         for k in range(1, 1000): | 
 |             self.assertTrue(0 <= self.gen.getrandbits(k) < 2**k) | 
 |  | 
 |         # Verify all bits active | 
 |         getbits = self.gen.getrandbits | 
 |         for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]: | 
 |             cum = 0 | 
 |             for i in range(100): | 
 |                 cum |= getbits(span) | 
 |             self.assertEqual(cum, 2**span-1) | 
 |  | 
 |         # Verify argument checking | 
 |         self.assertRaises(TypeError, self.gen.getrandbits) | 
 |         self.assertRaises(TypeError, self.gen.getrandbits, 'a') | 
 |         self.assertRaises(TypeError, self.gen.getrandbits, 1, 2) | 
 |         self.assertRaises(ValueError, self.gen.getrandbits, 0) | 
 |         self.assertRaises(ValueError, self.gen.getrandbits, -1) | 
 |  | 
 |     def test_randbelow_logic(self, _log=log, int=int): | 
 |         # check bitcount transition points:  2**i and 2**(i+1)-1 | 
 |         # show that: k = int(1.001 + _log(n, 2)) | 
 |         # is equal to or one greater than the number of bits in n | 
 |         for i in range(1, 1000): | 
 |             n = 1 << i # check an exact power of two | 
 |             numbits = i+1 | 
 |             k = int(1.00001 + _log(n, 2)) | 
 |             self.assertEqual(k, numbits) | 
 |             self.assertEqual(n, 2**(k-1)) | 
 |  | 
 |             n += n - 1      # check 1 below the next power of two | 
 |             k = int(1.00001 + _log(n, 2)) | 
 |             self.assertIn(k, [numbits, numbits+1]) | 
 |             self.assertTrue(2**k > n > 2**(k-2)) | 
 |  | 
 |             n -= n >> 15     # check a little farther below the next power of two | 
 |             k = int(1.00001 + _log(n, 2)) | 
 |             self.assertEqual(k, numbits)        # note the stronger assertion | 
 |             self.assertTrue(2**k > n > 2**(k-1))   # note the stronger assertion | 
 |  | 
 |     def test_randrange_bug_1590891(self): | 
 |         start = 1000000000000 | 
 |         stop = -100000000000000000000 | 
 |         step = -200 | 
 |         x = self.gen.randrange(start, stop, step) | 
 |         self.assertTrue(stop < x <= start) | 
 |         self.assertEqual((x+stop)%step, 0) | 
 |  | 
 | def gamma(z, sqrt2pi=(2.0*pi)**0.5): | 
 |     # Reflection to right half of complex plane | 
 |     if z < 0.5: | 
 |         return pi / sin(pi*z) / gamma(1.0-z) | 
 |     # Lanczos approximation with g=7 | 
 |     az = z + (7.0 - 0.5) | 
 |     return az ** (z-0.5) / exp(az) * sqrt2pi * fsum([ | 
 |         0.9999999999995183, | 
 |         676.5203681218835 / z, | 
 |         -1259.139216722289 / (z+1.0), | 
 |         771.3234287757674 / (z+2.0), | 
 |         -176.6150291498386 / (z+3.0), | 
 |         12.50734324009056 / (z+4.0), | 
 |         -0.1385710331296526 / (z+5.0), | 
 |         0.9934937113930748e-05 / (z+6.0), | 
 |         0.1659470187408462e-06 / (z+7.0), | 
 |     ]) | 
 |  | 
 | class TestDistributions(unittest.TestCase): | 
 |     def test_zeroinputs(self): | 
 |         # Verify that distributions can handle a series of zero inputs' | 
 |         g = random.Random() | 
 |         x = [g.random() for i in range(50)] + [0.0]*5 | 
 |         g.random = x[:].pop; g.uniform(1,10) | 
 |         g.random = x[:].pop; g.paretovariate(1.0) | 
 |         g.random = x[:].pop; g.expovariate(1.0) | 
 |         g.random = x[:].pop; g.weibullvariate(1.0, 1.0) | 
 |         g.random = x[:].pop; g.vonmisesvariate(1.0, 1.0) | 
 |         g.random = x[:].pop; g.normalvariate(0.0, 1.0) | 
 |         g.random = x[:].pop; g.gauss(0.0, 1.0) | 
 |         g.random = x[:].pop; g.lognormvariate(0.0, 1.0) | 
 |         g.random = x[:].pop; g.vonmisesvariate(0.0, 1.0) | 
 |         g.random = x[:].pop; g.gammavariate(0.01, 1.0) | 
 |         g.random = x[:].pop; g.gammavariate(1.0, 1.0) | 
 |         g.random = x[:].pop; g.gammavariate(200.0, 1.0) | 
 |         g.random = x[:].pop; g.betavariate(3.0, 3.0) | 
 |         g.random = x[:].pop; g.triangular(0.0, 1.0, 1.0/3.0) | 
 |  | 
 |     def test_avg_std(self): | 
 |         # Use integration to test distribution average and standard deviation. | 
 |         # Only works for distributions which do not consume variates in pairs | 
 |         g = random.Random() | 
 |         N = 5000 | 
 |         x = [i/float(N) for i in range(1,N)] | 
 |         for variate, args, mu, sigmasqrd in [ | 
 |                 (g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12), | 
 |                 (g.triangular, (0.0, 1.0, 1.0/3.0), 4.0/9.0, 7.0/9.0/18.0), | 
 |                 (g.expovariate, (1.5,), 1/1.5, 1/1.5**2), | 
 |                 (g.vonmisesvariate, (1.23, 0), pi, pi**2/3), | 
 |                 (g.paretovariate, (5.0,), 5.0/(5.0-1), | 
 |                                   5.0/((5.0-1)**2*(5.0-2))), | 
 |                 (g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0), | 
 |                                   gamma(1+2/3.0)-gamma(1+1/3.0)**2) ]: | 
 |             g.random = x[:].pop | 
 |             y = [] | 
 |             for i in range(len(x)): | 
 |                 try: | 
 |                     y.append(variate(*args)) | 
 |                 except IndexError: | 
 |                     pass | 
 |             s1 = s2 = 0 | 
 |             for e in y: | 
 |                 s1 += e | 
 |                 s2 += (e - mu) ** 2 | 
 |             N = len(y) | 
 |             self.assertAlmostEqual(s1/N, mu, places=2, | 
 |                                    msg='%s%r' % (variate.__name__, args)) | 
 |             self.assertAlmostEqual(s2/(N-1), sigmasqrd, places=2, | 
 |                                    msg='%s%r' % (variate.__name__, args)) | 
 |  | 
 |     def test_constant(self): | 
 |         g = random.Random() | 
 |         N = 100 | 
 |         for variate, args, expected in [ | 
 |                 (g.uniform, (10.0, 10.0), 10.0), | 
 |                 (g.triangular, (10.0, 10.0), 10.0), | 
 |                 #(g.triangular, (10.0, 10.0, 10.0), 10.0), | 
 |                 (g.expovariate, (float('inf'),), 0.0), | 
 |                 (g.vonmisesvariate, (3.0, float('inf')), 3.0), | 
 |                 (g.gauss, (10.0, 0.0), 10.0), | 
 |                 (g.lognormvariate, (0.0, 0.0), 1.0), | 
 |                 (g.lognormvariate, (-float('inf'), 0.0), 0.0), | 
 |                 (g.normalvariate, (10.0, 0.0), 10.0), | 
 |                 (g.paretovariate, (float('inf'),), 1.0), | 
 |                 (g.weibullvariate, (10.0, float('inf')), 10.0), | 
 |                 (g.weibullvariate, (0.0, 10.0), 0.0), | 
 |             ]: | 
 |             for i in range(N): | 
 |                 self.assertEqual(variate(*args), expected) | 
 |  | 
 |     def test_von_mises_range(self): | 
 |         # Issue 17149: von mises variates were not consistently in the | 
 |         # range [0, 2*PI]. | 
 |         g = random.Random() | 
 |         N = 100 | 
 |         for mu in 0.0, 0.1, 3.1, 6.2: | 
 |             for kappa in 0.0, 2.3, 500.0: | 
 |                 for _ in range(N): | 
 |                     sample = g.vonmisesvariate(mu, kappa) | 
 |                     self.assertTrue( | 
 |                         0 <= sample <= random.TWOPI, | 
 |                         msg=("vonmisesvariate({}, {}) produced a result {} out" | 
 |                              " of range [0, 2*pi]").format(mu, kappa, sample)) | 
 |  | 
 |     def test_von_mises_large_kappa(self): | 
 |         # Issue #17141: vonmisesvariate() was hang for large kappas | 
 |         random.vonmisesvariate(0, 1e15) | 
 |         random.vonmisesvariate(0, 1e100) | 
 |  | 
 |  | 
 | class TestModule(unittest.TestCase): | 
 |     def testMagicConstants(self): | 
 |         self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141) | 
 |         self.assertAlmostEqual(random.TWOPI, 6.28318530718) | 
 |         self.assertAlmostEqual(random.LOG4, 1.38629436111989) | 
 |         self.assertAlmostEqual(random.SG_MAGICCONST, 2.50407739677627) | 
 |  | 
 |     def test__all__(self): | 
 |         # tests validity but not completeness of the __all__ list | 
 |         self.assertTrue(set(random.__all__) <= set(dir(random))) | 
 |  | 
 |     def test_random_subclass_with_kwargs(self): | 
 |         # SF bug #1486663 -- this used to erroneously raise a TypeError | 
 |         class Subclass(random.Random): | 
 |             def __init__(self, newarg=None): | 
 |                 random.Random.__init__(self) | 
 |         Subclass(newarg=1) | 
 |  | 
 |  | 
 | if __name__ == "__main__": | 
 |     unittest.main() |