blob: 2c30c148d15bc0bc23fd5719f20f3bf005dca581 [file] [log] [blame]
Guido van Rossum5fdeeea1994-01-02 01:22:07 +00001\section{Built-in Functions}
2
3The Python interpreter has a number of functions built into it that
4are always available. They are listed here in alphabetical order.
5
6
7\renewcommand{\indexsubitem}{(built-in function)}
8\begin{funcdesc}{abs}{x}
9 Return the absolute value of a number. The argument may be a plain
10 or long integer or a floating point number.
11\end{funcdesc}
12
13\begin{funcdesc}{apply}{function\, args}
14The \var{function} argument must be a callable object (a user-defined or
15built-in function or method, or a class object) and the \var{args}
16argument must be a tuple. The \var{function} is called with
17\var{args} as argument list; the number of arguments is the the length
18of the tuple. (This is different from just calling
19\code{\var{func}(\var{args})}, since in that case there is always
20exactly one argument.)
21\end{funcdesc}
22
23\begin{funcdesc}{chr}{i}
24 Return a string of one character whose \ASCII{} code is the integer
25 \var{i}, e.g., \code{chr(97)} returns the string \code{'a'}. This is the
26 inverse of \code{ord()}. The argument must be in the range [0..255],
27 inclusive.
28\end{funcdesc}
29
30\begin{funcdesc}{cmp}{x\, y}
31 Compare the two objects \var{x} and \var{y} and return an integer
32 according to the outcome. The return value is negative if \code{\var{x}
33 < \var{y}}, zero if \code{\var{x} == \var{y}} and strictly positive if
34 \code{\var{x} > \var{y}}.
35\end{funcdesc}
36
37\begin{funcdesc}{coerce}{x\, y}
38 Return a tuple consisting of the two numeric arguments converted to
39 a common type, using the same rules as used by arithmetic
40 operations.
41\end{funcdesc}
42
43\begin{funcdesc}{compile}{string\, filename\, kind}
44 Compile the \var{string} into a code object. Code objects can be
45 executed by a \code{exec()} statement or evaluated by a call to
46 \code{eval()}. The \var{filename} argument should
47 give the file from which the code was read; pass e.g. \code{'<string>'}
48 if it wasn't read from a file. The \var{kind} argument specifies
49 what kind of code must be compiled; it can be \code{'exec'} if
50 \var{string} consists of a sequence of statements, or \code{'eval'}
51 if it consists of a single expression.
52\end{funcdesc}
53
54\begin{funcdesc}{dir}{}
55 Without arguments, return the list of names in the current local
56 symbol table. With a module, class or class instance object as
57 argument (or anything else that has a \code{__dict__} attribute),
58 returns the list of names in that object's attribute dictionary.
59 The resulting list is sorted. For example:
60
61\bcode\begin{verbatim}
62>>> import sys
63>>> dir()
64['sys']
65>>> dir(sys)
66['argv', 'exit', 'modules', 'path', 'stderr', 'stdin', 'stdout']
67>>>
68\end{verbatim}\ecode
69\end{funcdesc}
70
71\begin{funcdesc}{divmod}{a\, b}
72 Take two numbers as arguments and return a pair of integers
73 consisting of their integer quotient and remainder. With mixed
74 operand types, the rules for binary arithmetic operators apply. For
75 plain and long integers, the result is the same as
76 \code{(\var{a} / \var{b}, \var{a} \%{} \var{b})}.
77 For floating point numbers the result is the same as
78 \code{(math.floor(\var{a} / \var{b}), \var{a} \%{} \var{b})}.
79\end{funcdesc}
80
81\begin{funcdesc}{eval}{s\, globals\, locals}
82 The arguments are a string and two optional dictionaries. The
83 string argument is parsed and evaluated as a Python expression
84 (technically speaking, a condition list) using the dictionaries as
85 global and local name space. The string must not contain null bytes
86 or newline characters. The return value is the
87 result of the expression. If the third argument is omitted it
88 defaults to the second. If both dictionaries are omitted, the
89 expression is executed in the environment where \code{eval} is
90 called. Syntax errors are reported as exceptions. Example:
91
92\bcode\begin{verbatim}
93>>> x = 1
94>>> print eval('x+1')
952
96>>>
97\end{verbatim}\ecode
98
99 This function can also be used to execute arbitrary code objects
100 (e.g. created by \code{compile()}). In this case pass a code
101 object instead of a string. The code object must have been compiled
102 passing \code{'eval'} to the \var{kind} argument.
103
104 Note: dynamic execution of statements is supported by the
105 \code{exec} statement.
106
107\end{funcdesc}
108
109\begin{funcdesc}{filter}{function\, list}
110Construct a list from those elements of \var{list} for which
111\var{function} returns true. If \var{list} is a string or a tuple,
112the result also has that type; otherwise it is always a list. If
113\var{function} is \code{None}, the identity function is assumed,
114i.e. all elements of \var{list} that are false (zero or empty) are
115removed.
116\end{funcdesc}
117
118\begin{funcdesc}{float}{x}
119 Convert a number to floating point. The argument may be a plain or
120 long integer or a floating point number.
121\end{funcdesc}
122
123\begin{funcdesc}{getattr}{object\, name}
124 The arguments are an object and a string. The string must be the
125 name
126 of one of the object's attributes. The result is the value of that
127 attribute. For example, \code{getattr(\var{x}, '\var{foobar}')} is equivalent to
128 \code{\var{x}.\var{foobar}}.
129\end{funcdesc}
130
131\begin{funcdesc}{hasattr}{object\, name}
132 The arguments are an object and a string. The result is 1 if the
133 string is the name of one of the object's attributes, 0 if not.
134 (This is implemented by calling \code{getattr(object, name)} and
135 seeing whether it raises an exception or not.)
136\end{funcdesc}
137
138\begin{funcdesc}{hash}{object}
139 Return the hash value of the object (if it has one). Hash values
140 are 32-bit integers. They are used to quickly compare dictionary
141 keys during a dictionary lookup. Numeric values that compare equal
142 have the same hash value (even if they are of different types, e.g.
143 1 and 1.0).
144\end{funcdesc}
145
146\begin{funcdesc}{hex}{x}
147 Convert a number to a hexadecimal string. The result is a valid
148 Python expression.
149\end{funcdesc}
150
151\begin{funcdesc}{id}{object}
152 Return the `identity' of an object. This is an integer which is
153 guaranteed to be unique and constant for this object during its
154 lifetime. (Two objects whose lifetimes are disjunct may have the
155 same id() value.) (Implementation note: this is the address of the
156 object.)
157\end{funcdesc}
158
159\begin{funcdesc}{input}{prompt}
160 Almost equivalent to \code{eval(raw_input(\var{prompt}))}. As for
161 \code{raw_input()}, the prompt argument is optional. The difference is
162 that a long input expression may be broken over multiple lines using the
163 backslash convention.
164\end{funcdesc}
165
166\begin{funcdesc}{int}{x}
167 Convert a number to a plain integer. The argument may be a plain or
168 long integer or a floating point number.
169\end{funcdesc}
170
171\begin{funcdesc}{len}{s}
172 Return the length (the number of items) of an object. The argument
173 may be a sequence (string, tuple or list) or a mapping (dictionary).
174\end{funcdesc}
175
176\begin{funcdesc}{long}{x}
177 Convert a number to a long integer. The argument may be a plain or
178 long integer or a floating point number.
179\end{funcdesc}
180
181\begin{funcdesc}{map}{function\, list\, ...}
182Apply \var{function} to every item of \var{list} and return a list
183of the results. If additional \var{list} arguments are passed,
184\var{function} must take that many arguments and is applied to
185the items of all lists in parallel; if a list is shorter than another
186it is assumed to be extended with \code{None} items. If
187\var{function} is \code{None}, the identity function is assumed; if
188there are multiple list arguments, \code{map} returns a list
189consisting of tuples containing the corresponding items from all lists
190(i.e. a kind of transpose operation). The \var{list} arguments may be
191any kind of sequence; the result is always a list.
192\end{funcdesc}
193
194\begin{funcdesc}{max}{s}
195 Return the largest item of a non-empty sequence (string, tuple or
196 list).
197\end{funcdesc}
198
199\begin{funcdesc}{min}{s}
200 Return the smallest item of a non-empty sequence (string, tuple or
201 list).
202\end{funcdesc}
203
204\begin{funcdesc}{oct}{x}
205 Convert a number to an octal string. The result is a valid Python
206 expression.
207\end{funcdesc}
208
Guido van Rossum041be051994-05-03 14:46:50 +0000209\begin{funcdesc}{open}{filename\, mode\, bufsize}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000210 Return a new file object (described earlier under Built-in Types).
Guido van Rossum041be051994-05-03 14:46:50 +0000211 The first two arguments are the same as for \code{stdio}'s
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000212 \code{fopen()}: \var{filename} is the file name to be opened,
213 \var{mode} indicates how the file is to be opened: \code{'r'} for
214 reading, \code{'w'} for writing (truncating an existing file), and
215 \code{'a'} opens it for appending. Modes \code{'r+'}, \code{'w+'} and
216 \code{'a+'} open the file for updating, provided the underlying
217 \code{stdio} library understands this. On systems that differentiate
218 between binary and text files, \code{'b'} appended to the mode opens
219 the file in binary mode. If the file cannot be opened, \code{IOError}
220 is raised.
Guido van Rossum041be051994-05-03 14:46:50 +0000221If \var{mode} is omitted, it defaults to \code{'r'}.
222The optional \var{bufsize} argument specifies the file's desired
223buffer size: 0 means unbuffered, 1 means line buffered, any other
224positive value means use a buffer of (approximately) that size. A
225negative \var{bufsize} means to use the system default, which is
226usually line buffered for for tty devices and fully buffered for other
227files.%
228\footnote{Specifying a buffer size currently has no effect on systems
229that don't have \code{setvbuf()}. The interface to specify the buffer
230size is not done using a method that calls \code{setvbuf()}, because
231that may dump core when called after any I/O has been performed, and
232there's no reliable way to determine whether this is the case.}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000233\end{funcdesc}
234
235\begin{funcdesc}{ord}{c}
236 Return the \ASCII{} value of a string of one character. E.g.,
237 \code{ord('a')} returns the integer \code{97}. This is the inverse of
238 \code{chr()}.
239\end{funcdesc}
240
241\begin{funcdesc}{pow}{x\, y}
242 Return \var{x} to the power \var{y}. The arguments must have
243 numeric types. With mixed operand types, the rules for binary
244 arithmetic operators apply. The effective operand type is also the
245 type of the result; if the result is not expressible in this type, the
246 function raises an exception; e.g., \code{pow(2, -1)} is not allowed.
247\end{funcdesc}
248
249\begin{funcdesc}{range}{start\, end\, step}
250 This is a versatile function to create lists containing arithmetic
251 progressions. It is most often used in \code{for} loops. The
252 arguments must be plain integers. If the \var{step} argument is
253 omitted, it defaults to \code{1}. If the \var{start} argument is
254 omitted, it defaults to \code{0}. The full form returns a list of
255 plain integers \code{[\var{start}, \var{start} + \var{step},
256 \var{start} + 2 * \var{step}, \ldots]}. If \var{step} is positive,
257 the last element is the largest \code{\var{start} + \var{i} *
258 \var{step}} less than \var{end}; if \var{step} is negative, the last
259 element is the largest \code{\var{start} + \var{i} * \var{step}}
260 greater than \var{end}. \var{step} must not be zero. Example:
261
262\bcode\begin{verbatim}
263>>> range(10)
264[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
265>>> range(1, 11)
266[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
267>>> range(0, 30, 5)
268[0, 5, 10, 15, 20, 25]
269>>> range(0, 10, 3)
270[0, 3, 6, 9]
271>>> range(0, -10, -1)
272[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
273>>> range(0)
274[]
275>>> range(1, 0)
276[]
277>>>
278\end{verbatim}\ecode
279\end{funcdesc}
280
281\begin{funcdesc}{raw_input}{prompt}
282 The string argument is optional; if present, it is written to
283 standard
284 output without a trailing newline. The function then reads a line
285 from input, converts it to a string (stripping a trailing newline),
286 and returns that. When \EOF{} is read, \code{EOFError} is raised.
287 Example:
288
289\bcode\begin{verbatim}
290>>> s = raw_input('--> ')
291--> Monty Python's Flying Circus
292>>> s
293'Monty Python\'s Flying Circus'
294>>>
295\end{verbatim}\ecode
296\end{funcdesc}
297
298\begin{funcdesc}{reduce}{function\, list\, initializer}
299Apply the binary \var{function} to the items of \var{list} so as to
300reduce the list to a single value. E.g.,
301\code{reduce(lambda x, y: x*y, \var{list}, 1)} returns the product of
302the elements of \var{list}. The optional \var{initializer} can be
303thought of as being prepended to \var{list} so as to allow reduction
304of an empty \var{list}. The \var{list} arguments may be any kind of
305sequence.
306\end{funcdesc}
307
308\begin{funcdesc}{reload}{module}
309 Re-parse and re-initialize an already imported \var{module}. The
310 argument must be a module object, so it must have been successfully
311 imported before. This is useful if you have edited the module source
312 file using an external editor and want to try out the new version
313 without leaving the Python interpreter. Note that if a module is
314 syntactically correct but its initialization fails, the first
315 \code{import} statement for it does not import the name, but does
316 create a (partially initialized) module object; to reload the module
317 you must first \code{import} it again (this will just make the
318 partially initialized module object available) before you can
319 \code{reload()} it.
320\end{funcdesc}
321
322\begin{funcdesc}{repr}{object}
323Return a string containing a printable representation of an object.
324This is the same value yielded by conversions (reverse quotes).
325It is sometimes useful to be able to access this operation as an
326ordinary function. For many types, this function makes an attempt
327to return a string that would yield an object with the same value
328when passed to \code{eval()}.
329\end{funcdesc}
330
331\begin{funcdesc}{round}{x\, n}
332 Return the floating point value \var{x} rounded to \var{n} digits
333 after the decimal point. If \var{n} is omitted, it defaults to zero.
334 The result is a floating point number. Values are rounded to the
335 closest multiple of 10 to the power minus \var{n}; if two multiples
336 are equally close, rounding is done away from 0 (so e.g.
337 \code{round(0.5)} is \code{1.0} and \code{round(-0.5)} is \code{-1.0}).
338\end{funcdesc}
339
340\begin{funcdesc}{setattr}{object\, name\, value}
341 This is the counterpart of \code{getattr}. The arguments are an
342 object, a string and an arbitrary value. The string must be the name
343 of one of the object's attributes. The function assigns the value to
344 the attribute, provided the object allows it. For example,
345 \code{setattr(\var{x}, '\var{foobar}', 123)} is equivalent to
346 \code{\var{x}.\var{foobar} = 123}.
347\end{funcdesc}
348
349\begin{funcdesc}{str}{object}
350Return a string containing a nicely printable representation of an
351object. For strings, this returns the string itself. The difference
352with \code{repr(\var{object}} is that \code{str(\var{object}} does not
353always attempt to return a string that is acceptable to \code{eval()};
354its goal is to return a printable string.
355\end{funcdesc}
356
357\begin{funcdesc}{type}{object}
358% XXXJH xref to buil-in objects here?
359 Return the type of an \var{object}. The return value is a type
360 object. There is not much you can do with type objects except compare
361 them to other type objects; e.g., the following checks if a variable
362 is a string:
363
364\bcode\begin{verbatim}
365>>> if type(x) == type(''): print 'It is a string'
366\end{verbatim}\ecode
367\end{funcdesc}
Guido van Rossum68cfbe71994-02-24 11:28:27 +0000368
Guido van Rossum17383111994-04-21 10:32:28 +0000369\begin{funcdesc}{vars}{}
370Without arguments, return a dictionary corresponding to the current
371local symbol table. With a module, class or class instance object as
372argument (or anything else that has a \code{__dict__} attribute),
373returns a dictionary corresponding to the object's symbol table.
374The returned dictionary should not be modified: the effects on the
375corresponding symbol table are undefined.%
376\footnote{In the current implementation, local variable bindings
377cannot normally be affected this way, but variables retrieved from
378other scopes can be. This may change.}
379\end{funcdesc}
380
Guido van Rossum68cfbe71994-02-24 11:28:27 +0000381\begin{funcdesc}{xrange}{start\, end\, step}
382This function is very similar to \code{range()}, but returns an
383``xrange object'' instead of a list. This is an opaque sequence type
384which yields the same values as the corresponding list, without
385actually storing them all simultaneously. The advantage of
386\code{xrange()} over \code{range()} is minimal (since \code{xrange()}
387still has to create the values when asked for them) except when a very
388large range is used on a memory-starved machine (e.g. DOS) or when all
389of the range's elements are never used (e.g. when the loop is usually
390terminated with \code{break}).
391\end{funcdesc}