blob: 3c34fecd90492b58d764e65bb7c3db23f4ae3e76 [file] [log] [blame]
Benjamin Petersonee8712c2008-05-20 21:35:26 +00001from test.support import run_unittest
Christian Heimes53876d92008-04-19 00:31:39 +00002from test.test_math import parse_testfile, test_file
Guido van Rossumd8faa362007-04-27 19:54:29 +00003import unittest
Christian Heimes53876d92008-04-19 00:31:39 +00004import os, sys
Raymond Hettingerb67ad7e2004-06-14 07:40:10 +00005import cmath, math
Christian Heimes53876d92008-04-19 00:31:39 +00006from cmath import phase, polar, rect, pi
7
8INF = float('inf')
9NAN = float('nan')
10
11complex_zeros = [complex(x, y) for x in [0.0, -0.0] for y in [0.0, -0.0]]
12complex_infinities = [complex(x, y) for x, y in [
13 (INF, 0.0), # 1st quadrant
14 (INF, 2.3),
15 (INF, INF),
16 (2.3, INF),
17 (0.0, INF),
18 (-0.0, INF), # 2nd quadrant
19 (-2.3, INF),
20 (-INF, INF),
21 (-INF, 2.3),
22 (-INF, 0.0),
23 (-INF, -0.0), # 3rd quadrant
24 (-INF, -2.3),
25 (-INF, -INF),
26 (-2.3, -INF),
27 (-0.0, -INF),
28 (0.0, -INF), # 4th quadrant
29 (2.3, -INF),
30 (INF, -INF),
31 (INF, -2.3),
32 (INF, -0.0)
33 ]]
34complex_nans = [complex(x, y) for x, y in [
35 (NAN, -INF),
36 (NAN, -2.3),
37 (NAN, -0.0),
38 (NAN, 0.0),
39 (NAN, 2.3),
40 (NAN, INF),
41 (-INF, NAN),
42 (-2.3, NAN),
43 (-0.0, NAN),
44 (0.0, NAN),
45 (2.3, NAN),
46 (INF, NAN)
47 ]]
48
49def almostEqualF(a, b, rel_err=2e-15, abs_err = 5e-323):
50 """Determine whether floating-point values a and b are equal to within
51 a (small) rounding error. The default values for rel_err and
52 abs_err are chosen to be suitable for platforms where a float is
53 represented by an IEEE 754 double. They allow an error of between
54 9 and 19 ulps."""
55
56 # special values testing
57 if math.isnan(a):
58 return math.isnan(b)
59 if math.isinf(a):
60 return a == b
61
62 # if both a and b are zero, check whether they have the same sign
63 # (in theory there are examples where it would be legitimate for a
64 # and b to have opposite signs; in practice these hardly ever
65 # occur).
66 if not a and not b:
67 return math.copysign(1., a) == math.copysign(1., b)
68
69 # if a-b overflows, or b is infinite, return False. Again, in
70 # theory there are examples where a is within a few ulps of the
71 # max representable float, and then b could legitimately be
72 # infinite. In practice these examples are rare.
73 try:
74 absolute_error = abs(b-a)
75 except OverflowError:
76 return False
77 else:
78 return absolute_error <= max(abs_err, rel_err * abs(a))
Raymond Hettingerb67ad7e2004-06-14 07:40:10 +000079
Guido van Rossumd8faa362007-04-27 19:54:29 +000080class CMathTests(unittest.TestCase):
81 # list of all functions in cmath
82 test_functions = [getattr(cmath, fname) for fname in [
83 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh',
84 'cos', 'cosh', 'exp', 'log', 'log10', 'sin', 'sinh',
85 'sqrt', 'tan', 'tanh']]
86 # test first and second arguments independently for 2-argument log
87 test_functions.append(lambda x : cmath.log(x, 1729. + 0j))
88 test_functions.append(lambda x : cmath.log(14.-27j, x))
Raymond Hettingerb67ad7e2004-06-14 07:40:10 +000089
Christian Heimes53876d92008-04-19 00:31:39 +000090 def setUp(self):
91 self.test_values = open(test_file)
92
93 def tearDown(self):
94 self.test_values.close()
95
96 def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323):
97 """Check that two floating-point numbers are almost equal."""
98
99 # special values testing
100 if math.isnan(a):
101 if math.isnan(b):
102 return
103 self.fail("%s should be nan" % repr(b))
104
105 if math.isinf(a):
106 if a == b:
107 return
108 self.fail("finite result where infinity excpected: "
109 "expected %s, got %s" % (repr(a), repr(b)))
110
111 if not a and not b:
112 if math.atan2(a, -1.) != math.atan2(b, -1.):
113 self.fail("zero has wrong sign: expected %s, got %s" %
114 (repr(a), repr(b)))
115
116 # test passes if either the absolute error or the relative
117 # error is sufficiently small. The defaults amount to an
118 # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
119 # machine.
120
121 try:
122 absolute_error = abs(b-a)
123 except OverflowError:
124 pass
125 else:
126 if absolute_error <= max(abs_err, rel_err * abs(a)):
127 return
128 self.fail("%s and %s are not sufficiently close" % (repr(a), repr(b)))
Raymond Hettingerb67ad7e2004-06-14 07:40:10 +0000129
Guido van Rossumd8faa362007-04-27 19:54:29 +0000130 def test_constants(self):
131 e_expected = 2.71828182845904523536
132 pi_expected = 3.14159265358979323846
Christian Heimes53876d92008-04-19 00:31:39 +0000133 self.assertAlmostEqual(cmath.pi, pi_expected)
134 self.assertAlmostEqual(cmath.e, e_expected)
Roger E. Masse3daddda1996-12-09 22:59:15 +0000135
Guido van Rossumd8faa362007-04-27 19:54:29 +0000136 def test_user_object(self):
137 # Test automatic calling of __complex__ and __float__ by cmath
138 # functions
Roger E. Massefab8ab81996-12-20 22:36:52 +0000139
Guido van Rossumd8faa362007-04-27 19:54:29 +0000140 # some random values to use as test values; we avoid values
141 # for which any of the functions in cmath is undefined
142 # (i.e. 0., 1., -1., 1j, -1j) or would cause overflow
143 cx_arg = 4.419414439 + 1.497100113j
144 flt_arg = -6.131677725
Roger E. Massefab8ab81996-12-20 22:36:52 +0000145
Guido van Rossumd8faa362007-04-27 19:54:29 +0000146 # a variety of non-complex numbers, used to check that
147 # non-complex return values from __complex__ give an error
148 non_complexes = ["not complex", 1, 5, 2., None,
149 object(), NotImplemented]
150
151 # Now we introduce a variety of classes whose instances might
152 # end up being passed to the cmath functions
153
154 # usual case: new-style class implementing __complex__
155 class MyComplex(object):
156 def __init__(self, value):
157 self.value = value
158 def __complex__(self):
159 return self.value
160
161 # old-style class implementing __complex__
162 class MyComplexOS:
163 def __init__(self, value):
164 self.value = value
165 def __complex__(self):
166 return self.value
167
168 # classes for which __complex__ raises an exception
169 class SomeException(Exception):
170 pass
171 class MyComplexException(object):
172 def __complex__(self):
173 raise SomeException
174 class MyComplexExceptionOS:
175 def __complex__(self):
176 raise SomeException
177
178 # some classes not providing __float__ or __complex__
179 class NeitherComplexNorFloat(object):
180 pass
181 class NeitherComplexNorFloatOS:
182 pass
183 class MyInt(object):
184 def __int__(self): return 2
185 def __long__(self): return 2
186 def __index__(self): return 2
187 class MyIntOS:
188 def __int__(self): return 2
189 def __long__(self): return 2
190 def __index__(self): return 2
191
192 # other possible combinations of __float__ and __complex__
193 # that should work
194 class FloatAndComplex(object):
195 def __float__(self):
196 return flt_arg
197 def __complex__(self):
198 return cx_arg
199 class FloatAndComplexOS:
200 def __float__(self):
201 return flt_arg
202 def __complex__(self):
203 return cx_arg
204 class JustFloat(object):
205 def __float__(self):
206 return flt_arg
207 class JustFloatOS:
208 def __float__(self):
209 return flt_arg
210
211 for f in self.test_functions:
212 # usual usage
Christian Heimes53876d92008-04-19 00:31:39 +0000213 self.assertEqual(f(MyComplex(cx_arg)), f(cx_arg))
214 self.assertEqual(f(MyComplexOS(cx_arg)), f(cx_arg))
Guido van Rossumd8faa362007-04-27 19:54:29 +0000215 # other combinations of __float__ and __complex__
Christian Heimes53876d92008-04-19 00:31:39 +0000216 self.assertEqual(f(FloatAndComplex()), f(cx_arg))
217 self.assertEqual(f(FloatAndComplexOS()), f(cx_arg))
218 self.assertEqual(f(JustFloat()), f(flt_arg))
219 self.assertEqual(f(JustFloatOS()), f(flt_arg))
Guido van Rossumd8faa362007-04-27 19:54:29 +0000220 # TypeError should be raised for classes not providing
221 # either __complex__ or __float__, even if they provide
222 # __int__, __long__ or __index__. An old-style class
223 # currently raises AttributeError instead of a TypeError;
224 # this could be considered a bug.
225 self.assertRaises(TypeError, f, NeitherComplexNorFloat())
226 self.assertRaises(TypeError, f, MyInt())
227 self.assertRaises(Exception, f, NeitherComplexNorFloatOS())
228 self.assertRaises(Exception, f, MyIntOS())
229 # non-complex return value from __complex__ -> TypeError
230 for bad_complex in non_complexes:
231 self.assertRaises(TypeError, f, MyComplex(bad_complex))
232 self.assertRaises(TypeError, f, MyComplexOS(bad_complex))
233 # exceptions in __complex__ should be propagated correctly
234 self.assertRaises(SomeException, f, MyComplexException())
235 self.assertRaises(SomeException, f, MyComplexExceptionOS())
236
237 def test_input_type(self):
238 # ints and longs should be acceptable inputs to all cmath
239 # functions, by virtue of providing a __float__ method
240 for f in self.test_functions:
241 for arg in [2, 2.]:
Christian Heimes53876d92008-04-19 00:31:39 +0000242 self.assertEqual(f(arg), f(arg.__float__()))
Guido van Rossumd8faa362007-04-27 19:54:29 +0000243
244 # but strings should give a TypeError
245 for f in self.test_functions:
246 for arg in ["a", "long_string", "0", "1j", ""]:
247 self.assertRaises(TypeError, f, arg)
248
249 def test_cmath_matches_math(self):
250 # check that corresponding cmath and math functions are equal
251 # for floats in the appropriate range
252
253 # test_values in (0, 1)
254 test_values = [0.01, 0.1, 0.2, 0.5, 0.9, 0.99]
255
256 # test_values for functions defined on [-1., 1.]
257 unit_interval = test_values + [-x for x in test_values] + \
258 [0., 1., -1.]
259
260 # test_values for log, log10, sqrt
261 positive = test_values + [1.] + [1./x for x in test_values]
262 nonnegative = [0.] + positive
263
264 # test_values for functions defined on the whole real line
265 real_line = [0.] + positive + [-x for x in positive]
266
267 test_functions = {
268 'acos' : unit_interval,
269 'asin' : unit_interval,
270 'atan' : real_line,
271 'cos' : real_line,
272 'cosh' : real_line,
273 'exp' : real_line,
274 'log' : positive,
275 'log10' : positive,
276 'sin' : real_line,
277 'sinh' : real_line,
278 'sqrt' : nonnegative,
279 'tan' : real_line,
280 'tanh' : real_line}
281
282 for fn, values in test_functions.items():
283 float_fn = getattr(math, fn)
284 complex_fn = getattr(cmath, fn)
285 for v in values:
Christian Heimes53876d92008-04-19 00:31:39 +0000286 z = complex_fn(v)
287 self.rAssertAlmostEqual(float_fn(v), z.real)
288 self.assertEqual(0., z.imag)
Guido van Rossumd8faa362007-04-27 19:54:29 +0000289
290 # test two-argument version of log with various bases
291 for base in [0.5, 2., 10.]:
292 for v in positive:
Christian Heimes53876d92008-04-19 00:31:39 +0000293 z = cmath.log(v, base)
294 self.rAssertAlmostEqual(math.log(v, base), z.real)
295 self.assertEqual(0., z.imag)
296
297 def test_specific_values(self):
298 if not float.__getformat__("double").startswith("IEEE"):
299 return
300
301 def rect_complex(z):
302 """Wrapped version of rect that accepts a complex number instead of
303 two float arguments."""
304 return cmath.rect(z.real, z.imag)
305
306 def polar_complex(z):
307 """Wrapped version of polar that returns a complex number instead of
308 two floats."""
309 return complex(*polar(z))
310
311 for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file):
312 arg = complex(ar, ai)
313 expected = complex(er, ei)
314 if fn == 'rect':
315 function = rect_complex
316 elif fn == 'polar':
317 function = polar_complex
318 else:
319 function = getattr(cmath, fn)
320 if 'divide-by-zero' in flags or 'invalid' in flags:
321 try:
322 actual = function(arg)
323 except ValueError:
324 continue
325 else:
326 test_str = "%s: %s(complex(%r, %r))" % (id, fn, ar, ai)
327 self.fail('ValueError not raised in test %s' % test_str)
328
329 if 'overflow' in flags:
330 try:
331 actual = function(arg)
332 except OverflowError:
333 continue
334 else:
335 test_str = "%s: %s(complex(%r, %r))" % (id, fn, ar, ai)
336 self.fail('OverflowError not raised in test %s' % test_str)
337
338 actual = function(arg)
339
340 if 'ignore-real-sign' in flags:
341 actual = complex(abs(actual.real), actual.imag)
342 expected = complex(abs(expected.real), expected.imag)
343 if 'ignore-imag-sign' in flags:
344 actual = complex(actual.real, abs(actual.imag))
345 expected = complex(expected.real, abs(expected.imag))
346
347 # for the real part of the log function, we allow an
348 # absolute error of up to 2e-15.
349 if fn in ('log', 'log10'):
350 real_abs_err = 2e-15
351 else:
352 real_abs_err = 5e-323
353
354 if not (almostEqualF(expected.real, actual.real,
355 abs_err = real_abs_err) and
356 almostEqualF(expected.imag, actual.imag)):
357 error_message = (
358 "%s: %s(complex(%r, %r))\n" % (id, fn, ar, ai) +
359 "Expected: complex(%r, %r)\n" %
360 (expected.real, expected.imag) +
361 "Received: complex(%r, %r)\n" %
362 (actual.real, actual.imag) +
363 "Received value insufficiently close to expected value.")
364 self.fail(error_message)
365
366 def assertCISEqual(self, a, b):
367 eps = 1E-7
368 if abs(a[0] - b[0]) > eps or abs(a[1] - b[1]) > eps:
369 self.fail((a ,b))
370
371 def test_polar(self):
372 self.assertCISEqual(polar(0), (0., 0.))
373 self.assertCISEqual(polar(1.), (1., 0.))
374 self.assertCISEqual(polar(-1.), (1., pi))
375 self.assertCISEqual(polar(1j), (1., pi/2))
376 self.assertCISEqual(polar(-1j), (1., -pi/2))
377
378 def test_phase(self):
379 self.assertAlmostEqual(phase(0), 0.)
380 self.assertAlmostEqual(phase(1.), 0.)
381 self.assertAlmostEqual(phase(-1.), pi)
382 self.assertAlmostEqual(phase(-1.+1E-300j), pi)
383 self.assertAlmostEqual(phase(-1.-1E-300j), -pi)
384 self.assertAlmostEqual(phase(1j), pi/2)
385 self.assertAlmostEqual(phase(-1j), -pi/2)
386
387 # zeros
388 self.assertEqual(phase(complex(0.0, 0.0)), 0.0)
389 self.assertEqual(phase(complex(0.0, -0.0)), -0.0)
390 self.assertEqual(phase(complex(-0.0, 0.0)), pi)
391 self.assertEqual(phase(complex(-0.0, -0.0)), -pi)
392
393 # infinities
394 self.assertAlmostEqual(phase(complex(-INF, -0.0)), -pi)
395 self.assertAlmostEqual(phase(complex(-INF, -2.3)), -pi)
396 self.assertAlmostEqual(phase(complex(-INF, -INF)), -0.75*pi)
397 self.assertAlmostEqual(phase(complex(-2.3, -INF)), -pi/2)
398 self.assertAlmostEqual(phase(complex(-0.0, -INF)), -pi/2)
399 self.assertAlmostEqual(phase(complex(0.0, -INF)), -pi/2)
400 self.assertAlmostEqual(phase(complex(2.3, -INF)), -pi/2)
401 self.assertAlmostEqual(phase(complex(INF, -INF)), -pi/4)
402 self.assertEqual(phase(complex(INF, -2.3)), -0.0)
403 self.assertEqual(phase(complex(INF, -0.0)), -0.0)
404 self.assertEqual(phase(complex(INF, 0.0)), 0.0)
405 self.assertEqual(phase(complex(INF, 2.3)), 0.0)
406 self.assertAlmostEqual(phase(complex(INF, INF)), pi/4)
407 self.assertAlmostEqual(phase(complex(2.3, INF)), pi/2)
408 self.assertAlmostEqual(phase(complex(0.0, INF)), pi/2)
409 self.assertAlmostEqual(phase(complex(-0.0, INF)), pi/2)
410 self.assertAlmostEqual(phase(complex(-2.3, INF)), pi/2)
411 self.assertAlmostEqual(phase(complex(-INF, INF)), 0.75*pi)
412 self.assertAlmostEqual(phase(complex(-INF, 2.3)), pi)
413 self.assertAlmostEqual(phase(complex(-INF, 0.0)), pi)
414
415 # real or imaginary part NaN
416 for z in complex_nans:
417 self.assert_(math.isnan(phase(z)))
418
419 def test_abs(self):
420 # zeros
421 for z in complex_zeros:
422 self.assertEqual(abs(z), 0.0)
423
424 # infinities
425 for z in complex_infinities:
426 self.assertEqual(abs(z), INF)
427
428 # real or imaginary part NaN
429 self.assertEqual(abs(complex(NAN, -INF)), INF)
430 self.assert_(math.isnan(abs(complex(NAN, -2.3))))
431 self.assert_(math.isnan(abs(complex(NAN, -0.0))))
432 self.assert_(math.isnan(abs(complex(NAN, 0.0))))
433 self.assert_(math.isnan(abs(complex(NAN, 2.3))))
434 self.assertEqual(abs(complex(NAN, INF)), INF)
435 self.assertEqual(abs(complex(-INF, NAN)), INF)
436 self.assert_(math.isnan(abs(complex(-2.3, NAN))))
437 self.assert_(math.isnan(abs(complex(-0.0, NAN))))
438 self.assert_(math.isnan(abs(complex(0.0, NAN))))
439 self.assert_(math.isnan(abs(complex(2.3, NAN))))
440 self.assertEqual(abs(complex(INF, NAN)), INF)
441 self.assert_(math.isnan(abs(complex(NAN, NAN))))
442
443 # result overflows
444 if float.__getformat__("double").startswith("IEEE"):
445 self.assertRaises(OverflowError, abs, complex(1.4e308, 1.4e308))
446
447 def assertCEqual(self, a, b):
448 eps = 1E-7
449 if abs(a.real - b[0]) > eps or abs(a.imag - b[1]) > eps:
450 self.fail((a ,b))
451
452 def test_rect(self):
453 self.assertCEqual(rect(0, 0), (0, 0))
454 self.assertCEqual(rect(1, 0), (1., 0))
455 self.assertCEqual(rect(1, -pi), (-1., 0))
456 self.assertCEqual(rect(1, pi/2), (0, 1.))
457 self.assertCEqual(rect(1, -pi/2), (0, -1.))
458
459 def test_isnan(self):
460 self.failIf(cmath.isnan(1))
461 self.failIf(cmath.isnan(1j))
462 self.failIf(cmath.isnan(INF))
463 self.assert_(cmath.isnan(NAN))
464 self.assert_(cmath.isnan(complex(NAN, 0)))
465 self.assert_(cmath.isnan(complex(0, NAN)))
466 self.assert_(cmath.isnan(complex(NAN, NAN)))
467 self.assert_(cmath.isnan(complex(NAN, INF)))
468 self.assert_(cmath.isnan(complex(INF, NAN)))
469
470 def test_isinf(self):
471 self.failIf(cmath.isinf(1))
472 self.failIf(cmath.isinf(1j))
473 self.failIf(cmath.isinf(NAN))
474 self.assert_(cmath.isinf(INF))
475 self.assert_(cmath.isinf(complex(INF, 0)))
476 self.assert_(cmath.isinf(complex(0, INF)))
477 self.assert_(cmath.isinf(complex(INF, INF)))
478 self.assert_(cmath.isinf(complex(NAN, INF)))
479 self.assert_(cmath.isinf(complex(INF, NAN)))
480
Guido van Rossumd8faa362007-04-27 19:54:29 +0000481
482def test_main():
483 run_unittest(CMathTests)
484
485if __name__ == "__main__":
486 test_main()