Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 1 | ## Module statistics.py |
| 2 | ## |
| 3 | ## Copyright (c) 2013 Steven D'Aprano <steve+python@pearwood.info>. |
| 4 | ## |
| 5 | ## Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | ## you may not use this file except in compliance with the License. |
| 7 | ## You may obtain a copy of the License at |
| 8 | ## |
| 9 | ## http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | ## |
| 11 | ## Unless required by applicable law or agreed to in writing, software |
| 12 | ## distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | ## See the License for the specific language governing permissions and |
| 15 | ## limitations under the License. |
| 16 | |
| 17 | |
| 18 | """ |
| 19 | Basic statistics module. |
| 20 | |
| 21 | This module provides functions for calculating statistics of data, including |
| 22 | averages, variance, and standard deviation. |
| 23 | |
| 24 | Calculating averages |
| 25 | -------------------- |
| 26 | |
| 27 | ================== ============================================= |
| 28 | Function Description |
| 29 | ================== ============================================= |
| 30 | mean Arithmetic mean (average) of data. |
| 31 | median Median (middle value) of data. |
| 32 | median_low Low median of data. |
| 33 | median_high High median of data. |
| 34 | median_grouped Median, or 50th percentile, of grouped data. |
| 35 | mode Mode (most common value) of data. |
| 36 | ================== ============================================= |
| 37 | |
| 38 | Calculate the arithmetic mean ("the average") of data: |
| 39 | |
| 40 | >>> mean([-1.0, 2.5, 3.25, 5.75]) |
| 41 | 2.625 |
| 42 | |
| 43 | |
| 44 | Calculate the standard median of discrete data: |
| 45 | |
| 46 | >>> median([2, 3, 4, 5]) |
| 47 | 3.5 |
| 48 | |
| 49 | |
| 50 | Calculate the median, or 50th percentile, of data grouped into class intervals |
| 51 | centred on the data values provided. E.g. if your data points are rounded to |
| 52 | the nearest whole number: |
| 53 | |
| 54 | >>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS |
| 55 | 2.8333333333... |
| 56 | |
| 57 | This should be interpreted in this way: you have two data points in the class |
| 58 | interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in |
| 59 | the class interval 3.5-4.5. The median of these data points is 2.8333... |
| 60 | |
| 61 | |
| 62 | Calculating variability or spread |
| 63 | --------------------------------- |
| 64 | |
| 65 | ================== ============================================= |
| 66 | Function Description |
| 67 | ================== ============================================= |
| 68 | pvariance Population variance of data. |
| 69 | variance Sample variance of data. |
| 70 | pstdev Population standard deviation of data. |
| 71 | stdev Sample standard deviation of data. |
| 72 | ================== ============================================= |
| 73 | |
| 74 | Calculate the standard deviation of sample data: |
| 75 | |
| 76 | >>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS |
| 77 | 4.38961843444... |
| 78 | |
| 79 | If you have previously calculated the mean, you can pass it as the optional |
| 80 | second argument to the four "spread" functions to avoid recalculating it: |
| 81 | |
| 82 | >>> data = [1, 2, 2, 4, 4, 4, 5, 6] |
| 83 | >>> mu = mean(data) |
| 84 | >>> pvariance(data, mu) |
| 85 | 2.5 |
| 86 | |
| 87 | |
| 88 | Exceptions |
| 89 | ---------- |
| 90 | |
| 91 | A single exception is defined: StatisticsError is a subclass of ValueError. |
| 92 | |
| 93 | """ |
| 94 | |
| 95 | __all__ = [ 'StatisticsError', |
| 96 | 'pstdev', 'pvariance', 'stdev', 'variance', |
| 97 | 'median', 'median_low', 'median_high', 'median_grouped', |
| 98 | 'mean', 'mode', |
| 99 | ] |
| 100 | |
| 101 | |
| 102 | import collections |
| 103 | import math |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 104 | |
| 105 | from fractions import Fraction |
| 106 | from decimal import Decimal |
| 107 | |
| 108 | |
| 109 | # === Exceptions === |
| 110 | |
| 111 | class StatisticsError(ValueError): |
| 112 | pass |
| 113 | |
| 114 | |
| 115 | # === Private utilities === |
| 116 | |
| 117 | def _sum(data, start=0): |
| 118 | """_sum(data [, start]) -> value |
| 119 | |
| 120 | Return a high-precision sum of the given numeric data. If optional |
| 121 | argument ``start`` is given, it is added to the total. If ``data`` is |
| 122 | empty, ``start`` (defaulting to 0) is returned. |
| 123 | |
| 124 | |
| 125 | Examples |
| 126 | -------- |
| 127 | |
| 128 | >>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75) |
| 129 | 11.0 |
| 130 | |
| 131 | Some sources of round-off error will be avoided: |
| 132 | |
| 133 | >>> _sum([1e50, 1, -1e50] * 1000) # Built-in sum returns zero. |
| 134 | 1000.0 |
| 135 | |
| 136 | Fractions and Decimals are also supported: |
| 137 | |
| 138 | >>> from fractions import Fraction as F |
| 139 | >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)]) |
| 140 | Fraction(63, 20) |
| 141 | |
| 142 | >>> from decimal import Decimal as D |
| 143 | >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")] |
| 144 | >>> _sum(data) |
| 145 | Decimal('0.6963') |
| 146 | |
Nick Coghlan | 73afe2a | 2014-02-08 19:58:04 +1000 | [diff] [blame] | 147 | Mixed types are currently treated as an error, except that int is |
| 148 | allowed. |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 149 | """ |
Nick Coghlan | 73afe2a | 2014-02-08 19:58:04 +1000 | [diff] [blame] | 150 | # We fail as soon as we reach a value that is not an int or the type of |
| 151 | # the first value which is not an int. E.g. _sum([int, int, float, int]) |
| 152 | # is okay, but sum([int, int, float, Fraction]) is not. |
| 153 | allowed_types = set([int, type(start)]) |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 154 | n, d = _exact_ratio(start) |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 155 | partials = {d: n} # map {denominator: sum of numerators} |
| 156 | # Micro-optimizations. |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 157 | exact_ratio = _exact_ratio |
| 158 | partials_get = partials.get |
Nick Coghlan | 73afe2a | 2014-02-08 19:58:04 +1000 | [diff] [blame] | 159 | # Add numerators for each denominator. |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 160 | for x in data: |
Nick Coghlan | 73afe2a | 2014-02-08 19:58:04 +1000 | [diff] [blame] | 161 | _check_type(type(x), allowed_types) |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 162 | n, d = exact_ratio(x) |
| 163 | partials[d] = partials_get(d, 0) + n |
Nick Coghlan | 73afe2a | 2014-02-08 19:58:04 +1000 | [diff] [blame] | 164 | # Find the expected result type. If allowed_types has only one item, it |
| 165 | # will be int; if it has two, use the one which isn't int. |
| 166 | assert len(allowed_types) in (1, 2) |
| 167 | if len(allowed_types) == 1: |
| 168 | assert allowed_types.pop() is int |
| 169 | T = int |
| 170 | else: |
| 171 | T = (allowed_types - set([int])).pop() |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 172 | if None in partials: |
| 173 | assert issubclass(T, (float, Decimal)) |
| 174 | assert not math.isfinite(partials[None]) |
| 175 | return T(partials[None]) |
| 176 | total = Fraction() |
| 177 | for d, n in sorted(partials.items()): |
| 178 | total += Fraction(n, d) |
| 179 | if issubclass(T, int): |
| 180 | assert total.denominator == 1 |
| 181 | return T(total.numerator) |
| 182 | if issubclass(T, Decimal): |
| 183 | return T(total.numerator)/total.denominator |
| 184 | return T(total) |
| 185 | |
| 186 | |
Nick Coghlan | 73afe2a | 2014-02-08 19:58:04 +1000 | [diff] [blame] | 187 | def _check_type(T, allowed): |
| 188 | if T not in allowed: |
| 189 | if len(allowed) == 1: |
| 190 | allowed.add(T) |
| 191 | else: |
| 192 | types = ', '.join([t.__name__ for t in allowed] + [T.__name__]) |
| 193 | raise TypeError("unsupported mixed types: %s" % types) |
| 194 | |
| 195 | |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 196 | def _exact_ratio(x): |
| 197 | """Convert Real number x exactly to (numerator, denominator) pair. |
| 198 | |
| 199 | >>> _exact_ratio(0.25) |
| 200 | (1, 4) |
| 201 | |
| 202 | x is expected to be an int, Fraction, Decimal or float. |
| 203 | """ |
| 204 | try: |
| 205 | try: |
| 206 | # int, Fraction |
| 207 | return (x.numerator, x.denominator) |
| 208 | except AttributeError: |
| 209 | # float |
| 210 | try: |
| 211 | return x.as_integer_ratio() |
| 212 | except AttributeError: |
| 213 | # Decimal |
| 214 | try: |
| 215 | return _decimal_to_ratio(x) |
| 216 | except AttributeError: |
| 217 | msg = "can't convert type '{}' to numerator/denominator" |
| 218 | raise TypeError(msg.format(type(x).__name__)) from None |
| 219 | except (OverflowError, ValueError): |
| 220 | # INF or NAN |
| 221 | if __debug__: |
| 222 | # Decimal signalling NANs cannot be converted to float :-( |
| 223 | if isinstance(x, Decimal): |
| 224 | assert not x.is_finite() |
| 225 | else: |
| 226 | assert not math.isfinite(x) |
| 227 | return (x, None) |
| 228 | |
| 229 | |
| 230 | # FIXME This is faster than Fraction.from_decimal, but still too slow. |
| 231 | def _decimal_to_ratio(d): |
| 232 | """Convert Decimal d to exact integer ratio (numerator, denominator). |
| 233 | |
| 234 | >>> from decimal import Decimal |
| 235 | >>> _decimal_to_ratio(Decimal("2.6")) |
| 236 | (26, 10) |
| 237 | |
| 238 | """ |
| 239 | sign, digits, exp = d.as_tuple() |
| 240 | if exp in ('F', 'n', 'N'): # INF, NAN, sNAN |
| 241 | assert not d.is_finite() |
| 242 | raise ValueError |
| 243 | num = 0 |
| 244 | for digit in digits: |
| 245 | num = num*10 + digit |
Nick Coghlan | 4a7668a | 2014-02-08 23:55:14 +1000 | [diff] [blame] | 246 | if exp < 0: |
| 247 | den = 10**-exp |
| 248 | else: |
| 249 | num *= 10**exp |
| 250 | den = 1 |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 251 | if sign: |
| 252 | num = -num |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 253 | return (num, den) |
| 254 | |
| 255 | |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 256 | def _counts(data): |
| 257 | # Generate a table of sorted (value, frequency) pairs. |
Nick Coghlan | bfd68bf | 2014-02-08 19:44:16 +1000 | [diff] [blame] | 258 | table = collections.Counter(iter(data)).most_common() |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 259 | if not table: |
| 260 | return table |
| 261 | # Extract the values with the highest frequency. |
| 262 | maxfreq = table[0][1] |
| 263 | for i in range(1, len(table)): |
| 264 | if table[i][1] != maxfreq: |
| 265 | table = table[:i] |
| 266 | break |
| 267 | return table |
| 268 | |
| 269 | |
| 270 | # === Measures of central tendency (averages) === |
| 271 | |
| 272 | def mean(data): |
| 273 | """Return the sample arithmetic mean of data. |
| 274 | |
| 275 | >>> mean([1, 2, 3, 4, 4]) |
| 276 | 2.8 |
| 277 | |
| 278 | >>> from fractions import Fraction as F |
| 279 | >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)]) |
| 280 | Fraction(13, 21) |
| 281 | |
| 282 | >>> from decimal import Decimal as D |
| 283 | >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")]) |
| 284 | Decimal('0.5625') |
| 285 | |
| 286 | If ``data`` is empty, StatisticsError will be raised. |
| 287 | """ |
| 288 | if iter(data) is data: |
| 289 | data = list(data) |
| 290 | n = len(data) |
| 291 | if n < 1: |
| 292 | raise StatisticsError('mean requires at least one data point') |
| 293 | return _sum(data)/n |
| 294 | |
| 295 | |
| 296 | # FIXME: investigate ways to calculate medians without sorting? Quickselect? |
| 297 | def median(data): |
| 298 | """Return the median (middle value) of numeric data. |
| 299 | |
| 300 | When the number of data points is odd, return the middle data point. |
| 301 | When the number of data points is even, the median is interpolated by |
| 302 | taking the average of the two middle values: |
| 303 | |
| 304 | >>> median([1, 3, 5]) |
| 305 | 3 |
| 306 | >>> median([1, 3, 5, 7]) |
| 307 | 4.0 |
| 308 | |
| 309 | """ |
| 310 | data = sorted(data) |
| 311 | n = len(data) |
| 312 | if n == 0: |
| 313 | raise StatisticsError("no median for empty data") |
| 314 | if n%2 == 1: |
| 315 | return data[n//2] |
| 316 | else: |
| 317 | i = n//2 |
| 318 | return (data[i - 1] + data[i])/2 |
| 319 | |
| 320 | |
| 321 | def median_low(data): |
| 322 | """Return the low median of numeric data. |
| 323 | |
| 324 | When the number of data points is odd, the middle value is returned. |
| 325 | When it is even, the smaller of the two middle values is returned. |
| 326 | |
| 327 | >>> median_low([1, 3, 5]) |
| 328 | 3 |
| 329 | >>> median_low([1, 3, 5, 7]) |
| 330 | 3 |
| 331 | |
| 332 | """ |
| 333 | data = sorted(data) |
| 334 | n = len(data) |
| 335 | if n == 0: |
| 336 | raise StatisticsError("no median for empty data") |
| 337 | if n%2 == 1: |
| 338 | return data[n//2] |
| 339 | else: |
| 340 | return data[n//2 - 1] |
| 341 | |
| 342 | |
| 343 | def median_high(data): |
| 344 | """Return the high median of data. |
| 345 | |
| 346 | When the number of data points is odd, the middle value is returned. |
| 347 | When it is even, the larger of the two middle values is returned. |
| 348 | |
| 349 | >>> median_high([1, 3, 5]) |
| 350 | 3 |
| 351 | >>> median_high([1, 3, 5, 7]) |
| 352 | 5 |
| 353 | |
| 354 | """ |
| 355 | data = sorted(data) |
| 356 | n = len(data) |
| 357 | if n == 0: |
| 358 | raise StatisticsError("no median for empty data") |
| 359 | return data[n//2] |
| 360 | |
| 361 | |
| 362 | def median_grouped(data, interval=1): |
| 363 | """"Return the 50th percentile (median) of grouped continuous data. |
| 364 | |
| 365 | >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5]) |
| 366 | 3.7 |
| 367 | >>> median_grouped([52, 52, 53, 54]) |
| 368 | 52.5 |
| 369 | |
| 370 | This calculates the median as the 50th percentile, and should be |
| 371 | used when your data is continuous and grouped. In the above example, |
| 372 | the values 1, 2, 3, etc. actually represent the midpoint of classes |
| 373 | 0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in |
| 374 | class 3.5-4.5, and interpolation is used to estimate it. |
| 375 | |
| 376 | Optional argument ``interval`` represents the class interval, and |
| 377 | defaults to 1. Changing the class interval naturally will change the |
| 378 | interpolated 50th percentile value: |
| 379 | |
| 380 | >>> median_grouped([1, 3, 3, 5, 7], interval=1) |
| 381 | 3.25 |
| 382 | >>> median_grouped([1, 3, 3, 5, 7], interval=2) |
| 383 | 3.5 |
| 384 | |
| 385 | This function does not check whether the data points are at least |
| 386 | ``interval`` apart. |
| 387 | """ |
| 388 | data = sorted(data) |
| 389 | n = len(data) |
| 390 | if n == 0: |
| 391 | raise StatisticsError("no median for empty data") |
| 392 | elif n == 1: |
| 393 | return data[0] |
| 394 | # Find the value at the midpoint. Remember this corresponds to the |
| 395 | # centre of the class interval. |
| 396 | x = data[n//2] |
| 397 | for obj in (x, interval): |
| 398 | if isinstance(obj, (str, bytes)): |
| 399 | raise TypeError('expected number but got %r' % obj) |
| 400 | try: |
| 401 | L = x - interval/2 # The lower limit of the median interval. |
| 402 | except TypeError: |
| 403 | # Mixed type. For now we just coerce to float. |
| 404 | L = float(x) - float(interval)/2 |
| 405 | cf = data.index(x) # Number of values below the median interval. |
| 406 | # FIXME The following line could be more efficient for big lists. |
| 407 | f = data.count(x) # Number of data points in the median interval. |
| 408 | return L + interval*(n/2 - cf)/f |
| 409 | |
| 410 | |
| 411 | def mode(data): |
| 412 | """Return the most common data point from discrete or nominal data. |
| 413 | |
| 414 | ``mode`` assumes discrete data, and returns a single value. This is the |
| 415 | standard treatment of the mode as commonly taught in schools: |
| 416 | |
| 417 | >>> mode([1, 1, 2, 3, 3, 3, 3, 4]) |
| 418 | 3 |
| 419 | |
| 420 | This also works with nominal (non-numeric) data: |
| 421 | |
| 422 | >>> mode(["red", "blue", "blue", "red", "green", "red", "red"]) |
| 423 | 'red' |
| 424 | |
| 425 | If there is not exactly one most common value, ``mode`` will raise |
| 426 | StatisticsError. |
| 427 | """ |
| 428 | # Generate a table of sorted (value, frequency) pairs. |
| 429 | table = _counts(data) |
| 430 | if len(table) == 1: |
| 431 | return table[0][0] |
| 432 | elif table: |
| 433 | raise StatisticsError( |
| 434 | 'no unique mode; found %d equally common values' % len(table) |
| 435 | ) |
| 436 | else: |
| 437 | raise StatisticsError('no mode for empty data') |
| 438 | |
| 439 | |
| 440 | # === Measures of spread === |
| 441 | |
| 442 | # See http://mathworld.wolfram.com/Variance.html |
| 443 | # http://mathworld.wolfram.com/SampleVariance.html |
| 444 | # http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance |
| 445 | # |
| 446 | # Under no circumstances use the so-called "computational formula for |
| 447 | # variance", as that is only suitable for hand calculations with a small |
| 448 | # amount of low-precision data. It has terrible numeric properties. |
| 449 | # |
| 450 | # See a comparison of three computational methods here: |
| 451 | # http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/ |
| 452 | |
| 453 | def _ss(data, c=None): |
| 454 | """Return sum of square deviations of sequence data. |
| 455 | |
| 456 | If ``c`` is None, the mean is calculated in one pass, and the deviations |
| 457 | from the mean are calculated in a second pass. Otherwise, deviations are |
| 458 | calculated from ``c`` as given. Use the second case with care, as it can |
| 459 | lead to garbage results. |
| 460 | """ |
| 461 | if c is None: |
| 462 | c = mean(data) |
| 463 | ss = _sum((x-c)**2 for x in data) |
| 464 | # The following sum should mathematically equal zero, but due to rounding |
| 465 | # error may not. |
| 466 | ss -= _sum((x-c) for x in data)**2/len(data) |
| 467 | assert not ss < 0, 'negative sum of square deviations: %f' % ss |
| 468 | return ss |
| 469 | |
| 470 | |
| 471 | def variance(data, xbar=None): |
| 472 | """Return the sample variance of data. |
| 473 | |
| 474 | data should be an iterable of Real-valued numbers, with at least two |
| 475 | values. The optional argument xbar, if given, should be the mean of |
| 476 | the data. If it is missing or None, the mean is automatically calculated. |
| 477 | |
| 478 | Use this function when your data is a sample from a population. To |
| 479 | calculate the variance from the entire population, see ``pvariance``. |
| 480 | |
| 481 | Examples: |
| 482 | |
| 483 | >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5] |
| 484 | >>> variance(data) |
| 485 | 1.3720238095238095 |
| 486 | |
| 487 | If you have already calculated the mean of your data, you can pass it as |
| 488 | the optional second argument ``xbar`` to avoid recalculating it: |
| 489 | |
| 490 | >>> m = mean(data) |
| 491 | >>> variance(data, m) |
| 492 | 1.3720238095238095 |
| 493 | |
| 494 | This function does not check that ``xbar`` is actually the mean of |
| 495 | ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or |
| 496 | impossible results. |
| 497 | |
| 498 | Decimals and Fractions are supported: |
| 499 | |
| 500 | >>> from decimal import Decimal as D |
| 501 | >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")]) |
| 502 | Decimal('31.01875') |
| 503 | |
| 504 | >>> from fractions import Fraction as F |
| 505 | >>> variance([F(1, 6), F(1, 2), F(5, 3)]) |
| 506 | Fraction(67, 108) |
| 507 | |
| 508 | """ |
| 509 | if iter(data) is data: |
| 510 | data = list(data) |
| 511 | n = len(data) |
| 512 | if n < 2: |
| 513 | raise StatisticsError('variance requires at least two data points') |
| 514 | ss = _ss(data, xbar) |
| 515 | return ss/(n-1) |
| 516 | |
| 517 | |
| 518 | def pvariance(data, mu=None): |
| 519 | """Return the population variance of ``data``. |
| 520 | |
| 521 | data should be an iterable of Real-valued numbers, with at least one |
| 522 | value. The optional argument mu, if given, should be the mean of |
| 523 | the data. If it is missing or None, the mean is automatically calculated. |
| 524 | |
| 525 | Use this function to calculate the variance from the entire population. |
| 526 | To estimate the variance from a sample, the ``variance`` function is |
| 527 | usually a better choice. |
| 528 | |
| 529 | Examples: |
| 530 | |
| 531 | >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25] |
| 532 | >>> pvariance(data) |
| 533 | 1.25 |
| 534 | |
| 535 | If you have already calculated the mean of the data, you can pass it as |
| 536 | the optional second argument to avoid recalculating it: |
| 537 | |
| 538 | >>> mu = mean(data) |
| 539 | >>> pvariance(data, mu) |
| 540 | 1.25 |
| 541 | |
| 542 | This function does not check that ``mu`` is actually the mean of ``data``. |
| 543 | Giving arbitrary values for ``mu`` may lead to invalid or impossible |
| 544 | results. |
| 545 | |
| 546 | Decimals and Fractions are supported: |
| 547 | |
| 548 | >>> from decimal import Decimal as D |
| 549 | >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")]) |
| 550 | Decimal('24.815') |
| 551 | |
| 552 | >>> from fractions import Fraction as F |
| 553 | >>> pvariance([F(1, 4), F(5, 4), F(1, 2)]) |
| 554 | Fraction(13, 72) |
| 555 | |
| 556 | """ |
| 557 | if iter(data) is data: |
| 558 | data = list(data) |
| 559 | n = len(data) |
| 560 | if n < 1: |
| 561 | raise StatisticsError('pvariance requires at least one data point') |
| 562 | ss = _ss(data, mu) |
| 563 | return ss/n |
| 564 | |
| 565 | |
| 566 | def stdev(data, xbar=None): |
| 567 | """Return the square root of the sample variance. |
| 568 | |
| 569 | See ``variance`` for arguments and other details. |
| 570 | |
| 571 | >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75]) |
| 572 | 1.0810874155219827 |
| 573 | |
| 574 | """ |
| 575 | var = variance(data, xbar) |
| 576 | try: |
| 577 | return var.sqrt() |
| 578 | except AttributeError: |
| 579 | return math.sqrt(var) |
| 580 | |
| 581 | |
| 582 | def pstdev(data, mu=None): |
| 583 | """Return the square root of the population variance. |
| 584 | |
| 585 | See ``pvariance`` for arguments and other details. |
| 586 | |
| 587 | >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75]) |
| 588 | 0.986893273527251 |
| 589 | |
| 590 | """ |
| 591 | var = pvariance(data, mu) |
| 592 | try: |
| 593 | return var.sqrt() |
| 594 | except AttributeError: |
| 595 | return math.sqrt(var) |