blob: a8033635ecd7153af9ef4ac6ea39011728841ef4 [file] [log] [blame]
Benjamin Petersonee8712c2008-05-20 21:35:26 +00001from test.support import run_unittest
Christian Heimes53876d92008-04-19 00:31:39 +00002from test.test_math import parse_testfile, test_file
Guido van Rossumd8faa362007-04-27 19:54:29 +00003import unittest
Raymond Hettingerb67ad7e2004-06-14 07:40:10 +00004import cmath, math
Christian Heimes53876d92008-04-19 00:31:39 +00005from cmath import phase, polar, rect, pi
6
7INF = float('inf')
8NAN = float('nan')
9
10complex_zeros = [complex(x, y) for x in [0.0, -0.0] for y in [0.0, -0.0]]
11complex_infinities = [complex(x, y) for x, y in [
12 (INF, 0.0), # 1st quadrant
13 (INF, 2.3),
14 (INF, INF),
15 (2.3, INF),
16 (0.0, INF),
17 (-0.0, INF), # 2nd quadrant
18 (-2.3, INF),
19 (-INF, INF),
20 (-INF, 2.3),
21 (-INF, 0.0),
22 (-INF, -0.0), # 3rd quadrant
23 (-INF, -2.3),
24 (-INF, -INF),
25 (-2.3, -INF),
26 (-0.0, -INF),
27 (0.0, -INF), # 4th quadrant
28 (2.3, -INF),
29 (INF, -INF),
30 (INF, -2.3),
31 (INF, -0.0)
32 ]]
33complex_nans = [complex(x, y) for x, y in [
34 (NAN, -INF),
35 (NAN, -2.3),
36 (NAN, -0.0),
37 (NAN, 0.0),
38 (NAN, 2.3),
39 (NAN, INF),
40 (-INF, NAN),
41 (-2.3, NAN),
42 (-0.0, NAN),
43 (0.0, NAN),
44 (2.3, NAN),
45 (INF, NAN)
46 ]]
47
Guido van Rossumd8faa362007-04-27 19:54:29 +000048class CMathTests(unittest.TestCase):
49 # list of all functions in cmath
50 test_functions = [getattr(cmath, fname) for fname in [
51 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh',
52 'cos', 'cosh', 'exp', 'log', 'log10', 'sin', 'sinh',
53 'sqrt', 'tan', 'tanh']]
54 # test first and second arguments independently for 2-argument log
55 test_functions.append(lambda x : cmath.log(x, 1729. + 0j))
56 test_functions.append(lambda x : cmath.log(14.-27j, x))
Raymond Hettingerb67ad7e2004-06-14 07:40:10 +000057
Christian Heimes53876d92008-04-19 00:31:39 +000058 def setUp(self):
59 self.test_values = open(test_file)
60
61 def tearDown(self):
62 self.test_values.close()
63
Mark Dickinson4d1e50d2009-12-20 20:37:56 +000064 def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
65 msg=None):
66 """Fail if the two floating-point numbers are not almost equal.
67
68 Determine whether floating-point values a and b are equal to within
69 a (small) rounding error. The default values for rel_err and
70 abs_err are chosen to be suitable for platforms where a float is
71 represented by an IEEE 754 double. They allow an error of between
72 9 and 19 ulps.
73 """
Christian Heimes53876d92008-04-19 00:31:39 +000074
75 # special values testing
76 if math.isnan(a):
77 if math.isnan(b):
78 return
Mark Dickinson4d1e50d2009-12-20 20:37:56 +000079 self.fail(msg or '{!r} should be nan'.format(b))
Christian Heimes53876d92008-04-19 00:31:39 +000080
81 if math.isinf(a):
82 if a == b:
83 return
Mark Dickinson4d1e50d2009-12-20 20:37:56 +000084 self.fail(msg or 'finite result where infinity expected: '
85 'expected {!r}, got {!r}'.format(a, b))
Christian Heimes53876d92008-04-19 00:31:39 +000086
Mark Dickinson4d1e50d2009-12-20 20:37:56 +000087 # if both a and b are zero, check whether they have the same sign
88 # (in theory there are examples where it would be legitimate for a
89 # and b to have opposite signs; in practice these hardly ever
90 # occur).
Christian Heimes53876d92008-04-19 00:31:39 +000091 if not a and not b:
Mark Dickinson4d1e50d2009-12-20 20:37:56 +000092 if math.copysign(1., a) != math.copysign(1., b):
93 self.fail(msg or 'zero has wrong sign: expected {!r}, '
94 'got {!r}'.format(a, b))
Christian Heimes53876d92008-04-19 00:31:39 +000095
Mark Dickinson4d1e50d2009-12-20 20:37:56 +000096 # if a-b overflows, or b is infinite, return False. Again, in
97 # theory there are examples where a is within a few ulps of the
98 # max representable float, and then b could legitimately be
99 # infinite. In practice these examples are rare.
Christian Heimes53876d92008-04-19 00:31:39 +0000100 try:
101 absolute_error = abs(b-a)
102 except OverflowError:
103 pass
104 else:
Mark Dickinson4d1e50d2009-12-20 20:37:56 +0000105 # test passes if either the absolute error or the relative
106 # error is sufficiently small. The defaults amount to an
107 # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
108 # machine.
Christian Heimes53876d92008-04-19 00:31:39 +0000109 if absolute_error <= max(abs_err, rel_err * abs(a)):
110 return
Mark Dickinson4d1e50d2009-12-20 20:37:56 +0000111 self.fail(msg or
112 '{!r} and {!r} are not sufficiently close'.format(a, b))
Raymond Hettingerb67ad7e2004-06-14 07:40:10 +0000113
Guido van Rossumd8faa362007-04-27 19:54:29 +0000114 def test_constants(self):
115 e_expected = 2.71828182845904523536
116 pi_expected = 3.14159265358979323846
Mark Dickinsonda892452009-12-20 19:56:09 +0000117 self.assertAlmostEqual(cmath.pi, pi_expected, places=9,
Mark Dickinson4d1e50d2009-12-20 20:37:56 +0000118 msg="cmath.pi is {}; should be {}".format(cmath.pi, pi_expected))
Mark Dickinsonda892452009-12-20 19:56:09 +0000119 self.assertAlmostEqual(cmath.e, e_expected, places=9,
Mark Dickinson4d1e50d2009-12-20 20:37:56 +0000120 msg="cmath.e is {}; should be {}".format(cmath.e, e_expected))
Roger E. Masse3daddda1996-12-09 22:59:15 +0000121
Guido van Rossumd8faa362007-04-27 19:54:29 +0000122 def test_user_object(self):
123 # Test automatic calling of __complex__ and __float__ by cmath
124 # functions
Roger E. Massefab8ab81996-12-20 22:36:52 +0000125
Guido van Rossumd8faa362007-04-27 19:54:29 +0000126 # some random values to use as test values; we avoid values
127 # for which any of the functions in cmath is undefined
128 # (i.e. 0., 1., -1., 1j, -1j) or would cause overflow
129 cx_arg = 4.419414439 + 1.497100113j
130 flt_arg = -6.131677725
Roger E. Massefab8ab81996-12-20 22:36:52 +0000131
Guido van Rossumd8faa362007-04-27 19:54:29 +0000132 # a variety of non-complex numbers, used to check that
133 # non-complex return values from __complex__ give an error
134 non_complexes = ["not complex", 1, 5, 2., None,
135 object(), NotImplemented]
136
137 # Now we introduce a variety of classes whose instances might
138 # end up being passed to the cmath functions
139
140 # usual case: new-style class implementing __complex__
141 class MyComplex(object):
142 def __init__(self, value):
143 self.value = value
144 def __complex__(self):
145 return self.value
146
147 # old-style class implementing __complex__
148 class MyComplexOS:
149 def __init__(self, value):
150 self.value = value
151 def __complex__(self):
152 return self.value
153
154 # classes for which __complex__ raises an exception
155 class SomeException(Exception):
156 pass
157 class MyComplexException(object):
158 def __complex__(self):
159 raise SomeException
160 class MyComplexExceptionOS:
161 def __complex__(self):
162 raise SomeException
163
164 # some classes not providing __float__ or __complex__
165 class NeitherComplexNorFloat(object):
166 pass
167 class NeitherComplexNorFloatOS:
168 pass
169 class MyInt(object):
170 def __int__(self): return 2
Guido van Rossumd8faa362007-04-27 19:54:29 +0000171 def __index__(self): return 2
172 class MyIntOS:
173 def __int__(self): return 2
Guido van Rossumd8faa362007-04-27 19:54:29 +0000174 def __index__(self): return 2
175
176 # other possible combinations of __float__ and __complex__
177 # that should work
178 class FloatAndComplex(object):
179 def __float__(self):
180 return flt_arg
181 def __complex__(self):
182 return cx_arg
183 class FloatAndComplexOS:
184 def __float__(self):
185 return flt_arg
186 def __complex__(self):
187 return cx_arg
188 class JustFloat(object):
189 def __float__(self):
190 return flt_arg
191 class JustFloatOS:
192 def __float__(self):
193 return flt_arg
194
195 for f in self.test_functions:
196 # usual usage
Christian Heimes53876d92008-04-19 00:31:39 +0000197 self.assertEqual(f(MyComplex(cx_arg)), f(cx_arg))
198 self.assertEqual(f(MyComplexOS(cx_arg)), f(cx_arg))
Guido van Rossumd8faa362007-04-27 19:54:29 +0000199 # other combinations of __float__ and __complex__
Christian Heimes53876d92008-04-19 00:31:39 +0000200 self.assertEqual(f(FloatAndComplex()), f(cx_arg))
201 self.assertEqual(f(FloatAndComplexOS()), f(cx_arg))
202 self.assertEqual(f(JustFloat()), f(flt_arg))
203 self.assertEqual(f(JustFloatOS()), f(flt_arg))
Guido van Rossumd8faa362007-04-27 19:54:29 +0000204 # TypeError should be raised for classes not providing
205 # either __complex__ or __float__, even if they provide
Mark Dickinsoncce2f212009-01-15 19:32:23 +0000206 # __int__ or __index__. An old-style class
Guido van Rossumd8faa362007-04-27 19:54:29 +0000207 # currently raises AttributeError instead of a TypeError;
208 # this could be considered a bug.
209 self.assertRaises(TypeError, f, NeitherComplexNorFloat())
210 self.assertRaises(TypeError, f, MyInt())
211 self.assertRaises(Exception, f, NeitherComplexNorFloatOS())
212 self.assertRaises(Exception, f, MyIntOS())
213 # non-complex return value from __complex__ -> TypeError
214 for bad_complex in non_complexes:
215 self.assertRaises(TypeError, f, MyComplex(bad_complex))
216 self.assertRaises(TypeError, f, MyComplexOS(bad_complex))
217 # exceptions in __complex__ should be propagated correctly
218 self.assertRaises(SomeException, f, MyComplexException())
219 self.assertRaises(SomeException, f, MyComplexExceptionOS())
220
221 def test_input_type(self):
222 # ints and longs should be acceptable inputs to all cmath
223 # functions, by virtue of providing a __float__ method
224 for f in self.test_functions:
225 for arg in [2, 2.]:
Christian Heimes53876d92008-04-19 00:31:39 +0000226 self.assertEqual(f(arg), f(arg.__float__()))
Guido van Rossumd8faa362007-04-27 19:54:29 +0000227
228 # but strings should give a TypeError
229 for f in self.test_functions:
230 for arg in ["a", "long_string", "0", "1j", ""]:
231 self.assertRaises(TypeError, f, arg)
232
233 def test_cmath_matches_math(self):
234 # check that corresponding cmath and math functions are equal
235 # for floats in the appropriate range
236
237 # test_values in (0, 1)
238 test_values = [0.01, 0.1, 0.2, 0.5, 0.9, 0.99]
239
240 # test_values for functions defined on [-1., 1.]
241 unit_interval = test_values + [-x for x in test_values] + \
242 [0., 1., -1.]
243
244 # test_values for log, log10, sqrt
245 positive = test_values + [1.] + [1./x for x in test_values]
246 nonnegative = [0.] + positive
247
248 # test_values for functions defined on the whole real line
249 real_line = [0.] + positive + [-x for x in positive]
250
251 test_functions = {
252 'acos' : unit_interval,
253 'asin' : unit_interval,
254 'atan' : real_line,
255 'cos' : real_line,
256 'cosh' : real_line,
257 'exp' : real_line,
258 'log' : positive,
259 'log10' : positive,
260 'sin' : real_line,
261 'sinh' : real_line,
262 'sqrt' : nonnegative,
263 'tan' : real_line,
264 'tanh' : real_line}
265
266 for fn, values in test_functions.items():
267 float_fn = getattr(math, fn)
268 complex_fn = getattr(cmath, fn)
269 for v in values:
Christian Heimes53876d92008-04-19 00:31:39 +0000270 z = complex_fn(v)
271 self.rAssertAlmostEqual(float_fn(v), z.real)
272 self.assertEqual(0., z.imag)
Guido van Rossumd8faa362007-04-27 19:54:29 +0000273
274 # test two-argument version of log with various bases
275 for base in [0.5, 2., 10.]:
276 for v in positive:
Christian Heimes53876d92008-04-19 00:31:39 +0000277 z = cmath.log(v, base)
278 self.rAssertAlmostEqual(math.log(v, base), z.real)
279 self.assertEqual(0., z.imag)
280
281 def test_specific_values(self):
282 if not float.__getformat__("double").startswith("IEEE"):
283 return
284
285 def rect_complex(z):
286 """Wrapped version of rect that accepts a complex number instead of
287 two float arguments."""
288 return cmath.rect(z.real, z.imag)
289
290 def polar_complex(z):
291 """Wrapped version of polar that returns a complex number instead of
292 two floats."""
293 return complex(*polar(z))
294
295 for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file):
296 arg = complex(ar, ai)
297 expected = complex(er, ei)
298 if fn == 'rect':
299 function = rect_complex
300 elif fn == 'polar':
301 function = polar_complex
302 else:
303 function = getattr(cmath, fn)
304 if 'divide-by-zero' in flags or 'invalid' in flags:
305 try:
306 actual = function(arg)
307 except ValueError:
308 continue
309 else:
Mark Dickinson4d1e50d2009-12-20 20:37:56 +0000310 self.fail('ValueError not raised in test '
311 '{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai))
Christian Heimes53876d92008-04-19 00:31:39 +0000312
313 if 'overflow' in flags:
314 try:
315 actual = function(arg)
316 except OverflowError:
317 continue
318 else:
Mark Dickinson4d1e50d2009-12-20 20:37:56 +0000319 self.fail('OverflowError not raised in test '
320 '{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai))
Christian Heimes53876d92008-04-19 00:31:39 +0000321
322 actual = function(arg)
323
324 if 'ignore-real-sign' in flags:
325 actual = complex(abs(actual.real), actual.imag)
326 expected = complex(abs(expected.real), expected.imag)
327 if 'ignore-imag-sign' in flags:
328 actual = complex(actual.real, abs(actual.imag))
329 expected = complex(expected.real, abs(expected.imag))
330
331 # for the real part of the log function, we allow an
332 # absolute error of up to 2e-15.
333 if fn in ('log', 'log10'):
334 real_abs_err = 2e-15
335 else:
336 real_abs_err = 5e-323
337
Mark Dickinson4d1e50d2009-12-20 20:37:56 +0000338 error_message = (
339 '{}: {}(complex({!r}, {!r}))\n'
340 'Expected: complex({!r}, {!r})\n'
341 'Received: complex({!r}, {!r})\n'
342 'Received value insufficiently close to expected value.'
343 ).format(id, fn, ar, ai,
344 expected.real, expected.imag,
345 actual.real, actual.imag)
346 self.rAssertAlmostEqual(expected.real, actual.real,
347 abs_err=real_abs_err,
348 msg=error_message)
349 self.rAssertAlmostEqual(expected.imag, actual.imag,
350 msg=error_message)
Christian Heimes53876d92008-04-19 00:31:39 +0000351
352 def assertCISEqual(self, a, b):
353 eps = 1E-7
354 if abs(a[0] - b[0]) > eps or abs(a[1] - b[1]) > eps:
355 self.fail((a ,b))
356
357 def test_polar(self):
358 self.assertCISEqual(polar(0), (0., 0.))
359 self.assertCISEqual(polar(1.), (1., 0.))
360 self.assertCISEqual(polar(-1.), (1., pi))
361 self.assertCISEqual(polar(1j), (1., pi/2))
362 self.assertCISEqual(polar(-1j), (1., -pi/2))
363
364 def test_phase(self):
365 self.assertAlmostEqual(phase(0), 0.)
366 self.assertAlmostEqual(phase(1.), 0.)
367 self.assertAlmostEqual(phase(-1.), pi)
368 self.assertAlmostEqual(phase(-1.+1E-300j), pi)
369 self.assertAlmostEqual(phase(-1.-1E-300j), -pi)
370 self.assertAlmostEqual(phase(1j), pi/2)
371 self.assertAlmostEqual(phase(-1j), -pi/2)
372
373 # zeros
374 self.assertEqual(phase(complex(0.0, 0.0)), 0.0)
375 self.assertEqual(phase(complex(0.0, -0.0)), -0.0)
376 self.assertEqual(phase(complex(-0.0, 0.0)), pi)
377 self.assertEqual(phase(complex(-0.0, -0.0)), -pi)
378
379 # infinities
380 self.assertAlmostEqual(phase(complex(-INF, -0.0)), -pi)
381 self.assertAlmostEqual(phase(complex(-INF, -2.3)), -pi)
382 self.assertAlmostEqual(phase(complex(-INF, -INF)), -0.75*pi)
383 self.assertAlmostEqual(phase(complex(-2.3, -INF)), -pi/2)
384 self.assertAlmostEqual(phase(complex(-0.0, -INF)), -pi/2)
385 self.assertAlmostEqual(phase(complex(0.0, -INF)), -pi/2)
386 self.assertAlmostEqual(phase(complex(2.3, -INF)), -pi/2)
387 self.assertAlmostEqual(phase(complex(INF, -INF)), -pi/4)
388 self.assertEqual(phase(complex(INF, -2.3)), -0.0)
389 self.assertEqual(phase(complex(INF, -0.0)), -0.0)
390 self.assertEqual(phase(complex(INF, 0.0)), 0.0)
391 self.assertEqual(phase(complex(INF, 2.3)), 0.0)
392 self.assertAlmostEqual(phase(complex(INF, INF)), pi/4)
393 self.assertAlmostEqual(phase(complex(2.3, INF)), pi/2)
394 self.assertAlmostEqual(phase(complex(0.0, INF)), pi/2)
395 self.assertAlmostEqual(phase(complex(-0.0, INF)), pi/2)
396 self.assertAlmostEqual(phase(complex(-2.3, INF)), pi/2)
397 self.assertAlmostEqual(phase(complex(-INF, INF)), 0.75*pi)
398 self.assertAlmostEqual(phase(complex(-INF, 2.3)), pi)
399 self.assertAlmostEqual(phase(complex(-INF, 0.0)), pi)
400
401 # real or imaginary part NaN
402 for z in complex_nans:
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000403 self.assertTrue(math.isnan(phase(z)))
Christian Heimes53876d92008-04-19 00:31:39 +0000404
405 def test_abs(self):
406 # zeros
407 for z in complex_zeros:
408 self.assertEqual(abs(z), 0.0)
409
410 # infinities
411 for z in complex_infinities:
412 self.assertEqual(abs(z), INF)
413
414 # real or imaginary part NaN
415 self.assertEqual(abs(complex(NAN, -INF)), INF)
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000416 self.assertTrue(math.isnan(abs(complex(NAN, -2.3))))
417 self.assertTrue(math.isnan(abs(complex(NAN, -0.0))))
418 self.assertTrue(math.isnan(abs(complex(NAN, 0.0))))
419 self.assertTrue(math.isnan(abs(complex(NAN, 2.3))))
Christian Heimes53876d92008-04-19 00:31:39 +0000420 self.assertEqual(abs(complex(NAN, INF)), INF)
421 self.assertEqual(abs(complex(-INF, NAN)), INF)
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000422 self.assertTrue(math.isnan(abs(complex(-2.3, NAN))))
423 self.assertTrue(math.isnan(abs(complex(-0.0, NAN))))
424 self.assertTrue(math.isnan(abs(complex(0.0, NAN))))
425 self.assertTrue(math.isnan(abs(complex(2.3, NAN))))
Christian Heimes53876d92008-04-19 00:31:39 +0000426 self.assertEqual(abs(complex(INF, NAN)), INF)
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000427 self.assertTrue(math.isnan(abs(complex(NAN, NAN))))
Christian Heimes53876d92008-04-19 00:31:39 +0000428
429 # result overflows
430 if float.__getformat__("double").startswith("IEEE"):
431 self.assertRaises(OverflowError, abs, complex(1.4e308, 1.4e308))
432
433 def assertCEqual(self, a, b):
434 eps = 1E-7
435 if abs(a.real - b[0]) > eps or abs(a.imag - b[1]) > eps:
436 self.fail((a ,b))
437
438 def test_rect(self):
439 self.assertCEqual(rect(0, 0), (0, 0))
440 self.assertCEqual(rect(1, 0), (1., 0))
441 self.assertCEqual(rect(1, -pi), (-1., 0))
442 self.assertCEqual(rect(1, pi/2), (0, 1.))
443 self.assertCEqual(rect(1, -pi/2), (0, -1.))
444
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000445 def test_isfinite(self):
446 real_vals = [float('-inf'), -2.3, -0.0,
447 0.0, 2.3, float('inf'), float('nan')]
448 for x in real_vals:
449 for y in real_vals:
450 z = complex(x, y)
Mark Dickinson68c5de62010-07-11 19:12:10 +0000451 self.assertEqual(cmath.isfinite(z),
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000452 math.isfinite(x) and math.isfinite(y))
453
Christian Heimes53876d92008-04-19 00:31:39 +0000454 def test_isnan(self):
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000455 self.assertFalse(cmath.isnan(1))
456 self.assertFalse(cmath.isnan(1j))
457 self.assertFalse(cmath.isnan(INF))
458 self.assertTrue(cmath.isnan(NAN))
459 self.assertTrue(cmath.isnan(complex(NAN, 0)))
460 self.assertTrue(cmath.isnan(complex(0, NAN)))
461 self.assertTrue(cmath.isnan(complex(NAN, NAN)))
462 self.assertTrue(cmath.isnan(complex(NAN, INF)))
463 self.assertTrue(cmath.isnan(complex(INF, NAN)))
Christian Heimes53876d92008-04-19 00:31:39 +0000464
465 def test_isinf(self):
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000466 self.assertFalse(cmath.isinf(1))
467 self.assertFalse(cmath.isinf(1j))
468 self.assertFalse(cmath.isinf(NAN))
469 self.assertTrue(cmath.isinf(INF))
470 self.assertTrue(cmath.isinf(complex(INF, 0)))
471 self.assertTrue(cmath.isinf(complex(0, INF)))
472 self.assertTrue(cmath.isinf(complex(INF, INF)))
473 self.assertTrue(cmath.isinf(complex(NAN, INF)))
474 self.assertTrue(cmath.isinf(complex(INF, NAN)))
Christian Heimes53876d92008-04-19 00:31:39 +0000475
Guido van Rossumd8faa362007-04-27 19:54:29 +0000476
477def test_main():
478 run_unittest(CMathTests)
479
480if __name__ == "__main__":
481 test_main()