blob: 61c1e61eac28871a9f28c8df5da180a88c2d368e [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001
2:mod:`ctypes` --- A foreign function library for Python.
3========================================================
4
5.. module:: ctypes
6 :synopsis: A foreign function library for Python.
7.. moduleauthor:: Thomas Heller <theller@python.net>
8
9
Georg Brandl116aa622007-08-15 14:28:22 +000010``ctypes`` is a foreign function library for Python. It provides C compatible
11data types, and allows calling functions in dlls/shared libraries. It can be
12used to wrap these libraries in pure Python.
13
14
15.. _ctypes-ctypes-tutorial:
16
17ctypes tutorial
18---------------
19
20Note: The code samples in this tutorial use ``doctest`` to make sure that they
21actually work. Since some code samples behave differently under Linux, Windows,
22or Mac OS X, they contain doctest directives in comments.
23
24Note: Some code sample references the ctypes :class:`c_int` type. This type is
25an alias to the :class:`c_long` type on 32-bit systems. So, you should not be
26confused if :class:`c_long` is printed if you would expect :class:`c_int` ---
27they are actually the same type.
28
29
30.. _ctypes-loading-dynamic-link-libraries:
31
32Loading dynamic link libraries
33^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
34
35``ctypes`` exports the *cdll*, and on Windows also *windll* and *oledll* objects
36to load dynamic link libraries.
37
38You load libraries by accessing them as attributes of these objects. *cdll*
39loads libraries which export functions using the standard ``cdecl`` calling
40convention, while *windll* libraries call functions using the ``stdcall``
41calling convention. *oledll* also uses the ``stdcall`` calling convention, and
42assumes the functions return a Windows :class:`HRESULT` error code. The error
Thomas Heller2fadaa22008-06-16 19:56:33 +000043code is used to automatically raise a :class:`WindowsError` exception when
Georg Brandl116aa622007-08-15 14:28:22 +000044the function call fails.
45
46Here are some examples for Windows. Note that ``msvcrt`` is the MS standard C
47library containing most standard C functions, and uses the cdecl calling
48convention::
49
50 >>> from ctypes import *
Georg Brandl6911e3c2007-09-04 07:15:32 +000051 >>> print(windll.kernel32) # doctest: +WINDOWS
Georg Brandl116aa622007-08-15 14:28:22 +000052 <WinDLL 'kernel32', handle ... at ...>
Georg Brandl6911e3c2007-09-04 07:15:32 +000053 >>> print(cdll.msvcrt) # doctest: +WINDOWS
Georg Brandl116aa622007-08-15 14:28:22 +000054 <CDLL 'msvcrt', handle ... at ...>
55 >>> libc = cdll.msvcrt # doctest: +WINDOWS
56 >>>
57
Thomas Heller2fadaa22008-06-16 19:56:33 +000058Windows appends the usual ``.dll`` file suffix automatically.
Georg Brandl116aa622007-08-15 14:28:22 +000059
60On Linux, it is required to specify the filename *including* the extension to
Thomas Heller2fadaa22008-06-16 19:56:33 +000061load a library, so attribute access can not be used to load libraries. Either the
Georg Brandl116aa622007-08-15 14:28:22 +000062:meth:`LoadLibrary` method of the dll loaders should be used, or you should load
63the library by creating an instance of CDLL by calling the constructor::
64
65 >>> cdll.LoadLibrary("libc.so.6") # doctest: +LINUX
66 <CDLL 'libc.so.6', handle ... at ...>
67 >>> libc = CDLL("libc.so.6") # doctest: +LINUX
68 >>> libc # doctest: +LINUX
69 <CDLL 'libc.so.6', handle ... at ...>
70 >>>
71
Christian Heimes5b5e81c2007-12-31 16:14:33 +000072.. XXX Add section for Mac OS X.
Georg Brandl116aa622007-08-15 14:28:22 +000073
74
75.. _ctypes-accessing-functions-from-loaded-dlls:
76
77Accessing functions from loaded dlls
78^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
79
80Functions are accessed as attributes of dll objects::
81
82 >>> from ctypes import *
83 >>> libc.printf
84 <_FuncPtr object at 0x...>
Georg Brandl6911e3c2007-09-04 07:15:32 +000085 >>> print(windll.kernel32.GetModuleHandleA) # doctest: +WINDOWS
Georg Brandl116aa622007-08-15 14:28:22 +000086 <_FuncPtr object at 0x...>
Georg Brandl6911e3c2007-09-04 07:15:32 +000087 >>> print(windll.kernel32.MyOwnFunction) # doctest: +WINDOWS
Georg Brandl116aa622007-08-15 14:28:22 +000088 Traceback (most recent call last):
89 File "<stdin>", line 1, in ?
90 File "ctypes.py", line 239, in __getattr__
91 func = _StdcallFuncPtr(name, self)
92 AttributeError: function 'MyOwnFunction' not found
93 >>>
94
95Note that win32 system dlls like ``kernel32`` and ``user32`` often export ANSI
96as well as UNICODE versions of a function. The UNICODE version is exported with
97an ``W`` appended to the name, while the ANSI version is exported with an ``A``
98appended to the name. The win32 ``GetModuleHandle`` function, which returns a
99*module handle* for a given module name, has the following C prototype, and a
100macro is used to expose one of them as ``GetModuleHandle`` depending on whether
101UNICODE is defined or not::
102
103 /* ANSI version */
104 HMODULE GetModuleHandleA(LPCSTR lpModuleName);
105 /* UNICODE version */
106 HMODULE GetModuleHandleW(LPCWSTR lpModuleName);
107
108*windll* does not try to select one of them by magic, you must access the
109version you need by specifying ``GetModuleHandleA`` or ``GetModuleHandleW``
Thomas Heller2fadaa22008-06-16 19:56:33 +0000110explicitly, and then call it with strings or unicode strings
Georg Brandl116aa622007-08-15 14:28:22 +0000111respectively.
112
113Sometimes, dlls export functions with names which aren't valid Python
114identifiers, like ``"??2@YAPAXI@Z"``. In this case you have to use ``getattr``
115to retrieve the function::
116
117 >>> getattr(cdll.msvcrt, "??2@YAPAXI@Z") # doctest: +WINDOWS
118 <_FuncPtr object at 0x...>
119 >>>
120
121On Windows, some dlls export functions not by name but by ordinal. These
122functions can be accessed by indexing the dll object with the ordinal number::
123
124 >>> cdll.kernel32[1] # doctest: +WINDOWS
125 <_FuncPtr object at 0x...>
126 >>> cdll.kernel32[0] # doctest: +WINDOWS
127 Traceback (most recent call last):
128 File "<stdin>", line 1, in ?
129 File "ctypes.py", line 310, in __getitem__
130 func = _StdcallFuncPtr(name, self)
131 AttributeError: function ordinal 0 not found
132 >>>
133
134
135.. _ctypes-calling-functions:
136
137Calling functions
138^^^^^^^^^^^^^^^^^
139
140You can call these functions like any other Python callable. This example uses
141the ``time()`` function, which returns system time in seconds since the Unix
142epoch, and the ``GetModuleHandleA()`` function, which returns a win32 module
143handle.
144
145This example calls both functions with a NULL pointer (``None`` should be used
146as the NULL pointer)::
147
Georg Brandl6911e3c2007-09-04 07:15:32 +0000148 >>> print(libc.time(None)) # doctest: +SKIP
Georg Brandl116aa622007-08-15 14:28:22 +0000149 1150640792
Georg Brandl6911e3c2007-09-04 07:15:32 +0000150 >>> print(hex(windll.kernel32.GetModuleHandleA(None))) # doctest: +WINDOWS
Georg Brandl116aa622007-08-15 14:28:22 +0000151 0x1d000000
152 >>>
153
154``ctypes`` tries to protect you from calling functions with the wrong number of
155arguments or the wrong calling convention. Unfortunately this only works on
156Windows. It does this by examining the stack after the function returns, so
157although an error is raised the function *has* been called::
158
159 >>> windll.kernel32.GetModuleHandleA() # doctest: +WINDOWS
160 Traceback (most recent call last):
161 File "<stdin>", line 1, in ?
162 ValueError: Procedure probably called with not enough arguments (4 bytes missing)
163 >>> windll.kernel32.GetModuleHandleA(0, 0) # doctest: +WINDOWS
164 Traceback (most recent call last):
165 File "<stdin>", line 1, in ?
166 ValueError: Procedure probably called with too many arguments (4 bytes in excess)
167 >>>
168
169The same exception is raised when you call an ``stdcall`` function with the
170``cdecl`` calling convention, or vice versa::
171
172 >>> cdll.kernel32.GetModuleHandleA(None) # doctest: +WINDOWS
173 Traceback (most recent call last):
174 File "<stdin>", line 1, in ?
175 ValueError: Procedure probably called with not enough arguments (4 bytes missing)
176 >>>
177
178 >>> windll.msvcrt.printf("spam") # doctest: +WINDOWS
179 Traceback (most recent call last):
180 File "<stdin>", line 1, in ?
181 ValueError: Procedure probably called with too many arguments (4 bytes in excess)
182 >>>
183
184To find out the correct calling convention you have to look into the C header
185file or the documentation for the function you want to call.
186
187On Windows, ``ctypes`` uses win32 structured exception handling to prevent
188crashes from general protection faults when functions are called with invalid
189argument values::
190
191 >>> windll.kernel32.GetModuleHandleA(32) # doctest: +WINDOWS
192 Traceback (most recent call last):
193 File "<stdin>", line 1, in ?
194 WindowsError: exception: access violation reading 0x00000020
195 >>>
196
197There are, however, enough ways to crash Python with ``ctypes``, so you should
198be careful anyway.
199
Georg Brandl5c106642007-11-29 17:41:05 +0000200``None``, integers, byte strings and unicode strings are the only native
Georg Brandl116aa622007-08-15 14:28:22 +0000201Python objects that can directly be used as parameters in these function calls.
202``None`` is passed as a C ``NULL`` pointer, byte strings and unicode strings are
203passed as pointer to the memory block that contains their data (``char *`` or
Georg Brandl5c106642007-11-29 17:41:05 +0000204``wchar_t *``). Python integers are passed as the platforms
Georg Brandl116aa622007-08-15 14:28:22 +0000205default C ``int`` type, their value is masked to fit into the C type.
206
207Before we move on calling functions with other parameter types, we have to learn
208more about ``ctypes`` data types.
209
210
211.. _ctypes-fundamental-data-types:
212
213Fundamental data types
214^^^^^^^^^^^^^^^^^^^^^^
215
216``ctypes`` defines a number of primitive C compatible data types :
217
218 +----------------------+--------------------------------+----------------------------+
219 | ctypes type | C type | Python type |
220 +======================+================================+============================+
221 | :class:`c_char` | ``char`` | 1-character string |
222 +----------------------+--------------------------------+----------------------------+
223 | :class:`c_wchar` | ``wchar_t`` | 1-character unicode string |
224 +----------------------+--------------------------------+----------------------------+
Georg Brandl5c106642007-11-29 17:41:05 +0000225 | :class:`c_byte` | ``char`` | int |
Georg Brandl116aa622007-08-15 14:28:22 +0000226 +----------------------+--------------------------------+----------------------------+
Georg Brandl5c106642007-11-29 17:41:05 +0000227 | :class:`c_ubyte` | ``unsigned char`` | int |
Georg Brandl116aa622007-08-15 14:28:22 +0000228 +----------------------+--------------------------------+----------------------------+
Georg Brandl5c106642007-11-29 17:41:05 +0000229 | :class:`c_short` | ``short`` | int |
Georg Brandl116aa622007-08-15 14:28:22 +0000230 +----------------------+--------------------------------+----------------------------+
Georg Brandl5c106642007-11-29 17:41:05 +0000231 | :class:`c_ushort` | ``unsigned short`` | int |
Georg Brandl116aa622007-08-15 14:28:22 +0000232 +----------------------+--------------------------------+----------------------------+
Georg Brandl5c106642007-11-29 17:41:05 +0000233 | :class:`c_int` | ``int`` | int |
Georg Brandl116aa622007-08-15 14:28:22 +0000234 +----------------------+--------------------------------+----------------------------+
Georg Brandl5c106642007-11-29 17:41:05 +0000235 | :class:`c_uint` | ``unsigned int`` | int |
Georg Brandl116aa622007-08-15 14:28:22 +0000236 +----------------------+--------------------------------+----------------------------+
Georg Brandl5c106642007-11-29 17:41:05 +0000237 | :class:`c_long` | ``long`` | int |
Georg Brandl116aa622007-08-15 14:28:22 +0000238 +----------------------+--------------------------------+----------------------------+
Georg Brandl5c106642007-11-29 17:41:05 +0000239 | :class:`c_ulong` | ``unsigned long`` | int |
Georg Brandl116aa622007-08-15 14:28:22 +0000240 +----------------------+--------------------------------+----------------------------+
Georg Brandl5c106642007-11-29 17:41:05 +0000241 | :class:`c_longlong` | ``__int64`` or ``long long`` | int |
Georg Brandl116aa622007-08-15 14:28:22 +0000242 +----------------------+--------------------------------+----------------------------+
Georg Brandl5c106642007-11-29 17:41:05 +0000243 | :class:`c_ulonglong` | ``unsigned __int64`` or | int |
Georg Brandl116aa622007-08-15 14:28:22 +0000244 | | ``unsigned long long`` | |
245 +----------------------+--------------------------------+----------------------------+
246 | :class:`c_float` | ``float`` | float |
247 +----------------------+--------------------------------+----------------------------+
248 | :class:`c_double` | ``double`` | float |
249 +----------------------+--------------------------------+----------------------------+
Thomas Wouters89d996e2007-09-08 17:39:28 +0000250 | :class:`c_longdouble`| ``long double`` | float |
251 +----------------------+--------------------------------+----------------------------+
Georg Brandl116aa622007-08-15 14:28:22 +0000252 | :class:`c_char_p` | ``char *`` (NUL terminated) | string or ``None`` |
253 +----------------------+--------------------------------+----------------------------+
254 | :class:`c_wchar_p` | ``wchar_t *`` (NUL terminated) | unicode or ``None`` |
255 +----------------------+--------------------------------+----------------------------+
Georg Brandl5c106642007-11-29 17:41:05 +0000256 | :class:`c_void_p` | ``void *`` | int or ``None`` |
Georg Brandl116aa622007-08-15 14:28:22 +0000257 +----------------------+--------------------------------+----------------------------+
258
259
260All these types can be created by calling them with an optional initializer of
261the correct type and value::
262
263 >>> c_int()
264 c_long(0)
265 >>> c_char_p("Hello, World")
266 c_char_p('Hello, World')
267 >>> c_ushort(-3)
268 c_ushort(65533)
269 >>>
270
271Since these types are mutable, their value can also be changed afterwards::
272
273 >>> i = c_int(42)
Georg Brandl6911e3c2007-09-04 07:15:32 +0000274 >>> print(i)
Georg Brandl116aa622007-08-15 14:28:22 +0000275 c_long(42)
Georg Brandl6911e3c2007-09-04 07:15:32 +0000276 >>> print(i.value)
Georg Brandl116aa622007-08-15 14:28:22 +0000277 42
278 >>> i.value = -99
Georg Brandl6911e3c2007-09-04 07:15:32 +0000279 >>> print(i.value)
Georg Brandl116aa622007-08-15 14:28:22 +0000280 -99
281 >>>
282
283Assigning a new value to instances of the pointer types :class:`c_char_p`,
284:class:`c_wchar_p`, and :class:`c_void_p` changes the *memory location* they
285point to, *not the contents* of the memory block (of course not, because Python
286strings are immutable)::
287
288 >>> s = "Hello, World"
289 >>> c_s = c_char_p(s)
Georg Brandl6911e3c2007-09-04 07:15:32 +0000290 >>> print(c_s)
Georg Brandl116aa622007-08-15 14:28:22 +0000291 c_char_p('Hello, World')
292 >>> c_s.value = "Hi, there"
Georg Brandl6911e3c2007-09-04 07:15:32 +0000293 >>> print(c_s)
Georg Brandl116aa622007-08-15 14:28:22 +0000294 c_char_p('Hi, there')
Georg Brandl6911e3c2007-09-04 07:15:32 +0000295 >>> print(s) # first string is unchanged
Georg Brandl116aa622007-08-15 14:28:22 +0000296 Hello, World
297 >>>
298
299You should be careful, however, not to pass them to functions expecting pointers
300to mutable memory. If you need mutable memory blocks, ctypes has a
301``create_string_buffer`` function which creates these in various ways. The
302current memory block contents can be accessed (or changed) with the ``raw``
303property; if you want to access it as NUL terminated string, use the ``value``
304property::
305
306 >>> from ctypes import *
307 >>> p = create_string_buffer(3) # create a 3 byte buffer, initialized to NUL bytes
Georg Brandl6911e3c2007-09-04 07:15:32 +0000308 >>> print(sizeof(p), repr(p.raw))
Georg Brandl116aa622007-08-15 14:28:22 +0000309 3 '\x00\x00\x00'
310 >>> p = create_string_buffer("Hello") # create a buffer containing a NUL terminated string
Georg Brandl6911e3c2007-09-04 07:15:32 +0000311 >>> print(sizeof(p), repr(p.raw))
Georg Brandl116aa622007-08-15 14:28:22 +0000312 6 'Hello\x00'
Georg Brandl6911e3c2007-09-04 07:15:32 +0000313 >>> print(repr(p.value))
Georg Brandl116aa622007-08-15 14:28:22 +0000314 'Hello'
315 >>> p = create_string_buffer("Hello", 10) # create a 10 byte buffer
Georg Brandl6911e3c2007-09-04 07:15:32 +0000316 >>> print(sizeof(p), repr(p.raw))
Georg Brandl116aa622007-08-15 14:28:22 +0000317 10 'Hello\x00\x00\x00\x00\x00'
318 >>> p.value = "Hi"
Georg Brandl6911e3c2007-09-04 07:15:32 +0000319 >>> print(sizeof(p), repr(p.raw))
Georg Brandl116aa622007-08-15 14:28:22 +0000320 10 'Hi\x00lo\x00\x00\x00\x00\x00'
321 >>>
322
323The ``create_string_buffer`` function replaces the ``c_buffer`` function (which
324is still available as an alias), as well as the ``c_string`` function from
325earlier ctypes releases. To create a mutable memory block containing unicode
326characters of the C type ``wchar_t`` use the ``create_unicode_buffer`` function.
327
328
329.. _ctypes-calling-functions-continued:
330
331Calling functions, continued
332^^^^^^^^^^^^^^^^^^^^^^^^^^^^
333
334Note that printf prints to the real standard output channel, *not* to
335``sys.stdout``, so these examples will only work at the console prompt, not from
336within *IDLE* or *PythonWin*::
337
338 >>> printf = libc.printf
339 >>> printf("Hello, %s\n", "World!")
340 Hello, World!
341 14
342 >>> printf("Hello, %S", u"World!")
343 Hello, World!
344 13
345 >>> printf("%d bottles of beer\n", 42)
346 42 bottles of beer
347 19
348 >>> printf("%f bottles of beer\n", 42.5)
349 Traceback (most recent call last):
350 File "<stdin>", line 1, in ?
351 ArgumentError: argument 2: exceptions.TypeError: Don't know how to convert parameter 2
352 >>>
353
354As has been mentioned before, all Python types except integers, strings, and
355unicode strings have to be wrapped in their corresponding ``ctypes`` type, so
356that they can be converted to the required C data type::
357
358 >>> printf("An int %d, a double %f\n", 1234, c_double(3.14))
359 Integer 1234, double 3.1400001049
360 31
361 >>>
362
363
364.. _ctypes-calling-functions-with-own-custom-data-types:
365
366Calling functions with your own custom data types
367^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
368
369You can also customize ``ctypes`` argument conversion to allow instances of your
370own classes be used as function arguments. ``ctypes`` looks for an
371:attr:`_as_parameter_` attribute and uses this as the function argument. Of
372course, it must be one of integer, string, or unicode::
373
374 >>> class Bottles(object):
375 ... def __init__(self, number):
376 ... self._as_parameter_ = number
377 ...
378 >>> bottles = Bottles(42)
379 >>> printf("%d bottles of beer\n", bottles)
380 42 bottles of beer
381 19
382 >>>
383
384If you don't want to store the instance's data in the :attr:`_as_parameter_`
385instance variable, you could define a ``property`` which makes the data
Thomas Woutersed03b412007-08-28 21:37:11 +0000386available.
Georg Brandl116aa622007-08-15 14:28:22 +0000387
388
389.. _ctypes-specifying-required-argument-types:
390
391Specifying the required argument types (function prototypes)
392^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
393
394It is possible to specify the required argument types of functions exported from
395DLLs by setting the :attr:`argtypes` attribute.
396
397:attr:`argtypes` must be a sequence of C data types (the ``printf`` function is
398probably not a good example here, because it takes a variable number and
399different types of parameters depending on the format string, on the other hand
400this is quite handy to experiment with this feature)::
401
402 >>> printf.argtypes = [c_char_p, c_char_p, c_int, c_double]
403 >>> printf("String '%s', Int %d, Double %f\n", "Hi", 10, 2.2)
404 String 'Hi', Int 10, Double 2.200000
405 37
406 >>>
407
408Specifying a format protects against incompatible argument types (just as a
409prototype for a C function), and tries to convert the arguments to valid types::
410
411 >>> printf("%d %d %d", 1, 2, 3)
412 Traceback (most recent call last):
413 File "<stdin>", line 1, in ?
414 ArgumentError: argument 2: exceptions.TypeError: wrong type
415 >>> printf("%s %d %f", "X", 2, 3)
416 X 2 3.00000012
417 12
418 >>>
419
420If you have defined your own classes which you pass to function calls, you have
421to implement a :meth:`from_param` class method for them to be able to use them
422in the :attr:`argtypes` sequence. The :meth:`from_param` class method receives
423the Python object passed to the function call, it should do a typecheck or
424whatever is needed to make sure this object is acceptable, and then return the
Thomas Heller2fadaa22008-06-16 19:56:33 +0000425object itself, its :attr:`_as_parameter_` attribute, or whatever you want to
Georg Brandl116aa622007-08-15 14:28:22 +0000426pass as the C function argument in this case. Again, the result should be an
Thomas Heller2fadaa22008-06-16 19:56:33 +0000427integer, string, unicode, a ``ctypes`` instance, or an object with an
Georg Brandl116aa622007-08-15 14:28:22 +0000428:attr:`_as_parameter_` attribute.
429
430
431.. _ctypes-return-types:
432
433Return types
434^^^^^^^^^^^^
435
436By default functions are assumed to return the C ``int`` type. Other return
437types can be specified by setting the :attr:`restype` attribute of the function
438object.
439
440Here is a more advanced example, it uses the ``strchr`` function, which expects
441a string pointer and a char, and returns a pointer to a string::
442
443 >>> strchr = libc.strchr
444 >>> strchr("abcdef", ord("d")) # doctest: +SKIP
445 8059983
446 >>> strchr.restype = c_char_p # c_char_p is a pointer to a string
447 >>> strchr("abcdef", ord("d"))
448 'def'
Georg Brandl6911e3c2007-09-04 07:15:32 +0000449 >>> print(strchr("abcdef", ord("x")))
Georg Brandl116aa622007-08-15 14:28:22 +0000450 None
451 >>>
452
453If you want to avoid the ``ord("x")`` calls above, you can set the
454:attr:`argtypes` attribute, and the second argument will be converted from a
455single character Python string into a C char::
456
457 >>> strchr.restype = c_char_p
458 >>> strchr.argtypes = [c_char_p, c_char]
459 >>> strchr("abcdef", "d")
460 'def'
461 >>> strchr("abcdef", "def")
462 Traceback (most recent call last):
463 File "<stdin>", line 1, in ?
464 ArgumentError: argument 2: exceptions.TypeError: one character string expected
Georg Brandl6911e3c2007-09-04 07:15:32 +0000465 >>> print(strchr("abcdef", "x"))
Georg Brandl116aa622007-08-15 14:28:22 +0000466 None
467 >>> strchr("abcdef", "d")
468 'def'
469 >>>
470
471You can also use a callable Python object (a function or a class for example) as
472the :attr:`restype` attribute, if the foreign function returns an integer. The
473callable will be called with the ``integer`` the C function returns, and the
474result of this call will be used as the result of your function call. This is
475useful to check for error return values and automatically raise an exception::
476
477 >>> GetModuleHandle = windll.kernel32.GetModuleHandleA # doctest: +WINDOWS
478 >>> def ValidHandle(value):
479 ... if value == 0:
480 ... raise WinError()
481 ... return value
482 ...
483 >>>
484 >>> GetModuleHandle.restype = ValidHandle # doctest: +WINDOWS
485 >>> GetModuleHandle(None) # doctest: +WINDOWS
486 486539264
487 >>> GetModuleHandle("something silly") # doctest: +WINDOWS
488 Traceback (most recent call last):
489 File "<stdin>", line 1, in ?
490 File "<stdin>", line 3, in ValidHandle
491 WindowsError: [Errno 126] The specified module could not be found.
492 >>>
493
494``WinError`` is a function which will call Windows ``FormatMessage()`` api to
495get the string representation of an error code, and *returns* an exception.
496``WinError`` takes an optional error code parameter, if no one is used, it calls
497:func:`GetLastError` to retrieve it.
498
499Please note that a much more powerful error checking mechanism is available
500through the :attr:`errcheck` attribute; see the reference manual for details.
501
502
503.. _ctypes-passing-pointers:
504
505Passing pointers (or: passing parameters by reference)
506^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
507
508Sometimes a C api function expects a *pointer* to a data type as parameter,
509probably to write into the corresponding location, or if the data is too large
510to be passed by value. This is also known as *passing parameters by reference*.
511
512``ctypes`` exports the :func:`byref` function which is used to pass parameters
513by reference. The same effect can be achieved with the ``pointer`` function,
514although ``pointer`` does a lot more work since it constructs a real pointer
515object, so it is faster to use :func:`byref` if you don't need the pointer
516object in Python itself::
517
518 >>> i = c_int()
519 >>> f = c_float()
520 >>> s = create_string_buffer('\000' * 32)
Georg Brandl6911e3c2007-09-04 07:15:32 +0000521 >>> print(i.value, f.value, repr(s.value))
Georg Brandl116aa622007-08-15 14:28:22 +0000522 0 0.0 ''
523 >>> libc.sscanf("1 3.14 Hello", "%d %f %s",
524 ... byref(i), byref(f), s)
525 3
Georg Brandl6911e3c2007-09-04 07:15:32 +0000526 >>> print(i.value, f.value, repr(s.value))
Georg Brandl116aa622007-08-15 14:28:22 +0000527 1 3.1400001049 'Hello'
528 >>>
529
530
531.. _ctypes-structures-unions:
532
533Structures and unions
534^^^^^^^^^^^^^^^^^^^^^
535
536Structures and unions must derive from the :class:`Structure` and :class:`Union`
537base classes which are defined in the ``ctypes`` module. Each subclass must
538define a :attr:`_fields_` attribute. :attr:`_fields_` must be a list of
539*2-tuples*, containing a *field name* and a *field type*.
540
541The field type must be a ``ctypes`` type like :class:`c_int`, or any other
542derived ``ctypes`` type: structure, union, array, pointer.
543
544Here is a simple example of a POINT structure, which contains two integers named
545``x`` and ``y``, and also shows how to initialize a structure in the
546constructor::
547
548 >>> from ctypes import *
549 >>> class POINT(Structure):
550 ... _fields_ = [("x", c_int),
551 ... ("y", c_int)]
552 ...
553 >>> point = POINT(10, 20)
Georg Brandl6911e3c2007-09-04 07:15:32 +0000554 >>> print(point.x, point.y)
Georg Brandl116aa622007-08-15 14:28:22 +0000555 10 20
556 >>> point = POINT(y=5)
Georg Brandl6911e3c2007-09-04 07:15:32 +0000557 >>> print(point.x, point.y)
Georg Brandl116aa622007-08-15 14:28:22 +0000558 0 5
559 >>> POINT(1, 2, 3)
560 Traceback (most recent call last):
561 File "<stdin>", line 1, in ?
562 ValueError: too many initializers
563 >>>
564
565You can, however, build much more complicated structures. Structures can itself
566contain other structures by using a structure as a field type.
567
568Here is a RECT structure which contains two POINTs named ``upperleft`` and
569``lowerright`` ::
570
571 >>> class RECT(Structure):
572 ... _fields_ = [("upperleft", POINT),
573 ... ("lowerright", POINT)]
574 ...
575 >>> rc = RECT(point)
Georg Brandl6911e3c2007-09-04 07:15:32 +0000576 >>> print(rc.upperleft.x, rc.upperleft.y)
Georg Brandl116aa622007-08-15 14:28:22 +0000577 0 5
Georg Brandl6911e3c2007-09-04 07:15:32 +0000578 >>> print(rc.lowerright.x, rc.lowerright.y)
Georg Brandl116aa622007-08-15 14:28:22 +0000579 0 0
580 >>>
581
582Nested structures can also be initialized in the constructor in several ways::
583
584 >>> r = RECT(POINT(1, 2), POINT(3, 4))
585 >>> r = RECT((1, 2), (3, 4))
586
Georg Brandl9afde1c2007-11-01 20:32:30 +0000587Field :term:`descriptor`\s can be retrieved from the *class*, they are useful
588for debugging because they can provide useful information::
Georg Brandl116aa622007-08-15 14:28:22 +0000589
Georg Brandl6911e3c2007-09-04 07:15:32 +0000590 >>> print(POINT.x)
Georg Brandl116aa622007-08-15 14:28:22 +0000591 <Field type=c_long, ofs=0, size=4>
Georg Brandl6911e3c2007-09-04 07:15:32 +0000592 >>> print(POINT.y)
Georg Brandl116aa622007-08-15 14:28:22 +0000593 <Field type=c_long, ofs=4, size=4>
594 >>>
595
596
597.. _ctypes-structureunion-alignment-byte-order:
598
599Structure/union alignment and byte order
600^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
601
602By default, Structure and Union fields are aligned in the same way the C
Thomas Woutersed03b412007-08-28 21:37:11 +0000603compiler does it. It is possible to override this behavior be specifying a
Georg Brandl116aa622007-08-15 14:28:22 +0000604:attr:`_pack_` class attribute in the subclass definition. This must be set to a
605positive integer and specifies the maximum alignment for the fields. This is
606what ``#pragma pack(n)`` also does in MSVC.
607
608``ctypes`` uses the native byte order for Structures and Unions. To build
609structures with non-native byte order, you can use one of the
610BigEndianStructure, LittleEndianStructure, BigEndianUnion, and LittleEndianUnion
611base classes. These classes cannot contain pointer fields.
612
613
614.. _ctypes-bit-fields-in-structures-unions:
615
616Bit fields in structures and unions
617^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
618
619It is possible to create structures and unions containing bit fields. Bit fields
620are only possible for integer fields, the bit width is specified as the third
621item in the :attr:`_fields_` tuples::
622
623 >>> class Int(Structure):
624 ... _fields_ = [("first_16", c_int, 16),
625 ... ("second_16", c_int, 16)]
626 ...
Georg Brandl6911e3c2007-09-04 07:15:32 +0000627 >>> print(Int.first_16)
Georg Brandl116aa622007-08-15 14:28:22 +0000628 <Field type=c_long, ofs=0:0, bits=16>
Georg Brandl6911e3c2007-09-04 07:15:32 +0000629 >>> print(Int.second_16)
Georg Brandl116aa622007-08-15 14:28:22 +0000630 <Field type=c_long, ofs=0:16, bits=16>
631 >>>
632
633
634.. _ctypes-arrays:
635
636Arrays
637^^^^^^
638
639Arrays are sequences, containing a fixed number of instances of the same type.
640
641The recommended way to create array types is by multiplying a data type with a
642positive integer::
643
644 TenPointsArrayType = POINT * 10
645
Thomas Woutersed03b412007-08-28 21:37:11 +0000646Here is an example of an somewhat artificial data type, a structure containing 4
Georg Brandl116aa622007-08-15 14:28:22 +0000647POINTs among other stuff::
648
649 >>> from ctypes import *
650 >>> class POINT(Structure):
651 ... _fields_ = ("x", c_int), ("y", c_int)
652 ...
653 >>> class MyStruct(Structure):
654 ... _fields_ = [("a", c_int),
655 ... ("b", c_float),
656 ... ("point_array", POINT * 4)]
657 >>>
Georg Brandl6911e3c2007-09-04 07:15:32 +0000658 >>> print(len(MyStruct().point_array))
Georg Brandl116aa622007-08-15 14:28:22 +0000659 4
660 >>>
661
662Instances are created in the usual way, by calling the class::
663
664 arr = TenPointsArrayType()
665 for pt in arr:
Georg Brandl6911e3c2007-09-04 07:15:32 +0000666 print(pt.x, pt.y)
Georg Brandl116aa622007-08-15 14:28:22 +0000667
668The above code print a series of ``0 0`` lines, because the array contents is
669initialized to zeros.
670
671Initializers of the correct type can also be specified::
672
673 >>> from ctypes import *
674 >>> TenIntegers = c_int * 10
675 >>> ii = TenIntegers(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
Georg Brandl6911e3c2007-09-04 07:15:32 +0000676 >>> print(ii)
Georg Brandl116aa622007-08-15 14:28:22 +0000677 <c_long_Array_10 object at 0x...>
Georg Brandl6911e3c2007-09-04 07:15:32 +0000678 >>> for i in ii: print(i, end=" ")
Georg Brandl116aa622007-08-15 14:28:22 +0000679 ...
680 1 2 3 4 5 6 7 8 9 10
681 >>>
682
683
684.. _ctypes-pointers:
685
686Pointers
687^^^^^^^^
688
689Pointer instances are created by calling the ``pointer`` function on a
690``ctypes`` type::
691
692 >>> from ctypes import *
693 >>> i = c_int(42)
694 >>> pi = pointer(i)
695 >>>
696
697Pointer instances have a ``contents`` attribute which returns the object to
698which the pointer points, the ``i`` object above::
699
700 >>> pi.contents
701 c_long(42)
702 >>>
703
704Note that ``ctypes`` does not have OOR (original object return), it constructs a
705new, equivalent object each time you retrieve an attribute::
706
707 >>> pi.contents is i
708 False
709 >>> pi.contents is pi.contents
710 False
711 >>>
712
713Assigning another :class:`c_int` instance to the pointer's contents attribute
714would cause the pointer to point to the memory location where this is stored::
715
716 >>> i = c_int(99)
717 >>> pi.contents = i
718 >>> pi.contents
719 c_long(99)
720 >>>
721
Thomas Heller2fadaa22008-06-16 19:56:33 +0000722.. XXX Document dereferencing pointers, and that it is preferred over the .contents attribute.
723
Georg Brandl116aa622007-08-15 14:28:22 +0000724Pointer instances can also be indexed with integers::
725
726 >>> pi[0]
727 99
728 >>>
729
730Assigning to an integer index changes the pointed to value::
731
Georg Brandl6911e3c2007-09-04 07:15:32 +0000732 >>> print(i)
Georg Brandl116aa622007-08-15 14:28:22 +0000733 c_long(99)
734 >>> pi[0] = 22
Georg Brandl6911e3c2007-09-04 07:15:32 +0000735 >>> print(i)
Georg Brandl116aa622007-08-15 14:28:22 +0000736 c_long(22)
737 >>>
738
739It is also possible to use indexes different from 0, but you must know what
740you're doing, just as in C: You can access or change arbitrary memory locations.
741Generally you only use this feature if you receive a pointer from a C function,
742and you *know* that the pointer actually points to an array instead of a single
743item.
744
745Behind the scenes, the ``pointer`` function does more than simply create pointer
746instances, it has to create pointer *types* first. This is done with the
747``POINTER`` function, which accepts any ``ctypes`` type, and returns a new
748type::
749
750 >>> PI = POINTER(c_int)
751 >>> PI
752 <class 'ctypes.LP_c_long'>
753 >>> PI(42)
754 Traceback (most recent call last):
755 File "<stdin>", line 1, in ?
756 TypeError: expected c_long instead of int
757 >>> PI(c_int(42))
758 <ctypes.LP_c_long object at 0x...>
759 >>>
760
761Calling the pointer type without an argument creates a ``NULL`` pointer.
762``NULL`` pointers have a ``False`` boolean value::
763
764 >>> null_ptr = POINTER(c_int)()
Georg Brandl6911e3c2007-09-04 07:15:32 +0000765 >>> print(bool(null_ptr))
Georg Brandl116aa622007-08-15 14:28:22 +0000766 False
767 >>>
768
769``ctypes`` checks for ``NULL`` when dereferencing pointers (but dereferencing
Thomas Heller2fadaa22008-06-16 19:56:33 +0000770invalid non-\ ``NULL`` pointers would crash Python)::
Georg Brandl116aa622007-08-15 14:28:22 +0000771
772 >>> null_ptr[0]
773 Traceback (most recent call last):
774 ....
775 ValueError: NULL pointer access
776 >>>
777
778 >>> null_ptr[0] = 1234
779 Traceback (most recent call last):
780 ....
781 ValueError: NULL pointer access
782 >>>
783
784
785.. _ctypes-type-conversions:
786
787Type conversions
788^^^^^^^^^^^^^^^^
789
790Usually, ctypes does strict type checking. This means, if you have
791``POINTER(c_int)`` in the :attr:`argtypes` list of a function or as the type of
792a member field in a structure definition, only instances of exactly the same
793type are accepted. There are some exceptions to this rule, where ctypes accepts
794other objects. For example, you can pass compatible array instances instead of
795pointer types. So, for ``POINTER(c_int)``, ctypes accepts an array of c_int::
796
797 >>> class Bar(Structure):
798 ... _fields_ = [("count", c_int), ("values", POINTER(c_int))]
799 ...
800 >>> bar = Bar()
801 >>> bar.values = (c_int * 3)(1, 2, 3)
802 >>> bar.count = 3
803 >>> for i in range(bar.count):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000804 ... print(bar.values[i])
Georg Brandl116aa622007-08-15 14:28:22 +0000805 ...
806 1
807 2
808 3
809 >>>
810
811To set a POINTER type field to ``NULL``, you can assign ``None``::
812
813 >>> bar.values = None
814 >>>
815
Thomas Heller2fadaa22008-06-16 19:56:33 +0000816.. XXX list other conversions...
Georg Brandl116aa622007-08-15 14:28:22 +0000817
Thomas Heller2fadaa22008-06-16 19:56:33 +0000818Sometimes you have instances of incompatible types. In C, you can cast one
Georg Brandl116aa622007-08-15 14:28:22 +0000819type into another type. ``ctypes`` provides a ``cast`` function which can be
820used in the same way. The ``Bar`` structure defined above accepts
821``POINTER(c_int)`` pointers or :class:`c_int` arrays for its ``values`` field,
822but not instances of other types::
823
824 >>> bar.values = (c_byte * 4)()
825 Traceback (most recent call last):
826 File "<stdin>", line 1, in ?
827 TypeError: incompatible types, c_byte_Array_4 instance instead of LP_c_long instance
828 >>>
829
830For these cases, the ``cast`` function is handy.
831
832The ``cast`` function can be used to cast a ctypes instance into a pointer to a
833different ctypes data type. ``cast`` takes two parameters, a ctypes object that
834is or can be converted to a pointer of some kind, and a ctypes pointer type. It
835returns an instance of the second argument, which references the same memory
836block as the first argument::
837
838 >>> a = (c_byte * 4)()
839 >>> cast(a, POINTER(c_int))
840 <ctypes.LP_c_long object at ...>
841 >>>
842
843So, ``cast`` can be used to assign to the ``values`` field of ``Bar`` the
844structure::
845
846 >>> bar = Bar()
847 >>> bar.values = cast((c_byte * 4)(), POINTER(c_int))
Georg Brandl6911e3c2007-09-04 07:15:32 +0000848 >>> print(bar.values[0])
Georg Brandl116aa622007-08-15 14:28:22 +0000849 0
850 >>>
851
852
853.. _ctypes-incomplete-types:
854
855Incomplete Types
856^^^^^^^^^^^^^^^^
857
858*Incomplete Types* are structures, unions or arrays whose members are not yet
859specified. In C, they are specified by forward declarations, which are defined
860later::
861
862 struct cell; /* forward declaration */
863
864 struct {
865 char *name;
866 struct cell *next;
867 } cell;
868
869The straightforward translation into ctypes code would be this, but it does not
870work::
871
872 >>> class cell(Structure):
873 ... _fields_ = [("name", c_char_p),
874 ... ("next", POINTER(cell))]
875 ...
876 Traceback (most recent call last):
877 File "<stdin>", line 1, in ?
878 File "<stdin>", line 2, in cell
879 NameError: name 'cell' is not defined
880 >>>
881
882because the new ``class cell`` is not available in the class statement itself.
883In ``ctypes``, we can define the ``cell`` class and set the :attr:`_fields_`
884attribute later, after the class statement::
885
886 >>> from ctypes import *
887 >>> class cell(Structure):
888 ... pass
889 ...
890 >>> cell._fields_ = [("name", c_char_p),
891 ... ("next", POINTER(cell))]
892 >>>
893
894Lets try it. We create two instances of ``cell``, and let them point to each
895other, and finally follow the pointer chain a few times::
896
897 >>> c1 = cell()
898 >>> c1.name = "foo"
899 >>> c2 = cell()
900 >>> c2.name = "bar"
901 >>> c1.next = pointer(c2)
902 >>> c2.next = pointer(c1)
903 >>> p = c1
904 >>> for i in range(8):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000905 ... print(p.name, end=" ")
Georg Brandl116aa622007-08-15 14:28:22 +0000906 ... p = p.next[0]
907 ...
908 foo bar foo bar foo bar foo bar
909 >>>
910
911
912.. _ctypes-callback-functions:
913
914Callback functions
915^^^^^^^^^^^^^^^^^^
916
917``ctypes`` allows to create C callable function pointers from Python callables.
918These are sometimes called *callback functions*.
919
920First, you must create a class for the callback function, the class knows the
921calling convention, the return type, and the number and types of arguments this
922function will receive.
923
924The CFUNCTYPE factory function creates types for callback functions using the
925normal cdecl calling convention, and, on Windows, the WINFUNCTYPE factory
926function creates types for callback functions using the stdcall calling
927convention.
928
929Both of these factory functions are called with the result type as first
930argument, and the callback functions expected argument types as the remaining
931arguments.
932
933I will present an example here which uses the standard C library's :func:`qsort`
934function, this is used to sort items with the help of a callback function.
935:func:`qsort` will be used to sort an array of integers::
936
937 >>> IntArray5 = c_int * 5
938 >>> ia = IntArray5(5, 1, 7, 33, 99)
939 >>> qsort = libc.qsort
940 >>> qsort.restype = None
941 >>>
942
943:func:`qsort` must be called with a pointer to the data to sort, the number of
944items in the data array, the size of one item, and a pointer to the comparison
945function, the callback. The callback will then be called with two pointers to
946items, and it must return a negative integer if the first item is smaller than
947the second, a zero if they are equal, and a positive integer else.
948
949So our callback function receives pointers to integers, and must return an
950integer. First we create the ``type`` for the callback function::
951
952 >>> CMPFUNC = CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))
953 >>>
954
955For the first implementation of the callback function, we simply print the
956arguments we get, and return 0 (incremental development ;-)::
957
958 >>> def py_cmp_func(a, b):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000959 ... print("py_cmp_func", a, b)
Georg Brandl116aa622007-08-15 14:28:22 +0000960 ... return 0
961 ...
962 >>>
963
964Create the C callable callback::
965
966 >>> cmp_func = CMPFUNC(py_cmp_func)
967 >>>
968
969And we're ready to go::
970
971 >>> qsort(ia, len(ia), sizeof(c_int), cmp_func) # doctest: +WINDOWS
972 py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
973 py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
974 py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
975 py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
976 py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
977 py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
978 py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
979 py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
980 py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
981 py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
982 >>>
983
984We know how to access the contents of a pointer, so lets redefine our callback::
985
986 >>> def py_cmp_func(a, b):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000987 ... print("py_cmp_func", a[0], b[0])
Georg Brandl116aa622007-08-15 14:28:22 +0000988 ... return 0
989 ...
990 >>> cmp_func = CMPFUNC(py_cmp_func)
991 >>>
992
993Here is what we get on Windows::
994
995 >>> qsort(ia, len(ia), sizeof(c_int), cmp_func) # doctest: +WINDOWS
996 py_cmp_func 7 1
997 py_cmp_func 33 1
998 py_cmp_func 99 1
999 py_cmp_func 5 1
1000 py_cmp_func 7 5
1001 py_cmp_func 33 5
1002 py_cmp_func 99 5
1003 py_cmp_func 7 99
1004 py_cmp_func 33 99
1005 py_cmp_func 7 33
1006 >>>
1007
1008It is funny to see that on linux the sort function seems to work much more
1009efficient, it is doing less comparisons::
1010
1011 >>> qsort(ia, len(ia), sizeof(c_int), cmp_func) # doctest: +LINUX
1012 py_cmp_func 5 1
1013 py_cmp_func 33 99
1014 py_cmp_func 7 33
1015 py_cmp_func 5 7
1016 py_cmp_func 1 7
1017 >>>
1018
1019Ah, we're nearly done! The last step is to actually compare the two items and
1020return a useful result::
1021
1022 >>> def py_cmp_func(a, b):
Georg Brandl6911e3c2007-09-04 07:15:32 +00001023 ... print("py_cmp_func", a[0], b[0])
Georg Brandl116aa622007-08-15 14:28:22 +00001024 ... return a[0] - b[0]
1025 ...
1026 >>>
1027
1028Final run on Windows::
1029
1030 >>> qsort(ia, len(ia), sizeof(c_int), CMPFUNC(py_cmp_func)) # doctest: +WINDOWS
1031 py_cmp_func 33 7
1032 py_cmp_func 99 33
1033 py_cmp_func 5 99
1034 py_cmp_func 1 99
1035 py_cmp_func 33 7
1036 py_cmp_func 1 33
1037 py_cmp_func 5 33
1038 py_cmp_func 5 7
1039 py_cmp_func 1 7
1040 py_cmp_func 5 1
1041 >>>
1042
1043and on Linux::
1044
1045 >>> qsort(ia, len(ia), sizeof(c_int), CMPFUNC(py_cmp_func)) # doctest: +LINUX
1046 py_cmp_func 5 1
1047 py_cmp_func 33 99
1048 py_cmp_func 7 33
1049 py_cmp_func 1 7
1050 py_cmp_func 5 7
1051 >>>
1052
1053It is quite interesting to see that the Windows :func:`qsort` function needs
1054more comparisons than the linux version!
1055
1056As we can easily check, our array is sorted now::
1057
Georg Brandl6911e3c2007-09-04 07:15:32 +00001058 >>> for i in ia: print(i, end=" ")
Georg Brandl116aa622007-08-15 14:28:22 +00001059 ...
1060 1 5 7 33 99
1061 >>>
1062
1063**Important note for callback functions:**
1064
1065Make sure you keep references to CFUNCTYPE objects as long as they are used from
1066C code. ``ctypes`` doesn't, and if you don't, they may be garbage collected,
1067crashing your program when a callback is made.
1068
1069
1070.. _ctypes-accessing-values-exported-from-dlls:
1071
1072Accessing values exported from dlls
1073^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1074
Thomas Heller2fadaa22008-06-16 19:56:33 +00001075Some shared libraries not only export functions, they also export variables. An
Georg Brandl116aa622007-08-15 14:28:22 +00001076example in the Python library itself is the ``Py_OptimizeFlag``, an integer set
1077to 0, 1, or 2, depending on the :option:`-O` or :option:`-OO` flag given on
1078startup.
1079
1080``ctypes`` can access values like this with the :meth:`in_dll` class methods of
1081the type. *pythonapi* is a predefined symbol giving access to the Python C
1082api::
1083
1084 >>> opt_flag = c_int.in_dll(pythonapi, "Py_OptimizeFlag")
Georg Brandl6911e3c2007-09-04 07:15:32 +00001085 >>> print(opt_flag)
Georg Brandl116aa622007-08-15 14:28:22 +00001086 c_long(0)
1087 >>>
1088
1089If the interpreter would have been started with :option:`-O`, the sample would
1090have printed ``c_long(1)``, or ``c_long(2)`` if :option:`-OO` would have been
1091specified.
1092
1093An extended example which also demonstrates the use of pointers accesses the
1094``PyImport_FrozenModules`` pointer exported by Python.
1095
1096Quoting the Python docs: *This pointer is initialized to point to an array of
1097"struct _frozen" records, terminated by one whose members are all NULL or zero.
1098When a frozen module is imported, it is searched in this table. Third-party code
1099could play tricks with this to provide a dynamically created collection of
1100frozen modules.*
1101
1102So manipulating this pointer could even prove useful. To restrict the example
1103size, we show only how this table can be read with ``ctypes``::
1104
1105 >>> from ctypes import *
1106 >>>
1107 >>> class struct_frozen(Structure):
1108 ... _fields_ = [("name", c_char_p),
1109 ... ("code", POINTER(c_ubyte)),
1110 ... ("size", c_int)]
1111 ...
1112 >>>
1113
1114We have defined the ``struct _frozen`` data type, so we can get the pointer to
1115the table::
1116
1117 >>> FrozenTable = POINTER(struct_frozen)
1118 >>> table = FrozenTable.in_dll(pythonapi, "PyImport_FrozenModules")
1119 >>>
1120
1121Since ``table`` is a ``pointer`` to the array of ``struct_frozen`` records, we
1122can iterate over it, but we just have to make sure that our loop terminates,
1123because pointers have no size. Sooner or later it would probably crash with an
1124access violation or whatever, so it's better to break out of the loop when we
1125hit the NULL entry::
1126
1127 >>> for item in table:
Georg Brandl6911e3c2007-09-04 07:15:32 +00001128 ... print(item.name, item.size)
Georg Brandl116aa622007-08-15 14:28:22 +00001129 ... if item.name is None:
1130 ... break
1131 ...
1132 __hello__ 104
1133 __phello__ -104
1134 __phello__.spam 104
1135 None 0
1136 >>>
1137
1138The fact that standard Python has a frozen module and a frozen package
Thomas Woutersed03b412007-08-28 21:37:11 +00001139(indicated by the negative size member) is not well known, it is only used for
Georg Brandl116aa622007-08-15 14:28:22 +00001140testing. Try it out with ``import __hello__`` for example.
1141
1142
1143.. _ctypes-surprises:
1144
1145Surprises
1146^^^^^^^^^
1147
1148There are some edges in ``ctypes`` where you may be expect something else than
1149what actually happens.
1150
1151Consider the following example::
1152
1153 >>> from ctypes import *
1154 >>> class POINT(Structure):
1155 ... _fields_ = ("x", c_int), ("y", c_int)
1156 ...
1157 >>> class RECT(Structure):
1158 ... _fields_ = ("a", POINT), ("b", POINT)
1159 ...
1160 >>> p1 = POINT(1, 2)
1161 >>> p2 = POINT(3, 4)
1162 >>> rc = RECT(p1, p2)
Georg Brandl6911e3c2007-09-04 07:15:32 +00001163 >>> print(rc.a.x, rc.a.y, rc.b.x, rc.b.y)
Georg Brandl116aa622007-08-15 14:28:22 +00001164 1 2 3 4
1165 >>> # now swap the two points
1166 >>> rc.a, rc.b = rc.b, rc.a
Georg Brandl6911e3c2007-09-04 07:15:32 +00001167 >>> print(rc.a.x, rc.a.y, rc.b.x, rc.b.y)
Georg Brandl116aa622007-08-15 14:28:22 +00001168 3 4 3 4
1169 >>>
1170
1171Hm. We certainly expected the last statement to print ``3 4 1 2``. What
Thomas Woutersed03b412007-08-28 21:37:11 +00001172happened? Here are the steps of the ``rc.a, rc.b = rc.b, rc.a`` line above::
Georg Brandl116aa622007-08-15 14:28:22 +00001173
1174 >>> temp0, temp1 = rc.b, rc.a
1175 >>> rc.a = temp0
1176 >>> rc.b = temp1
1177 >>>
1178
1179Note that ``temp0`` and ``temp1`` are objects still using the internal buffer of
1180the ``rc`` object above. So executing ``rc.a = temp0`` copies the buffer
1181contents of ``temp0`` into ``rc`` 's buffer. This, in turn, changes the
1182contents of ``temp1``. So, the last assignment ``rc.b = temp1``, doesn't have
1183the expected effect.
1184
Thomas Woutersed03b412007-08-28 21:37:11 +00001185Keep in mind that retrieving sub-objects from Structure, Unions, and Arrays
1186doesn't *copy* the sub-object, instead it retrieves a wrapper object accessing
Georg Brandl116aa622007-08-15 14:28:22 +00001187the root-object's underlying buffer.
1188
1189Another example that may behave different from what one would expect is this::
1190
1191 >>> s = c_char_p()
1192 >>> s.value = "abc def ghi"
1193 >>> s.value
1194 'abc def ghi'
1195 >>> s.value is s.value
1196 False
1197 >>>
1198
1199Why is it printing ``False``? ctypes instances are objects containing a memory
Georg Brandl9afde1c2007-11-01 20:32:30 +00001200block plus some :term:`descriptor`\s accessing the contents of the memory.
1201Storing a Python object in the memory block does not store the object itself,
1202instead the ``contents`` of the object is stored. Accessing the contents again
1203constructs a new Python object each time!
Georg Brandl116aa622007-08-15 14:28:22 +00001204
1205
1206.. _ctypes-variable-sized-data-types:
1207
1208Variable-sized data types
1209^^^^^^^^^^^^^^^^^^^^^^^^^
1210
1211``ctypes`` provides some support for variable-sized arrays and structures (this
1212was added in version 0.9.9.7).
1213
1214The ``resize`` function can be used to resize the memory buffer of an existing
1215ctypes object. The function takes the object as first argument, and the
1216requested size in bytes as the second argument. The memory block cannot be made
1217smaller than the natural memory block specified by the objects type, a
1218``ValueError`` is raised if this is tried::
1219
1220 >>> short_array = (c_short * 4)()
Georg Brandl6911e3c2007-09-04 07:15:32 +00001221 >>> print(sizeof(short_array))
Georg Brandl116aa622007-08-15 14:28:22 +00001222 8
1223 >>> resize(short_array, 4)
1224 Traceback (most recent call last):
1225 ...
1226 ValueError: minimum size is 8
1227 >>> resize(short_array, 32)
1228 >>> sizeof(short_array)
1229 32
1230 >>> sizeof(type(short_array))
1231 8
1232 >>>
1233
1234This is nice and fine, but how would one access the additional elements
1235contained in this array? Since the type still only knows about 4 elements, we
1236get errors accessing other elements::
1237
1238 >>> short_array[:]
1239 [0, 0, 0, 0]
1240 >>> short_array[7]
1241 Traceback (most recent call last):
1242 ...
1243 IndexError: invalid index
1244 >>>
1245
1246Another way to use variable-sized data types with ``ctypes`` is to use the
1247dynamic nature of Python, and (re-)define the data type after the required size
1248is already known, on a case by case basis.
1249
1250
Georg Brandl116aa622007-08-15 14:28:22 +00001251.. _ctypes-ctypes-reference:
1252
1253ctypes reference
1254----------------
1255
1256
1257.. _ctypes-finding-shared-libraries:
1258
1259Finding shared libraries
1260^^^^^^^^^^^^^^^^^^^^^^^^
1261
1262When programming in a compiled language, shared libraries are accessed when
1263compiling/linking a program, and when the program is run.
1264
1265The purpose of the ``find_library`` function is to locate a library in a way
1266similar to what the compiler does (on platforms with several versions of a
1267shared library the most recent should be loaded), while the ctypes library
1268loaders act like when a program is run, and call the runtime loader directly.
1269
1270The ``ctypes.util`` module provides a function which can help to determine the
1271library to load.
1272
1273
1274.. data:: find_library(name)
1275 :noindex:
1276
1277 Try to find a library and return a pathname. *name* is the library name without
1278 any prefix like *lib*, suffix like ``.so``, ``.dylib`` or version number (this
1279 is the form used for the posix linker option :option:`-l`). If no library can
1280 be found, returns ``None``.
1281
Thomas Woutersed03b412007-08-28 21:37:11 +00001282The exact functionality is system dependent.
Georg Brandl116aa622007-08-15 14:28:22 +00001283
1284On Linux, ``find_library`` tries to run external programs (/sbin/ldconfig, gcc,
1285and objdump) to find the library file. It returns the filename of the library
Thomas Woutersed03b412007-08-28 21:37:11 +00001286file. Here are some examples::
Georg Brandl116aa622007-08-15 14:28:22 +00001287
1288 >>> from ctypes.util import find_library
1289 >>> find_library("m")
1290 'libm.so.6'
1291 >>> find_library("c")
1292 'libc.so.6'
1293 >>> find_library("bz2")
1294 'libbz2.so.1.0'
1295 >>>
1296
1297On OS X, ``find_library`` tries several predefined naming schemes and paths to
Thomas Woutersed03b412007-08-28 21:37:11 +00001298locate the library, and returns a full pathname if successful::
Georg Brandl116aa622007-08-15 14:28:22 +00001299
1300 >>> from ctypes.util import find_library
1301 >>> find_library("c")
1302 '/usr/lib/libc.dylib'
1303 >>> find_library("m")
1304 '/usr/lib/libm.dylib'
1305 >>> find_library("bz2")
1306 '/usr/lib/libbz2.dylib'
1307 >>> find_library("AGL")
1308 '/System/Library/Frameworks/AGL.framework/AGL'
1309 >>>
1310
1311On Windows, ``find_library`` searches along the system search path, and returns
1312the full pathname, but since there is no predefined naming scheme a call like
1313``find_library("c")`` will fail and return ``None``.
1314
1315If wrapping a shared library with ``ctypes``, it *may* be better to determine
1316the shared library name at development type, and hardcode that into the wrapper
1317module instead of using ``find_library`` to locate the library at runtime.
1318
1319
1320.. _ctypes-loading-shared-libraries:
1321
1322Loading shared libraries
1323^^^^^^^^^^^^^^^^^^^^^^^^
1324
1325There are several ways to loaded shared libraries into the Python process. One
1326way is to instantiate one of the following classes:
1327
1328
Thomas Hellerb795f5282008-06-10 15:26:58 +00001329.. class:: CDLL(name, mode=DEFAULT_MODE, handle=None, use_errno=False, use_last_error=False)
Georg Brandl116aa622007-08-15 14:28:22 +00001330
1331 Instances of this class represent loaded shared libraries. Functions in these
1332 libraries use the standard C calling convention, and are assumed to return
1333 ``int``.
1334
1335
Thomas Hellerb795f5282008-06-10 15:26:58 +00001336.. class:: OleDLL(name, mode=DEFAULT_MODE, handle=None, use_errno=False, use_last_error=False)
Georg Brandl116aa622007-08-15 14:28:22 +00001337
1338 Windows only: Instances of this class represent loaded shared libraries,
1339 functions in these libraries use the ``stdcall`` calling convention, and are
1340 assumed to return the windows specific :class:`HRESULT` code. :class:`HRESULT`
1341 values contain information specifying whether the function call failed or
1342 succeeded, together with additional error code. If the return value signals a
1343 failure, an :class:`WindowsError` is automatically raised.
1344
1345
Thomas Hellerb795f5282008-06-10 15:26:58 +00001346.. class:: WinDLL(name, mode=DEFAULT_MODE, handle=None, use_errno=False, use_last_error=False)
Georg Brandl116aa622007-08-15 14:28:22 +00001347
1348 Windows only: Instances of this class represent loaded shared libraries,
1349 functions in these libraries use the ``stdcall`` calling convention, and are
1350 assumed to return ``int`` by default.
1351
1352 On Windows CE only the standard calling convention is used, for convenience the
1353 :class:`WinDLL` and :class:`OleDLL` use the standard calling convention on this
1354 platform.
1355
Georg Brandl9afde1c2007-11-01 20:32:30 +00001356The Python :term:`global interpreter lock` is released before calling any
1357function exported by these libraries, and reacquired afterwards.
Georg Brandl116aa622007-08-15 14:28:22 +00001358
1359
1360.. class:: PyDLL(name, mode=DEFAULT_MODE, handle=None)
1361
1362 Instances of this class behave like :class:`CDLL` instances, except that the
1363 Python GIL is *not* released during the function call, and after the function
1364 execution the Python error flag is checked. If the error flag is set, a Python
1365 exception is raised.
1366
1367 Thus, this is only useful to call Python C api functions directly.
1368
1369All these classes can be instantiated by calling them with at least one
1370argument, the pathname of the shared library. If you have an existing handle to
1371an already loaded shard library, it can be passed as the ``handle`` named
1372parameter, otherwise the underlying platforms ``dlopen`` or :meth:`LoadLibrary`
1373function is used to load the library into the process, and to get a handle to
1374it.
1375
1376The *mode* parameter can be used to specify how the library is loaded. For
1377details, consult the ``dlopen(3)`` manpage, on Windows, *mode* is ignored.
1378
Thomas Hellerb795f5282008-06-10 15:26:58 +00001379The *use_errno* parameter, when set to True, enables a ctypes
1380mechanism that allows to access the system `errno` error number in a
1381safe way. `ctypes` maintains a thread-local copy of the systems
1382`errno` variable; if you call foreign functions created with
1383`use_errno=True` then the `errno` value before the function call is
1384swapped with the ctypes private copy, the same happens immediately
1385after the function call.
1386
1387The function `ctypes.get_errno()` returns the value of the ctypes
1388private copy, and the function `ctypes.set_errno(value)` changes the
1389ctypes private copy to `value` and returns the former value.
1390
1391The *use_last_error* parameter, when set to True, enables the same
1392mechanism for the Windows error code which is managed by the
1393GetLastError() and SetLastError() Windows api functions;
1394`ctypes.get_last_error()` and `ctypes.set_last_error(value)` are used
1395to request and change the ctypes private copy of the windows error
1396code.
1397
1398.. versionchanged:: 2.6
1399
1400The `use_errno` and `use_last_error` parameters were added in Python
14012.6.
Georg Brandl116aa622007-08-15 14:28:22 +00001402
1403.. data:: RTLD_GLOBAL
1404 :noindex:
1405
1406 Flag to use as *mode* parameter. On platforms where this flag is not available,
1407 it is defined as the integer zero.
1408
1409
1410.. data:: RTLD_LOCAL
1411 :noindex:
1412
1413 Flag to use as *mode* parameter. On platforms where this is not available, it
1414 is the same as *RTLD_GLOBAL*.
1415
1416
1417.. data:: DEFAULT_MODE
1418 :noindex:
1419
1420 The default mode which is used to load shared libraries. On OSX 10.3, this is
1421 *RTLD_GLOBAL*, otherwise it is the same as *RTLD_LOCAL*.
1422
1423Instances of these classes have no public methods, however :meth:`__getattr__`
Thomas Woutersed03b412007-08-28 21:37:11 +00001424and :meth:`__getitem__` have special behavior: functions exported by the shared
Georg Brandl116aa622007-08-15 14:28:22 +00001425library can be accessed as attributes of by index. Please note that both
1426:meth:`__getattr__` and :meth:`__getitem__` cache their result, so calling them
1427repeatedly returns the same object each time.
1428
1429The following public attributes are available, their name starts with an
1430underscore to not clash with exported function names:
1431
1432
1433.. attribute:: PyDLL._handle
1434
1435 The system handle used to access the library.
1436
1437
1438.. attribute:: PyDLL._name
1439
Thomas Woutersed03b412007-08-28 21:37:11 +00001440 The name of the library passed in the constructor.
Georg Brandl116aa622007-08-15 14:28:22 +00001441
1442Shared libraries can also be loaded by using one of the prefabricated objects,
1443which are instances of the :class:`LibraryLoader` class, either by calling the
1444:meth:`LoadLibrary` method, or by retrieving the library as attribute of the
1445loader instance.
1446
1447
1448.. class:: LibraryLoader(dlltype)
1449
1450 Class which loads shared libraries. ``dlltype`` should be one of the
1451 :class:`CDLL`, :class:`PyDLL`, :class:`WinDLL`, or :class:`OleDLL` types.
1452
Thomas Woutersed03b412007-08-28 21:37:11 +00001453 :meth:`__getattr__` has special behavior: It allows to load a shared library by
Georg Brandl116aa622007-08-15 14:28:22 +00001454 accessing it as attribute of a library loader instance. The result is cached,
1455 so repeated attribute accesses return the same library each time.
1456
1457
Benjamin Petersone41251e2008-04-25 01:59:09 +00001458 .. method:: LoadLibrary(name)
Georg Brandl116aa622007-08-15 14:28:22 +00001459
Benjamin Petersone41251e2008-04-25 01:59:09 +00001460 Load a shared library into the process and return it. This method always
1461 returns a new instance of the library.
Georg Brandl116aa622007-08-15 14:28:22 +00001462
1463These prefabricated library loaders are available:
1464
1465
1466.. data:: cdll
1467 :noindex:
1468
1469 Creates :class:`CDLL` instances.
1470
1471
1472.. data:: windll
1473 :noindex:
1474
1475 Windows only: Creates :class:`WinDLL` instances.
1476
1477
1478.. data:: oledll
1479 :noindex:
1480
1481 Windows only: Creates :class:`OleDLL` instances.
1482
1483
1484.. data:: pydll
1485 :noindex:
1486
1487 Creates :class:`PyDLL` instances.
1488
1489For accessing the C Python api directly, a ready-to-use Python shared library
1490object is available:
1491
1492
1493.. data:: pythonapi
1494 :noindex:
1495
1496 An instance of :class:`PyDLL` that exposes Python C api functions as attributes.
1497 Note that all these functions are assumed to return C ``int``, which is of
1498 course not always the truth, so you have to assign the correct :attr:`restype`
1499 attribute to use these functions.
1500
1501
1502.. _ctypes-foreign-functions:
1503
1504Foreign functions
1505^^^^^^^^^^^^^^^^^
1506
1507As explained in the previous section, foreign functions can be accessed as
1508attributes of loaded shared libraries. The function objects created in this way
1509by default accept any number of arguments, accept any ctypes data instances as
1510arguments, and return the default result type specified by the library loader.
1511They are instances of a private class:
1512
1513
1514.. class:: _FuncPtr
1515
1516 Base class for C callable foreign functions.
1517
Benjamin Petersone41251e2008-04-25 01:59:09 +00001518 Instances of foreign functions are also C compatible data types; they
1519 represent C function pointers.
Georg Brandl116aa622007-08-15 14:28:22 +00001520
Benjamin Petersone41251e2008-04-25 01:59:09 +00001521 This behavior can be customized by assigning to special attributes of the
1522 foreign function object.
Georg Brandl116aa622007-08-15 14:28:22 +00001523
1524
Benjamin Petersone41251e2008-04-25 01:59:09 +00001525 .. attribute:: restype
Georg Brandl116aa622007-08-15 14:28:22 +00001526
Benjamin Petersone41251e2008-04-25 01:59:09 +00001527 Assign a ctypes type to specify the result type of the foreign function.
1528 Use ``None`` for ``void`` a function not returning anything.
Georg Brandl116aa622007-08-15 14:28:22 +00001529
Benjamin Petersone41251e2008-04-25 01:59:09 +00001530 It is possible to assign a callable Python object that is not a ctypes
1531 type, in this case the function is assumed to return a C ``int``, and the
1532 callable will be called with this integer, allowing to do further
1533 processing or error checking. Using this is deprecated, for more flexible
1534 post processing or error checking use a ctypes data type as
1535 :attr:`restype` and assign a callable to the :attr:`errcheck` attribute.
Georg Brandl116aa622007-08-15 14:28:22 +00001536
1537
Benjamin Petersone41251e2008-04-25 01:59:09 +00001538 .. attribute:: argtypes
Georg Brandl116aa622007-08-15 14:28:22 +00001539
Benjamin Petersone41251e2008-04-25 01:59:09 +00001540 Assign a tuple of ctypes types to specify the argument types that the
1541 function accepts. Functions using the ``stdcall`` calling convention can
1542 only be called with the same number of arguments as the length of this
1543 tuple; functions using the C calling convention accept additional,
1544 unspecified arguments as well.
Georg Brandl116aa622007-08-15 14:28:22 +00001545
Benjamin Petersone41251e2008-04-25 01:59:09 +00001546 When a foreign function is called, each actual argument is passed to the
1547 :meth:`from_param` class method of the items in the :attr:`argtypes`
1548 tuple, this method allows to adapt the actual argument to an object that
1549 the foreign function accepts. For example, a :class:`c_char_p` item in
1550 the :attr:`argtypes` tuple will convert a unicode string passed as
1551 argument into an byte string using ctypes conversion rules.
Georg Brandl116aa622007-08-15 14:28:22 +00001552
Benjamin Petersone41251e2008-04-25 01:59:09 +00001553 New: It is now possible to put items in argtypes which are not ctypes
1554 types, but each item must have a :meth:`from_param` method which returns a
1555 value usable as argument (integer, string, ctypes instance). This allows
1556 to define adapters that can adapt custom objects as function parameters.
Georg Brandl116aa622007-08-15 14:28:22 +00001557
1558
Benjamin Petersone41251e2008-04-25 01:59:09 +00001559 .. attribute:: errcheck
Georg Brandl116aa622007-08-15 14:28:22 +00001560
Benjamin Petersone41251e2008-04-25 01:59:09 +00001561 Assign a Python function or another callable to this attribute. The
1562 callable will be called with three or more arguments:
Georg Brandl116aa622007-08-15 14:28:22 +00001563
1564
1565.. function:: callable(result, func, arguments)
1566 :noindex:
1567
1568 ``result`` is what the foreign function returns, as specified by the
1569 :attr:`restype` attribute.
1570
1571 ``func`` is the foreign function object itself, this allows to reuse the same
Thomas Woutersed03b412007-08-28 21:37:11 +00001572 callable object to check or post process the results of several functions.
Georg Brandl116aa622007-08-15 14:28:22 +00001573
1574 ``arguments`` is a tuple containing the parameters originally passed to the
Thomas Woutersed03b412007-08-28 21:37:11 +00001575 function call, this allows to specialize the behavior on the arguments used.
Georg Brandl116aa622007-08-15 14:28:22 +00001576
Benjamin Petersone41251e2008-04-25 01:59:09 +00001577 The object that this function returns will be returned from the foreign
1578 function call, but it can also check the result value and raise an exception
1579 if the foreign function call failed.
Georg Brandl116aa622007-08-15 14:28:22 +00001580
1581
1582.. exception:: ArgumentError()
1583
1584 This exception is raised when a foreign function call cannot convert one of the
1585 passed arguments.
1586
1587
1588.. _ctypes-function-prototypes:
1589
1590Function prototypes
1591^^^^^^^^^^^^^^^^^^^
1592
1593Foreign functions can also be created by instantiating function prototypes.
1594Function prototypes are similar to function prototypes in C; they describe a
1595function (return type, argument types, calling convention) without defining an
1596implementation. The factory functions must be called with the desired result
1597type and the argument types of the function.
1598
1599
Thomas Hellerb795f5282008-06-10 15:26:58 +00001600.. function:: CFUNCTYPE(restype, *argtypes, use_errno=False, use_last_error=False)
Georg Brandl116aa622007-08-15 14:28:22 +00001601
1602 The returned function prototype creates functions that use the standard C
1603 calling convention. The function will release the GIL during the call.
Thomas Hellerb795f5282008-06-10 15:26:58 +00001604 If `use_errno` is set to True, the ctypes private copy of the system `errno`
1605 variable is exchanged with the real `errno` value bafore and after the call;
1606 `use_last_error` does the same for the Windows error code.
1607
1608 .. versionchanged:: 2.6
Thomas Heller2fadaa22008-06-16 19:56:33 +00001609 The optional `use_errno` and `use_last_error` parameters were
1610 added.
Georg Brandl116aa622007-08-15 14:28:22 +00001611
1612
Thomas Hellerb795f5282008-06-10 15:26:58 +00001613.. function:: WINFUNCTYPE(restype, *argtypes, use_errno=False, use_last_error=False)
Georg Brandl116aa622007-08-15 14:28:22 +00001614
1615 Windows only: The returned function prototype creates functions that use the
1616 ``stdcall`` calling convention, except on Windows CE where :func:`WINFUNCTYPE`
1617 is the same as :func:`CFUNCTYPE`. The function will release the GIL during the
Thomas Hellerb795f5282008-06-10 15:26:58 +00001618 call. `use_errno` and `use_last_error` have the same meaning as above.
Georg Brandl116aa622007-08-15 14:28:22 +00001619
1620
1621.. function:: PYFUNCTYPE(restype, *argtypes)
1622
1623 The returned function prototype creates functions that use the Python calling
1624 convention. The function will *not* release the GIL during the call.
1625
Thomas Heller2fadaa22008-06-16 19:56:33 +00001626Function prototypes created by these factory functions can be instantiated in
1627different ways, depending on the type and number of the parameters in the call:
Georg Brandl116aa622007-08-15 14:28:22 +00001628
1629
Thomas Heller2fadaa22008-06-16 19:56:33 +00001630 .. function:: prototype(address)
1631 :noindex:
1632 :module:
Georg Brandl116aa622007-08-15 14:28:22 +00001633
Thomas Heller2fadaa22008-06-16 19:56:33 +00001634 Returns a foreign function at the specified address which must be an integer.
Georg Brandl116aa622007-08-15 14:28:22 +00001635
1636
Thomas Heller2fadaa22008-06-16 19:56:33 +00001637 .. function:: prototype(callable)
1638 :noindex:
1639 :module:
Georg Brandl116aa622007-08-15 14:28:22 +00001640
Thomas Heller2fadaa22008-06-16 19:56:33 +00001641 Create a C callable function (a callback function) from a Python ``callable``.
Georg Brandl116aa622007-08-15 14:28:22 +00001642
1643
Thomas Heller2fadaa22008-06-16 19:56:33 +00001644 .. function:: prototype(func_spec[, paramflags])
1645 :noindex:
1646 :module:
Georg Brandl116aa622007-08-15 14:28:22 +00001647
Thomas Heller2fadaa22008-06-16 19:56:33 +00001648 Returns a foreign function exported by a shared library. ``func_spec`` must be a
1649 2-tuple ``(name_or_ordinal, library)``. The first item is the name of the
1650 exported function as string, or the ordinal of the exported function as small
1651 integer. The second item is the shared library instance.
Georg Brandl116aa622007-08-15 14:28:22 +00001652
1653
Thomas Heller2fadaa22008-06-16 19:56:33 +00001654 .. function:: prototype(vtbl_index, name[, paramflags[, iid]])
1655 :noindex:
1656 :module:
Georg Brandl116aa622007-08-15 14:28:22 +00001657
Thomas Heller2fadaa22008-06-16 19:56:33 +00001658 Returns a foreign function that will call a COM method. ``vtbl_index`` is the
1659 index into the virtual function table, a small non-negative integer. *name* is
1660 name of the COM method. *iid* is an optional pointer to the interface identifier
1661 which is used in extended error reporting.
Georg Brandl116aa622007-08-15 14:28:22 +00001662
Thomas Heller2fadaa22008-06-16 19:56:33 +00001663 COM methods use a special calling convention: They require a pointer to the COM
1664 interface as first argument, in addition to those parameters that are specified
1665 in the :attr:`argtypes` tuple.
Georg Brandl116aa622007-08-15 14:28:22 +00001666
Thomas Heller2fadaa22008-06-16 19:56:33 +00001667 The optional *paramflags* parameter creates foreign function wrappers with much
1668 more functionality than the features described above.
Georg Brandl116aa622007-08-15 14:28:22 +00001669
Thomas Heller2fadaa22008-06-16 19:56:33 +00001670 *paramflags* must be a tuple of the same length as :attr:`argtypes`.
Georg Brandl116aa622007-08-15 14:28:22 +00001671
Thomas Heller2fadaa22008-06-16 19:56:33 +00001672 Each item in this tuple contains further information about a parameter, it must
1673 be a tuple containing one, two, or three items.
Georg Brandl116aa622007-08-15 14:28:22 +00001674
Thomas Heller2fadaa22008-06-16 19:56:33 +00001675 The first item is an integer containing a combination of direction
1676 flags for the parameter:
Georg Brandl116aa622007-08-15 14:28:22 +00001677
Thomas Heller2fadaa22008-06-16 19:56:33 +00001678 1
1679 Specifies an input parameter to the function.
Georg Brandl116aa622007-08-15 14:28:22 +00001680
Thomas Heller2fadaa22008-06-16 19:56:33 +00001681 2
1682 Output parameter. The foreign function fills in a value.
Georg Brandl116aa622007-08-15 14:28:22 +00001683
Thomas Heller2fadaa22008-06-16 19:56:33 +00001684 4
1685 Input parameter which defaults to the integer zero.
Georg Brandl116aa622007-08-15 14:28:22 +00001686
Thomas Heller2fadaa22008-06-16 19:56:33 +00001687 The optional second item is the parameter name as string. If this is specified,
1688 the foreign function can be called with named parameters.
Georg Brandl116aa622007-08-15 14:28:22 +00001689
Thomas Heller2fadaa22008-06-16 19:56:33 +00001690 The optional third item is the default value for this parameter.
Georg Brandl116aa622007-08-15 14:28:22 +00001691
1692This example demonstrates how to wrap the Windows ``MessageBoxA`` function so
1693that it supports default parameters and named arguments. The C declaration from
1694the windows header file is this::
1695
1696 WINUSERAPI int WINAPI
1697 MessageBoxA(
1698 HWND hWnd ,
1699 LPCSTR lpText,
1700 LPCSTR lpCaption,
1701 UINT uType);
1702
Thomas Heller2fadaa22008-06-16 19:56:33 +00001703Here is the wrapping with ``ctypes``::
Georg Brandl116aa622007-08-15 14:28:22 +00001704
Thomas Heller2fadaa22008-06-16 19:56:33 +00001705 >>> from ctypes import c_int, WINFUNCTYPE, windll
1706 >>> from ctypes.wintypes import HWND, LPCSTR, UINT
1707 >>> prototype = WINFUNCTYPE(c_int, HWND, LPCSTR, LPCSTR, UINT)
1708 >>> paramflags = (1, "hwnd", 0), (1, "text", "Hi"), (1, "caption", None), (1, "flags", 0)
1709 >>> MessageBox = prototype(("MessageBoxA", windll.user32), paramflags)
1710 >>>
Georg Brandl116aa622007-08-15 14:28:22 +00001711
1712The MessageBox foreign function can now be called in these ways::
1713
1714 >>> MessageBox()
1715 >>> MessageBox(text="Spam, spam, spam")
1716 >>> MessageBox(flags=2, text="foo bar")
1717 >>>
1718
1719A second example demonstrates output parameters. The win32 ``GetWindowRect``
1720function retrieves the dimensions of a specified window by copying them into
1721``RECT`` structure that the caller has to supply. Here is the C declaration::
1722
1723 WINUSERAPI BOOL WINAPI
1724 GetWindowRect(
1725 HWND hWnd,
1726 LPRECT lpRect);
1727
Thomas Heller2fadaa22008-06-16 19:56:33 +00001728Here is the wrapping with ``ctypes``::
Georg Brandl116aa622007-08-15 14:28:22 +00001729
Thomas Heller2fadaa22008-06-16 19:56:33 +00001730 >>> from ctypes import POINTER, WINFUNCTYPE, windll, WinError
1731 >>> from ctypes.wintypes import BOOL, HWND, RECT
1732 >>> prototype = WINFUNCTYPE(BOOL, HWND, POINTER(RECT))
1733 >>> paramflags = (1, "hwnd"), (2, "lprect")
1734 >>> GetWindowRect = prototype(("GetWindowRect", windll.user32), paramflags)
1735 >>>
Georg Brandl116aa622007-08-15 14:28:22 +00001736
1737Functions with output parameters will automatically return the output parameter
1738value if there is a single one, or a tuple containing the output parameter
1739values when there are more than one, so the GetWindowRect function now returns a
1740RECT instance, when called.
1741
1742Output parameters can be combined with the :attr:`errcheck` protocol to do
1743further output processing and error checking. The win32 ``GetWindowRect`` api
1744function returns a ``BOOL`` to signal success or failure, so this function could
1745do the error checking, and raises an exception when the api call failed::
1746
1747 >>> def errcheck(result, func, args):
1748 ... if not result:
1749 ... raise WinError()
1750 ... return args
Thomas Heller2fadaa22008-06-16 19:56:33 +00001751 ...
Georg Brandl116aa622007-08-15 14:28:22 +00001752 >>> GetWindowRect.errcheck = errcheck
1753 >>>
1754
1755If the :attr:`errcheck` function returns the argument tuple it receives
1756unchanged, ``ctypes`` continues the normal processing it does on the output
1757parameters. If you want to return a tuple of window coordinates instead of a
1758``RECT`` instance, you can retrieve the fields in the function and return them
1759instead, the normal processing will no longer take place::
1760
1761 >>> def errcheck(result, func, args):
1762 ... if not result:
1763 ... raise WinError()
1764 ... rc = args[1]
1765 ... return rc.left, rc.top, rc.bottom, rc.right
Thomas Heller2fadaa22008-06-16 19:56:33 +00001766 ...
Georg Brandl116aa622007-08-15 14:28:22 +00001767 >>> GetWindowRect.errcheck = errcheck
1768 >>>
1769
1770
1771.. _ctypes-utility-functions:
1772
1773Utility functions
1774^^^^^^^^^^^^^^^^^
1775
1776
1777.. function:: addressof(obj)
1778
1779 Returns the address of the memory buffer as integer. ``obj`` must be an
1780 instance of a ctypes type.
1781
1782
1783.. function:: alignment(obj_or_type)
1784
1785 Returns the alignment requirements of a ctypes type. ``obj_or_type`` must be a
1786 ctypes type or instance.
1787
1788
1789.. function:: byref(obj)
1790
1791 Returns a light-weight pointer to ``obj``, which must be an instance of a ctypes
1792 type. The returned object can only be used as a foreign function call parameter.
1793 It behaves similar to ``pointer(obj)``, but the construction is a lot faster.
1794
1795
1796.. function:: cast(obj, type)
1797
1798 This function is similar to the cast operator in C. It returns a new instance of
1799 ``type`` which points to the same memory block as ``obj``. ``type`` must be a
1800 pointer type, and ``obj`` must be an object that can be interpreted as a
1801 pointer.
1802
1803
1804.. function:: create_string_buffer(init_or_size[, size])
1805
1806 This function creates a mutable character buffer. The returned object is a
1807 ctypes array of :class:`c_char`.
1808
1809 ``init_or_size`` must be an integer which specifies the size of the array, or a
1810 string which will be used to initialize the array items.
1811
1812 If a string is specified as first argument, the buffer is made one item larger
1813 than the length of the string so that the last element in the array is a NUL
1814 termination character. An integer can be passed as second argument which allows
1815 to specify the size of the array if the length of the string should not be used.
1816
1817 If the first parameter is a unicode string, it is converted into an 8-bit string
1818 according to ctypes conversion rules.
1819
1820
1821.. function:: create_unicode_buffer(init_or_size[, size])
1822
1823 This function creates a mutable unicode character buffer. The returned object is
1824 a ctypes array of :class:`c_wchar`.
1825
1826 ``init_or_size`` must be an integer which specifies the size of the array, or a
1827 unicode string which will be used to initialize the array items.
1828
1829 If a unicode string is specified as first argument, the buffer is made one item
1830 larger than the length of the string so that the last element in the array is a
1831 NUL termination character. An integer can be passed as second argument which
1832 allows to specify the size of the array if the length of the string should not
1833 be used.
1834
1835 If the first parameter is a 8-bit string, it is converted into an unicode string
1836 according to ctypes conversion rules.
1837
1838
1839.. function:: DllCanUnloadNow()
1840
Thomas Woutersed03b412007-08-28 21:37:11 +00001841 Windows only: This function is a hook which allows to implement in-process COM
Georg Brandl116aa622007-08-15 14:28:22 +00001842 servers with ctypes. It is called from the DllCanUnloadNow function that the
1843 _ctypes extension dll exports.
1844
1845
1846.. function:: DllGetClassObject()
1847
Thomas Woutersed03b412007-08-28 21:37:11 +00001848 Windows only: This function is a hook which allows to implement in-process COM
Georg Brandl116aa622007-08-15 14:28:22 +00001849 servers with ctypes. It is called from the DllGetClassObject function that the
1850 ``_ctypes`` extension dll exports.
1851
Thomas Heller2fadaa22008-06-16 19:56:33 +00001852.. function:: find_library(name)
1853 :module: ctypes.util
1854
1855 Try to find a library and return a pathname. `name` is the library name without
1856 any prefix like `lib`, suffix like ``.so``, ``.dylib`` or version number (this
1857 is the form used for the posix linker option :option:`-l`). If no library can
1858 be found, returns ``None``.
1859
1860 The exact functionality is system dependent.
1861
1862 .. versionchanged:: 2.6
1863 Windows only: ``find_library("m")`` or
1864 ``find_library("c")`` return the result of a call to
1865 ``find_msvcrt()``.
1866
1867.. function:: find_msvcrt()
1868 :module: ctypes.util
1869
1870 Windows only: return the filename of the VC runtype library used
1871 by Python, and by the extension modules. If the name of the
1872 library cannot be determined, ``None`` is returned.
1873
1874 If you need to free memory, for example, allocated by an extension
1875 module with a call to the ``free(void *)``, it is important that you
1876 use the function in the same library that allocated the memory.
1877
1878 .. versionadded:: 2.6
Georg Brandl116aa622007-08-15 14:28:22 +00001879
1880.. function:: FormatError([code])
1881
1882 Windows only: Returns a textual description of the error code. If no error code
1883 is specified, the last error code is used by calling the Windows api function
1884 GetLastError.
1885
1886
1887.. function:: GetLastError()
1888
1889 Windows only: Returns the last error code set by Windows in the calling thread.
Thomas Hellerb795f5282008-06-10 15:26:58 +00001890 This function calls the Windows `GetLastError()` function directly,
1891 it does not return the ctypes-private copy of the error code.
Georg Brandl116aa622007-08-15 14:28:22 +00001892
Thomas Hellerb795f5282008-06-10 15:26:58 +00001893.. function:: get_errno()
1894
1895 Returns the current value of the ctypes-private copy of the system
1896 `errno` variable in the calling thread.
1897
1898 .. versionadded:: 2.6
1899
1900.. function:: get_last_error()
1901
1902 Windows only: returns the current value of the ctypes-private copy of the system
1903 `LastError` variable in the calling thread.
1904
1905 .. versionadded:: 2.6
Georg Brandl116aa622007-08-15 14:28:22 +00001906
1907.. function:: memmove(dst, src, count)
1908
1909 Same as the standard C memmove library function: copies *count* bytes from
1910 ``src`` to *dst*. *dst* and ``src`` must be integers or ctypes instances that
1911 can be converted to pointers.
1912
1913
1914.. function:: memset(dst, c, count)
1915
1916 Same as the standard C memset library function: fills the memory block at
1917 address *dst* with *count* bytes of value *c*. *dst* must be an integer
1918 specifying an address, or a ctypes instance.
1919
1920
1921.. function:: POINTER(type)
1922
1923 This factory function creates and returns a new ctypes pointer type. Pointer
1924 types are cached an reused internally, so calling this function repeatedly is
1925 cheap. type must be a ctypes type.
1926
1927
1928.. function:: pointer(obj)
1929
1930 This function creates a new pointer instance, pointing to ``obj``. The returned
1931 object is of the type POINTER(type(obj)).
1932
1933 Note: If you just want to pass a pointer to an object to a foreign function
1934 call, you should use ``byref(obj)`` which is much faster.
1935
1936
1937.. function:: resize(obj, size)
1938
1939 This function resizes the internal memory buffer of obj, which must be an
1940 instance of a ctypes type. It is not possible to make the buffer smaller than
1941 the native size of the objects type, as given by sizeof(type(obj)), but it is
1942 possible to enlarge the buffer.
1943
1944
1945.. function:: set_conversion_mode(encoding, errors)
1946
1947 This function sets the rules that ctypes objects use when converting between
1948 8-bit strings and unicode strings. encoding must be a string specifying an
1949 encoding, like ``'utf-8'`` or ``'mbcs'``, errors must be a string specifying the
1950 error handling on encoding/decoding errors. Examples of possible values are
1951 ``"strict"``, ``"replace"``, or ``"ignore"``.
1952
1953 ``set_conversion_mode`` returns a 2-tuple containing the previous conversion
1954 rules. On windows, the initial conversion rules are ``('mbcs', 'ignore')``, on
1955 other systems ``('ascii', 'strict')``.
1956
1957
Thomas Hellerb795f5282008-06-10 15:26:58 +00001958.. function:: set_errno(value)
1959
1960 Set the current value of the ctypes-private copy of the system
1961 `errno` variable in the calling thread to `value` and return the
1962 previous value.
1963
1964 .. versionadded:: 2.6
1965
1966.. function:: set_last_error(value)
1967
1968 Windows only: set the current value of the ctypes-private copy of
1969 the system `LastError` variable in the calling thread to `value`
1970 and return the previous value.
1971
1972 .. versionadded:: 2.6
1973
Georg Brandl116aa622007-08-15 14:28:22 +00001974.. function:: sizeof(obj_or_type)
1975
1976 Returns the size in bytes of a ctypes type or instance memory buffer. Does the
1977 same as the C ``sizeof()`` function.
1978
1979
1980.. function:: string_at(address[, size])
1981
1982 This function returns the string starting at memory address address. If size
1983 is specified, it is used as size, otherwise the string is assumed to be
1984 zero-terminated.
1985
1986
1987.. function:: WinError(code=None, descr=None)
1988
1989 Windows only: this function is probably the worst-named thing in ctypes. It
1990 creates an instance of WindowsError. If *code* is not specified,
1991 ``GetLastError`` is called to determine the error code. If ``descr`` is not
Thomas Woutersed03b412007-08-28 21:37:11 +00001992 specified, :func:`FormatError` is called to get a textual description of the
Georg Brandl116aa622007-08-15 14:28:22 +00001993 error.
1994
1995
1996.. function:: wstring_at(address)
1997
1998 This function returns the wide character string starting at memory address
1999 ``address`` as unicode string. If ``size`` is specified, it is used as the
2000 number of characters of the string, otherwise the string is assumed to be
2001 zero-terminated.
2002
2003
2004.. _ctypes-data-types:
2005
2006Data types
2007^^^^^^^^^^
2008
2009
2010.. class:: _CData
2011
2012 This non-public class is the common base class of all ctypes data types. Among
2013 other things, all ctypes type instances contain a memory block that hold C
2014 compatible data; the address of the memory block is returned by the
2015 ``addressof()`` helper function. Another instance variable is exposed as
2016 :attr:`_objects`; this contains other Python objects that need to be kept alive
2017 in case the memory block contains pointers.
2018
Benjamin Petersone41251e2008-04-25 01:59:09 +00002019 Common methods of ctypes data types, these are all class methods (to be
2020 exact, they are methods of the :term:`metaclass`):
Georg Brandl116aa622007-08-15 14:28:22 +00002021
2022
Christian Heimes81ee3ef2008-05-04 22:42:01 +00002023 .. method:: _CData.from_buffer(source[, offset])
2024
2025 This method returns a ctypes instance that shares the buffer of
2026 the ``source`` object. The ``source`` object must support the
2027 writeable buffer interface. The optional ``offset`` parameter
2028 specifies an offset into the source buffer in bytes; the default
2029 is zero. If the source buffer is not large enough a ValueError
2030 is raised.
2031
Christian Heimes81ee3ef2008-05-04 22:42:01 +00002032
2033 .. method:: _CData.from_buffer_copy(source[, offset])
2034
2035 This method creates a ctypes instance, the buffer is copied from
2036 the source object buffer which must be readable. The optional
2037 ``offset`` parameter specifies an offset into the source buffer
2038 in bytes; the default is zero. If the source buffer is not
2039 large enough a ValueError is raised.
2040
Christian Heimes81ee3ef2008-05-04 22:42:01 +00002041
Benjamin Petersone41251e2008-04-25 01:59:09 +00002042 .. method:: from_address(address)
Georg Brandl116aa622007-08-15 14:28:22 +00002043
Benjamin Petersone41251e2008-04-25 01:59:09 +00002044 This method returns a ctypes type instance using the memory specified by
2045 address which must be an integer.
Georg Brandl116aa622007-08-15 14:28:22 +00002046
2047
Benjamin Petersone41251e2008-04-25 01:59:09 +00002048 .. method:: from_param(obj)
Georg Brandl116aa622007-08-15 14:28:22 +00002049
Benjamin Petersone41251e2008-04-25 01:59:09 +00002050 This method adapts obj to a ctypes type. It is called with the actual
2051 object used in a foreign function call, when the type is present in the
2052 foreign functions :attr:`argtypes` tuple; it must return an object that
2053 can be used as function call parameter.
Georg Brandl116aa622007-08-15 14:28:22 +00002054
Benjamin Petersone41251e2008-04-25 01:59:09 +00002055 All ctypes data types have a default implementation of this classmethod,
2056 normally it returns ``obj`` if that is an instance of the type. Some
2057 types accept other objects as well.
Georg Brandl116aa622007-08-15 14:28:22 +00002058
2059
Benjamin Petersone41251e2008-04-25 01:59:09 +00002060 .. method:: in_dll(library, name)
Georg Brandl116aa622007-08-15 14:28:22 +00002061
Benjamin Petersone41251e2008-04-25 01:59:09 +00002062 This method returns a ctypes type instance exported by a shared
2063 library. *name* is the name of the symbol that exports the data, *library*
2064 is the loaded shared library.
Georg Brandl116aa622007-08-15 14:28:22 +00002065
2066
Benjamin Petersone41251e2008-04-25 01:59:09 +00002067 Common instance variables of ctypes data types:
Georg Brandl116aa622007-08-15 14:28:22 +00002068
2069
Benjamin Petersone41251e2008-04-25 01:59:09 +00002070 .. attribute:: _b_base_
Georg Brandl116aa622007-08-15 14:28:22 +00002071
Benjamin Petersone41251e2008-04-25 01:59:09 +00002072 Sometimes ctypes data instances do not own the memory block they contain,
2073 instead they share part of the memory block of a base object. The
2074 :attr:`_b_base_` read-only member is the root ctypes object that owns the
2075 memory block.
Georg Brandl116aa622007-08-15 14:28:22 +00002076
2077
Benjamin Petersone41251e2008-04-25 01:59:09 +00002078 .. attribute:: _b_needsfree_
Georg Brandl116aa622007-08-15 14:28:22 +00002079
Benjamin Petersone41251e2008-04-25 01:59:09 +00002080 This read-only variable is true when the ctypes data instance has
2081 allocated the memory block itself, false otherwise.
2082
2083
2084 .. attribute:: _objects
2085
2086 This member is either ``None`` or a dictionary containing Python objects
2087 that need to be kept alive so that the memory block contents is kept
2088 valid. This object is only exposed for debugging; never modify the
2089 contents of this dictionary.
Georg Brandl116aa622007-08-15 14:28:22 +00002090
2091
2092.. _ctypes-fundamental-data-types-2:
2093
2094Fundamental data types
2095^^^^^^^^^^^^^^^^^^^^^^
2096
2097
2098.. class:: _SimpleCData
2099
Benjamin Peterson35e8c462008-04-24 02:34:53 +00002100 This non-public class is the base class of all fundamental ctypes data
2101 types. It is mentioned here because it contains the common attributes of the
2102 fundamental ctypes data types. ``_SimpleCData`` is a subclass of ``_CData``,
2103 so it inherits their methods and attributes. ctypes data types that are not
2104 and do not contain pointers can now be pickled.
Thomas Heller13394e92008-02-13 20:40:44 +00002105
Benjamin Petersone41251e2008-04-25 01:59:09 +00002106 Instances have a single attribute:
Georg Brandl116aa622007-08-15 14:28:22 +00002107
2108
Benjamin Petersone41251e2008-04-25 01:59:09 +00002109 .. attribute:: value
Georg Brandl116aa622007-08-15 14:28:22 +00002110
Benjamin Petersone41251e2008-04-25 01:59:09 +00002111 This attribute contains the actual value of the instance. For integer and
2112 pointer types, it is an integer, for character types, it is a single
2113 character string, for character pointer types it is a Python string or
2114 unicode string.
Georg Brandl116aa622007-08-15 14:28:22 +00002115
Benjamin Petersone41251e2008-04-25 01:59:09 +00002116 When the ``value`` attribute is retrieved from a ctypes instance, usually
2117 a new object is returned each time. ``ctypes`` does *not* implement
2118 original object return, always a new object is constructed. The same is
2119 true for all other ctypes object instances.
Georg Brandl116aa622007-08-15 14:28:22 +00002120
2121Fundamental data types, when returned as foreign function call results, or, for
2122example, by retrieving structure field members or array items, are transparently
2123converted to native Python types. In other words, if a foreign function has a
2124:attr:`restype` of :class:`c_char_p`, you will always receive a Python string,
2125*not* a :class:`c_char_p` instance.
2126
Thomas Woutersed03b412007-08-28 21:37:11 +00002127Subclasses of fundamental data types do *not* inherit this behavior. So, if a
Georg Brandl116aa622007-08-15 14:28:22 +00002128foreign functions :attr:`restype` is a subclass of :class:`c_void_p`, you will
2129receive an instance of this subclass from the function call. Of course, you can
2130get the value of the pointer by accessing the ``value`` attribute.
2131
2132These are the fundamental ctypes data types:
2133
2134
2135.. class:: c_byte
2136
2137 Represents the C signed char datatype, and interprets the value as small
2138 integer. The constructor accepts an optional integer initializer; no overflow
2139 checking is done.
2140
2141
2142.. class:: c_char
2143
2144 Represents the C char datatype, and interprets the value as a single character.
2145 The constructor accepts an optional string initializer, the length of the string
2146 must be exactly one character.
2147
2148
2149.. class:: c_char_p
2150
2151 Represents the C char \* datatype, which must be a pointer to a zero-terminated
2152 string. The constructor accepts an integer address, or a string.
2153
2154
2155.. class:: c_double
2156
2157 Represents the C double datatype. The constructor accepts an optional float
2158 initializer.
2159
2160
Thomas Wouters89d996e2007-09-08 17:39:28 +00002161.. class:: c_longdouble
2162
2163 Represents the C long double datatype. The constructor accepts an
2164 optional float initializer. On platforms where ``sizeof(long
2165 double) == sizeof(double)`` it is an alias to :class:`c_double`.
2166
Thomas Heller2fadaa22008-06-16 19:56:33 +00002167 .. versionadded:: 2.6
Thomas Wouters89d996e2007-09-08 17:39:28 +00002168
Georg Brandl116aa622007-08-15 14:28:22 +00002169.. class:: c_float
2170
Thomas Wouters89d996e2007-09-08 17:39:28 +00002171 Represents the C float datatype. The constructor accepts an optional float
Georg Brandl116aa622007-08-15 14:28:22 +00002172 initializer.
2173
2174
2175.. class:: c_int
2176
2177 Represents the C signed int datatype. The constructor accepts an optional
2178 integer initializer; no overflow checking is done. On platforms where
2179 ``sizeof(int) == sizeof(long)`` it is an alias to :class:`c_long`.
2180
2181
2182.. class:: c_int8
2183
2184 Represents the C 8-bit ``signed int`` datatype. Usually an alias for
2185 :class:`c_byte`.
2186
2187
2188.. class:: c_int16
2189
2190 Represents the C 16-bit signed int datatype. Usually an alias for
2191 :class:`c_short`.
2192
2193
2194.. class:: c_int32
2195
2196 Represents the C 32-bit signed int datatype. Usually an alias for
2197 :class:`c_int`.
2198
2199
2200.. class:: c_int64
2201
2202 Represents the C 64-bit ``signed int`` datatype. Usually an alias for
2203 :class:`c_longlong`.
2204
2205
2206.. class:: c_long
2207
2208 Represents the C ``signed long`` datatype. The constructor accepts an optional
2209 integer initializer; no overflow checking is done.
2210
2211
2212.. class:: c_longlong
2213
2214 Represents the C ``signed long long`` datatype. The constructor accepts an
2215 optional integer initializer; no overflow checking is done.
2216
2217
2218.. class:: c_short
2219
2220 Represents the C ``signed short`` datatype. The constructor accepts an optional
2221 integer initializer; no overflow checking is done.
2222
2223
2224.. class:: c_size_t
2225
2226 Represents the C ``size_t`` datatype.
2227
2228
2229.. class:: c_ubyte
2230
2231 Represents the C ``unsigned char`` datatype, it interprets the value as small
2232 integer. The constructor accepts an optional integer initializer; no overflow
2233 checking is done.
2234
2235
2236.. class:: c_uint
2237
2238 Represents the C ``unsigned int`` datatype. The constructor accepts an optional
2239 integer initializer; no overflow checking is done. On platforms where
2240 ``sizeof(int) == sizeof(long)`` it is an alias for :class:`c_ulong`.
2241
2242
2243.. class:: c_uint8
2244
2245 Represents the C 8-bit unsigned int datatype. Usually an alias for
2246 :class:`c_ubyte`.
2247
2248
2249.. class:: c_uint16
2250
2251 Represents the C 16-bit unsigned int datatype. Usually an alias for
2252 :class:`c_ushort`.
2253
2254
2255.. class:: c_uint32
2256
2257 Represents the C 32-bit unsigned int datatype. Usually an alias for
2258 :class:`c_uint`.
2259
2260
2261.. class:: c_uint64
2262
2263 Represents the C 64-bit unsigned int datatype. Usually an alias for
2264 :class:`c_ulonglong`.
2265
2266
2267.. class:: c_ulong
2268
2269 Represents the C ``unsigned long`` datatype. The constructor accepts an optional
2270 integer initializer; no overflow checking is done.
2271
2272
2273.. class:: c_ulonglong
2274
2275 Represents the C ``unsigned long long`` datatype. The constructor accepts an
2276 optional integer initializer; no overflow checking is done.
2277
2278
2279.. class:: c_ushort
2280
2281 Represents the C ``unsigned short`` datatype. The constructor accepts an
2282 optional integer initializer; no overflow checking is done.
2283
2284
2285.. class:: c_void_p
2286
2287 Represents the C ``void *`` type. The value is represented as integer. The
2288 constructor accepts an optional integer initializer.
2289
2290
2291.. class:: c_wchar
2292
2293 Represents the C ``wchar_t`` datatype, and interprets the value as a single
2294 character unicode string. The constructor accepts an optional string
2295 initializer, the length of the string must be exactly one character.
2296
2297
2298.. class:: c_wchar_p
2299
2300 Represents the C ``wchar_t *`` datatype, which must be a pointer to a
2301 zero-terminated wide character string. The constructor accepts an integer
2302 address, or a string.
2303
2304
2305.. class:: c_bool
2306
2307 Represent the C ``bool`` datatype (more accurately, _Bool from C99). Its value
2308 can be True or False, and the constructor accepts any object that has a truth
2309 value.
2310
Georg Brandl116aa622007-08-15 14:28:22 +00002311
2312.. class:: HRESULT
2313
2314 Windows only: Represents a :class:`HRESULT` value, which contains success or
2315 error information for a function or method call.
2316
2317
2318.. class:: py_object
2319
2320 Represents the C ``PyObject *`` datatype. Calling this without an argument
2321 creates a ``NULL`` ``PyObject *`` pointer.
2322
2323The ``ctypes.wintypes`` module provides quite some other Windows specific data
2324types, for example ``HWND``, ``WPARAM``, or ``DWORD``. Some useful structures
2325like ``MSG`` or ``RECT`` are also defined.
2326
2327
2328.. _ctypes-structured-data-types:
2329
2330Structured data types
2331^^^^^^^^^^^^^^^^^^^^^
2332
2333
2334.. class:: Union(*args, **kw)
2335
2336 Abstract base class for unions in native byte order.
2337
2338
2339.. class:: BigEndianStructure(*args, **kw)
2340
2341 Abstract base class for structures in *big endian* byte order.
2342
2343
2344.. class:: LittleEndianStructure(*args, **kw)
2345
2346 Abstract base class for structures in *little endian* byte order.
2347
2348Structures with non-native byte order cannot contain pointer type fields, or any
2349other data types containing pointer type fields.
2350
2351
2352.. class:: Structure(*args, **kw)
2353
2354 Abstract base class for structures in *native* byte order.
2355
Benjamin Petersone41251e2008-04-25 01:59:09 +00002356 Concrete structure and union types must be created by subclassing one of these
2357 types, and at least define a :attr:`_fields_` class variable. ``ctypes`` will
2358 create :term:`descriptor`\s which allow reading and writing the fields by direct
2359 attribute accesses. These are the
Georg Brandl116aa622007-08-15 14:28:22 +00002360
2361
Benjamin Petersone41251e2008-04-25 01:59:09 +00002362 .. attribute:: _fields_
Georg Brandl116aa622007-08-15 14:28:22 +00002363
Benjamin Petersone41251e2008-04-25 01:59:09 +00002364 A sequence defining the structure fields. The items must be 2-tuples or
2365 3-tuples. The first item is the name of the field, the second item
2366 specifies the type of the field; it can be any ctypes data type.
Georg Brandl116aa622007-08-15 14:28:22 +00002367
Benjamin Petersone41251e2008-04-25 01:59:09 +00002368 For integer type fields like :class:`c_int`, a third optional item can be
2369 given. It must be a small positive integer defining the bit width of the
2370 field.
Georg Brandl116aa622007-08-15 14:28:22 +00002371
Benjamin Petersone41251e2008-04-25 01:59:09 +00002372 Field names must be unique within one structure or union. This is not
2373 checked, only one field can be accessed when names are repeated.
Georg Brandl116aa622007-08-15 14:28:22 +00002374
Benjamin Petersone41251e2008-04-25 01:59:09 +00002375 It is possible to define the :attr:`_fields_` class variable *after* the
2376 class statement that defines the Structure subclass, this allows to create
2377 data types that directly or indirectly reference themselves::
Georg Brandl116aa622007-08-15 14:28:22 +00002378
Benjamin Petersone41251e2008-04-25 01:59:09 +00002379 class List(Structure):
2380 pass
2381 List._fields_ = [("pnext", POINTER(List)),
2382 ...
2383 ]
Georg Brandl116aa622007-08-15 14:28:22 +00002384
Benjamin Petersone41251e2008-04-25 01:59:09 +00002385 The :attr:`_fields_` class variable must, however, be defined before the
2386 type is first used (an instance is created, ``sizeof()`` is called on it,
2387 and so on). Later assignments to the :attr:`_fields_` class variable will
2388 raise an AttributeError.
Georg Brandl116aa622007-08-15 14:28:22 +00002389
Benjamin Petersone41251e2008-04-25 01:59:09 +00002390 Structure and union subclass constructors accept both positional and named
2391 arguments. Positional arguments are used to initialize the fields in the
2392 same order as they appear in the :attr:`_fields_` definition, named
2393 arguments are used to initialize the fields with the corresponding name.
Georg Brandl116aa622007-08-15 14:28:22 +00002394
Benjamin Petersone41251e2008-04-25 01:59:09 +00002395 It is possible to defined sub-subclasses of structure types, they inherit
2396 the fields of the base class plus the :attr:`_fields_` defined in the
2397 sub-subclass, if any.
Georg Brandl116aa622007-08-15 14:28:22 +00002398
2399
Benjamin Petersone41251e2008-04-25 01:59:09 +00002400 .. attribute:: _pack_
Georg Brandl116aa622007-08-15 14:28:22 +00002401
Benjamin Petersone41251e2008-04-25 01:59:09 +00002402 An optional small integer that allows to override the alignment of
2403 structure fields in the instance. :attr:`_pack_` must already be defined
2404 when :attr:`_fields_` is assigned, otherwise it will have no effect.
Georg Brandl116aa622007-08-15 14:28:22 +00002405
2406
Benjamin Petersone41251e2008-04-25 01:59:09 +00002407 .. attribute:: _anonymous_
Georg Brandl116aa622007-08-15 14:28:22 +00002408
Benjamin Petersone41251e2008-04-25 01:59:09 +00002409 An optional sequence that lists the names of unnamed (anonymous) fields.
2410 ``_anonymous_`` must be already defined when :attr:`_fields_` is assigned,
2411 otherwise it will have no effect.
Georg Brandl116aa622007-08-15 14:28:22 +00002412
Benjamin Petersone41251e2008-04-25 01:59:09 +00002413 The fields listed in this variable must be structure or union type fields.
2414 ``ctypes`` will create descriptors in the structure type that allows to
2415 access the nested fields directly, without the need to create the
2416 structure or union field.
Georg Brandl116aa622007-08-15 14:28:22 +00002417
Benjamin Petersone41251e2008-04-25 01:59:09 +00002418 Here is an example type (Windows)::
Georg Brandl116aa622007-08-15 14:28:22 +00002419
Benjamin Petersone41251e2008-04-25 01:59:09 +00002420 class _U(Union):
2421 _fields_ = [("lptdesc", POINTER(TYPEDESC)),
2422 ("lpadesc", POINTER(ARRAYDESC)),
2423 ("hreftype", HREFTYPE)]
Georg Brandl116aa622007-08-15 14:28:22 +00002424
Benjamin Petersone41251e2008-04-25 01:59:09 +00002425 class TYPEDESC(Structure):
2426 _fields_ = [("u", _U),
2427 ("vt", VARTYPE)]
Georg Brandl116aa622007-08-15 14:28:22 +00002428
Benjamin Petersone41251e2008-04-25 01:59:09 +00002429 _anonymous_ = ("u",)
Georg Brandl116aa622007-08-15 14:28:22 +00002430
Benjamin Petersone41251e2008-04-25 01:59:09 +00002431 The ``TYPEDESC`` structure describes a COM data type, the ``vt`` field
2432 specifies which one of the union fields is valid. Since the ``u`` field
2433 is defined as anonymous field, it is now possible to access the members
2434 directly off the TYPEDESC instance. ``td.lptdesc`` and ``td.u.lptdesc``
2435 are equivalent, but the former is faster since it does not need to create
2436 a temporary union instance::
Georg Brandl116aa622007-08-15 14:28:22 +00002437
Benjamin Petersone41251e2008-04-25 01:59:09 +00002438 td = TYPEDESC()
2439 td.vt = VT_PTR
2440 td.lptdesc = POINTER(some_type)
2441 td.u.lptdesc = POINTER(some_type)
Georg Brandl116aa622007-08-15 14:28:22 +00002442
2443It is possible to defined sub-subclasses of structures, they inherit the fields
2444of the base class. If the subclass definition has a separate :attr:`_fields_`
2445variable, the fields specified in this are appended to the fields of the base
2446class.
2447
2448Structure and union constructors accept both positional and keyword arguments.
2449Positional arguments are used to initialize member fields in the same order as
2450they are appear in :attr:`_fields_`. Keyword arguments in the constructor are
2451interpreted as attribute assignments, so they will initialize :attr:`_fields_`
2452with the same name, or create new attributes for names not present in
2453:attr:`_fields_`.
2454
2455
2456.. _ctypes-arrays-pointers:
2457
2458Arrays and pointers
2459^^^^^^^^^^^^^^^^^^^
2460
2461Not yet written - please see the sections :ref:`ctypes-pointers` and
2462section :ref:`ctypes-arrays` in the tutorial.
2463