blob: ff5fb77590197cf2f73be253cb19c17fd6319e45 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001
2:mod:`random` --- Generate pseudo-random numbers
3================================================
4
5.. module:: random
6 :synopsis: Generate pseudo-random numbers with various common distributions.
7
8
9This module implements pseudo-random number generators for various
10distributions.
11
12For integers, uniform selection from a range. For sequences, uniform selection
13of a random element, a function to generate a random permutation of a list
14in-place, and a function for random sampling without replacement.
15
16On the real line, there are functions to compute uniform, normal (Gaussian),
17lognormal, negative exponential, gamma, and beta distributions. For generating
18distributions of angles, the von Mises distribution is available.
19
20Almost all module functions depend on the basic function :func:`random`, which
21generates a random float uniformly in the semi-open range [0.0, 1.0). Python
22uses the Mersenne Twister as the core generator. It produces 53-bit precision
23floats and has a period of 2\*\*19937-1. The underlying implementation in C is
24both fast and threadsafe. The Mersenne Twister is one of the most extensively
25tested random number generators in existence. However, being completely
26deterministic, it is not suitable for all purposes, and is completely unsuitable
27for cryptographic purposes.
28
29The functions supplied by this module are actually bound methods of a hidden
30instance of the :class:`random.Random` class. You can instantiate your own
Raymond Hettinger28de64f2008-01-13 23:40:30 +000031instances of :class:`Random` to get generators that don't share state.
Georg Brandl116aa622007-08-15 14:28:22 +000032
33Class :class:`Random` can also be subclassed if you want to use a different
34basic generator of your own devising: in that case, override the :meth:`random`,
Raymond Hettinger28de64f2008-01-13 23:40:30 +000035:meth:`seed`, :meth:`getstate`, and :meth:`setstate`.
Georg Brandl116aa622007-08-15 14:28:22 +000036Optionally, a new generator can supply a :meth:`getrandombits` method --- this
37allows :meth:`randrange` to produce selections over an arbitrarily large range.
38
Georg Brandl116aa622007-08-15 14:28:22 +000039
Georg Brandl116aa622007-08-15 14:28:22 +000040Bookkeeping functions:
41
42
43.. function:: seed([x])
44
45 Initialize the basic random number generator. Optional argument *x* can be any
Guido van Rossum2cc30da2007-11-02 23:46:40 +000046 :term:`hashable` object. If *x* is omitted or ``None``, current system time is used;
Georg Brandl116aa622007-08-15 14:28:22 +000047 current system time is also used to initialize the generator when the module is
48 first imported. If randomness sources are provided by the operating system,
49 they are used instead of the system time (see the :func:`os.urandom` function
50 for details on availability).
51
Georg Brandl5c106642007-11-29 17:41:05 +000052 If *x* is not ``None`` or an int, ``hash(x)`` is used instead. If *x* is an
53 int, *x* is used directly.
Georg Brandl116aa622007-08-15 14:28:22 +000054
55
56.. function:: getstate()
57
58 Return an object capturing the current internal state of the generator. This
59 object can be passed to :func:`setstate` to restore the state.
60
Christian Heimescbf3b5c2007-12-03 21:02:03 +000061 State values produced in Python 2.6 cannot be loaded into earlier versions.
62
Georg Brandl116aa622007-08-15 14:28:22 +000063
64.. function:: setstate(state)
65
66 *state* should have been obtained from a previous call to :func:`getstate`, and
67 :func:`setstate` restores the internal state of the generator to what it was at
68 the time :func:`setstate` was called.
69
Georg Brandl116aa622007-08-15 14:28:22 +000070
Georg Brandl116aa622007-08-15 14:28:22 +000071.. function:: getrandbits(k)
72
Georg Brandl5c106642007-11-29 17:41:05 +000073 Returns a python integer with *k* random bits. This method is supplied with
74 the MersenneTwister generator and some other generators may also provide it
Georg Brandl116aa622007-08-15 14:28:22 +000075 as an optional part of the API. When available, :meth:`getrandbits` enables
76 :meth:`randrange` to handle arbitrarily large ranges.
77
Georg Brandl116aa622007-08-15 14:28:22 +000078
79Functions for integers:
80
Georg Brandl116aa622007-08-15 14:28:22 +000081.. function:: randrange([start,] stop[, step])
82
83 Return a randomly selected element from ``range(start, stop, step)``. This is
84 equivalent to ``choice(range(start, stop, step))``, but doesn't actually build a
85 range object.
86
Georg Brandl116aa622007-08-15 14:28:22 +000087
88.. function:: randint(a, b)
89
90 Return a random integer *N* such that ``a <= N <= b``.
91
Georg Brandl116aa622007-08-15 14:28:22 +000092
Georg Brandl55ac8f02007-09-01 13:51:09 +000093Functions for sequences:
Georg Brandl116aa622007-08-15 14:28:22 +000094
95.. function:: choice(seq)
96
97 Return a random element from the non-empty sequence *seq*. If *seq* is empty,
98 raises :exc:`IndexError`.
99
100
101.. function:: shuffle(x[, random])
102
103 Shuffle the sequence *x* in place. The optional argument *random* is a
104 0-argument function returning a random float in [0.0, 1.0); by default, this is
105 the function :func:`random`.
106
107 Note that for even rather small ``len(x)``, the total number of permutations of
108 *x* is larger than the period of most random number generators; this implies
109 that most permutations of a long sequence can never be generated.
110
111
112.. function:: sample(population, k)
113
114 Return a *k* length list of unique elements chosen from the population sequence.
115 Used for random sampling without replacement.
116
Georg Brandl116aa622007-08-15 14:28:22 +0000117 Returns a new list containing elements from the population while leaving the
118 original population unchanged. The resulting list is in selection order so that
119 all sub-slices will also be valid random samples. This allows raffle winners
120 (the sample) to be partitioned into grand prize and second place winners (the
121 subslices).
122
Guido van Rossum2cc30da2007-11-02 23:46:40 +0000123 Members of the population need not be :term:`hashable` or unique. If the population
Georg Brandl116aa622007-08-15 14:28:22 +0000124 contains repeats, then each occurrence is a possible selection in the sample.
125
126 To choose a sample from a range of integers, use an :func:`range` object as an
127 argument. This is especially fast and space efficient for sampling from a large
128 population: ``sample(range(10000000), 60)``.
129
130The following functions generate specific real-valued distributions. Function
131parameters are named after the corresponding variables in the distribution's
132equation, as used in common mathematical practice; most of these equations can
133be found in any statistics text.
134
135
136.. function:: random()
137
138 Return the next random floating point number in the range [0.0, 1.0).
139
140
141.. function:: uniform(a, b)
142
143 Return a random floating point number *N* such that ``a <= N < b``.
144
145
146.. function:: betavariate(alpha, beta)
147
148 Beta distribution. Conditions on the parameters are ``alpha > 0`` and ``beta >
149 0``. Returned values range between 0 and 1.
150
151
152.. function:: expovariate(lambd)
153
154 Exponential distribution. *lambd* is 1.0 divided by the desired mean. (The
155 parameter would be called "lambda", but that is a reserved word in Python.)
156 Returned values range from 0 to positive infinity.
157
158
159.. function:: gammavariate(alpha, beta)
160
161 Gamma distribution. (*Not* the gamma function!) Conditions on the parameters
162 are ``alpha > 0`` and ``beta > 0``.
163
164
165.. function:: gauss(mu, sigma)
166
167 Gaussian distribution. *mu* is the mean, and *sigma* is the standard deviation.
168 This is slightly faster than the :func:`normalvariate` function defined below.
169
170
171.. function:: lognormvariate(mu, sigma)
172
173 Log normal distribution. If you take the natural logarithm of this
174 distribution, you'll get a normal distribution with mean *mu* and standard
175 deviation *sigma*. *mu* can have any value, and *sigma* must be greater than
176 zero.
177
178
179.. function:: normalvariate(mu, sigma)
180
181 Normal distribution. *mu* is the mean, and *sigma* is the standard deviation.
182
183
184.. function:: vonmisesvariate(mu, kappa)
185
186 *mu* is the mean angle, expressed in radians between 0 and 2\*\ *pi*, and *kappa*
187 is the concentration parameter, which must be greater than or equal to zero. If
188 *kappa* is equal to zero, this distribution reduces to a uniform random angle
189 over the range 0 to 2\*\ *pi*.
190
191
192.. function:: paretovariate(alpha)
193
194 Pareto distribution. *alpha* is the shape parameter.
195
196
197.. function:: weibullvariate(alpha, beta)
198
199 Weibull distribution. *alpha* is the scale parameter and *beta* is the shape
200 parameter.
201
202
203Alternative Generators:
204
Georg Brandl116aa622007-08-15 14:28:22 +0000205.. class:: SystemRandom([seed])
206
207 Class that uses the :func:`os.urandom` function for generating random numbers
208 from sources provided by the operating system. Not available on all systems.
209 Does not rely on software state and sequences are not reproducible. Accordingly,
210 the :meth:`seed` and :meth:`jumpahead` methods have no effect and are ignored.
211 The :meth:`getstate` and :meth:`setstate` methods raise
212 :exc:`NotImplementedError` if called.
213
Georg Brandl116aa622007-08-15 14:28:22 +0000214
215Examples of basic usage::
216
217 >>> random.random() # Random float x, 0.0 <= x < 1.0
218 0.37444887175646646
219 >>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
220 1.1800146073117523
221 >>> random.randint(1, 10) # Integer from 1 to 10, endpoints included
222 7
223 >>> random.randrange(0, 101, 2) # Even integer from 0 to 100
224 26
225 >>> random.choice('abcdefghij') # Choose a random element
226 'c'
227
228 >>> items = [1, 2, 3, 4, 5, 6, 7]
229 >>> random.shuffle(items)
230 >>> items
231 [7, 3, 2, 5, 6, 4, 1]
232
233 >>> random.sample([1, 2, 3, 4, 5], 3) # Choose 3 elements
234 [4, 1, 5]
235
236
237
238.. seealso::
239
240 M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally
241 equidistributed uniform pseudorandom number generator", ACM Transactions on
242 Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.
243
Georg Brandl116aa622007-08-15 14:28:22 +0000244