blob: 77117b947edae198f47d8448fa948f04175f1aac [file] [log] [blame]
Mark Dickinsonbb282852009-10-24 12:13:30 +00001/****************************************************************
2 *
3 * The author of this software is David M. Gay.
4 *
5 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose without fee is hereby granted, provided that this entire notice
9 * is included in all copies of any software which is or includes a copy
10 * or modification of this software and in all copies of the supporting
11 * documentation for such software.
12 *
13 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14 * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17 *
18 ***************************************************************/
19
20/****************************************************************
21 * This is dtoa.c by David M. Gay, downloaded from
22 * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for
23 * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith.
24 *
25 * Please remember to check http://www.netlib.org/fp regularly (and especially
26 * before any Python release) for bugfixes and updates.
27 *
28 * The major modifications from Gay's original code are as follows:
29 *
30 * 0. The original code has been specialized to Python's needs by removing
31 * many of the #ifdef'd sections. In particular, code to support VAX and
32 * IBM floating-point formats, hex NaNs, hex floats, locale-aware
33 * treatment of the decimal point, and setting of the inexact flag have
34 * been removed.
35 *
36 * 1. We use PyMem_Malloc and PyMem_Free in place of malloc and free.
37 *
38 * 2. The public functions strtod, dtoa and freedtoa all now have
39 * a _Py_dg_ prefix.
40 *
41 * 3. Instead of assuming that PyMem_Malloc always succeeds, we thread
42 * PyMem_Malloc failures through the code. The functions
43 *
44 * Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b
45 *
46 * of return type *Bigint all return NULL to indicate a malloc failure.
47 * Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on
48 * failure. bigcomp now has return type int (it used to be void) and
49 * returns -1 on failure and 0 otherwise. _Py_dg_dtoa returns NULL
50 * on failure. _Py_dg_strtod indicates failure due to malloc failure
51 * by returning -1.0, setting errno=ENOMEM and *se to s00.
52 *
53 * 4. The static variable dtoa_result has been removed. Callers of
54 * _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free
55 * the memory allocated by _Py_dg_dtoa.
56 *
57 * 5. The code has been reformatted to better fit with Python's
58 * C style guide (PEP 7).
59 *
60 * 6. A bug in the memory allocation has been fixed: to avoid FREEing memory
61 * that hasn't been MALLOC'ed, private_mem should only be used when k <=
62 * Kmax.
63 *
64 * 7. _Py_dg_strtod has been modified so that it doesn't accept strings with
65 * leading whitespace.
66 *
67 ***************************************************************/
68
69/* Please send bug reports for the original dtoa.c code to David M. Gay (dmg
70 * at acm dot org, with " at " changed at "@" and " dot " changed to ".").
71 * Please report bugs for this modified version using the Python issue tracker
72 * (http://bugs.python.org). */
73
74/* On a machine with IEEE extended-precision registers, it is
75 * necessary to specify double-precision (53-bit) rounding precision
76 * before invoking strtod or dtoa. If the machine uses (the equivalent
77 * of) Intel 80x87 arithmetic, the call
78 * _control87(PC_53, MCW_PC);
79 * does this with many compilers. Whether this or another call is
80 * appropriate depends on the compiler; for this to work, it may be
81 * necessary to #include "float.h" or another system-dependent header
82 * file.
83 */
84
85/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
86 *
87 * This strtod returns a nearest machine number to the input decimal
88 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
89 * broken by the IEEE round-even rule. Otherwise ties are broken by
90 * biased rounding (add half and chop).
91 *
92 * Inspired loosely by William D. Clinger's paper "How to Read Floating
93 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
94 *
95 * Modifications:
96 *
97 * 1. We only require IEEE, IBM, or VAX double-precision
98 * arithmetic (not IEEE double-extended).
99 * 2. We get by with floating-point arithmetic in a case that
100 * Clinger missed -- when we're computing d * 10^n
101 * for a small integer d and the integer n is not too
102 * much larger than 22 (the maximum integer k for which
103 * we can represent 10^k exactly), we may be able to
104 * compute (d*10^k) * 10^(e-k) with just one roundoff.
105 * 3. Rather than a bit-at-a-time adjustment of the binary
106 * result in the hard case, we use floating-point
107 * arithmetic to determine the adjustment to within
108 * one bit; only in really hard cases do we need to
109 * compute a second residual.
110 * 4. Because of 3., we don't need a large table of powers of 10
111 * for ten-to-e (just some small tables, e.g. of 10^k
112 * for 0 <= k <= 22).
113 */
114
115/* Linking of Python's #defines to Gay's #defines starts here. */
116
117#include "Python.h"
118
Mark Dickinsonbb282852009-10-24 12:13:30 +0000119/* if PY_NO_SHORT_FLOAT_REPR is defined, then don't even try to compile
120 the following code */
121#ifndef PY_NO_SHORT_FLOAT_REPR
122
123#include "float.h"
124
125#define MALLOC PyMem_Malloc
126#define FREE PyMem_Free
127
128/* This code should also work for ARM mixed-endian format on little-endian
129 machines, where doubles have byte order 45670123 (in increasing address
130 order, 0 being the least significant byte). */
131#ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
132# define IEEE_8087
133#endif
134#if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) || \
135 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
136# define IEEE_MC68k
137#endif
138#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
139#error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined."
140#endif
141
142/* The code below assumes that the endianness of integers matches the
143 endianness of the two 32-bit words of a double. Check this. */
144#if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \
145 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754))
146#error "doubles and ints have incompatible endianness"
147#endif
148
149#if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754)
150#error "doubles and ints have incompatible endianness"
151#endif
152
153
154#if defined(HAVE_UINT32_T) && defined(HAVE_INT32_T)
155typedef PY_UINT32_T ULong;
156typedef PY_INT32_T Long;
157#else
158#error "Failed to find an exact-width 32-bit integer type"
159#endif
160
161#if defined(HAVE_UINT64_T)
162#define ULLong PY_UINT64_T
163#else
164#undef ULLong
165#endif
166
167#undef DEBUG
168#ifdef Py_DEBUG
169#define DEBUG
170#endif
171
172/* End Python #define linking */
173
174#ifdef DEBUG
175#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
176#endif
177
178#ifndef PRIVATE_MEM
179#define PRIVATE_MEM 2304
180#endif
181#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
182static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
183
184#ifdef __cplusplus
185extern "C" {
186#endif
187
188typedef union { double d; ULong L[2]; } U;
189
190#ifdef IEEE_8087
191#define word0(x) (x)->L[1]
192#define word1(x) (x)->L[0]
193#else
194#define word0(x) (x)->L[0]
195#define word1(x) (x)->L[1]
196#endif
197#define dval(x) (x)->d
198
199#ifndef STRTOD_DIGLIM
200#define STRTOD_DIGLIM 40
201#endif
202
Mark Dickinson0ca74522010-01-11 17:15:13 +0000203/* maximum permitted exponent value for strtod; exponents larger than
204 MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP. MAX_ABS_EXP
205 should fit into an int. */
206#ifndef MAX_ABS_EXP
207#define MAX_ABS_EXP 19999U
208#endif
209
Mark Dickinsonbb282852009-10-24 12:13:30 +0000210/* The following definition of Storeinc is appropriate for MIPS processors.
211 * An alternative that might be better on some machines is
212 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
213 */
214#if defined(IEEE_8087)
215#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
216 ((unsigned short *)a)[0] = (unsigned short)c, a++)
217#else
218#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
219 ((unsigned short *)a)[1] = (unsigned short)c, a++)
220#endif
221
222/* #define P DBL_MANT_DIG */
223/* Ten_pmax = floor(P*log(2)/log(5)) */
224/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
225/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
226/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
227
228#define Exp_shift 20
229#define Exp_shift1 20
230#define Exp_msk1 0x100000
231#define Exp_msk11 0x100000
232#define Exp_mask 0x7ff00000
233#define P 53
234#define Nbits 53
235#define Bias 1023
236#define Emax 1023
237#define Emin (-1022)
238#define Exp_1 0x3ff00000
239#define Exp_11 0x3ff00000
240#define Ebits 11
241#define Frac_mask 0xfffff
242#define Frac_mask1 0xfffff
243#define Ten_pmax 22
244#define Bletch 0x10
245#define Bndry_mask 0xfffff
246#define Bndry_mask1 0xfffff
247#define LSB 1
248#define Sign_bit 0x80000000
249#define Log2P 1
250#define Tiny0 0
251#define Tiny1 1
252#define Quick_max 14
253#define Int_max 14
254
255#ifndef Flt_Rounds
256#ifdef FLT_ROUNDS
257#define Flt_Rounds FLT_ROUNDS
258#else
259#define Flt_Rounds 1
260#endif
261#endif /*Flt_Rounds*/
262
263#define Rounding Flt_Rounds
264
265#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
266#define Big1 0xffffffff
267
268/* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */
269
270typedef struct BCinfo BCinfo;
271struct
272BCinfo {
Mark Dickinsond2a99402010-01-13 22:20:10 +0000273 int dsign, e0, nd, nd0, scale;
Mark Dickinsonbb282852009-10-24 12:13:30 +0000274};
275
276#define FFFFFFFF 0xffffffffUL
277
278#define Kmax 7
279
280/* struct Bigint is used to represent arbitrary-precision integers. These
281 integers are stored in sign-magnitude format, with the magnitude stored as
282 an array of base 2**32 digits. Bigints are always normalized: if x is a
283 Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero.
284
285 The Bigint fields are as follows:
286
287 - next is a header used by Balloc and Bfree to keep track of lists
288 of freed Bigints; it's also used for the linked list of
289 powers of 5 of the form 5**2**i used by pow5mult.
290 - k indicates which pool this Bigint was allocated from
291 - maxwds is the maximum number of words space was allocated for
292 (usually maxwds == 2**k)
293 - sign is 1 for negative Bigints, 0 for positive. The sign is unused
294 (ignored on inputs, set to 0 on outputs) in almost all operations
295 involving Bigints: a notable exception is the diff function, which
296 ignores signs on inputs but sets the sign of the output correctly.
297 - wds is the actual number of significant words
298 - x contains the vector of words (digits) for this Bigint, from least
299 significant (x[0]) to most significant (x[wds-1]).
300*/
301
302struct
303Bigint {
304 struct Bigint *next;
305 int k, maxwds, sign, wds;
306 ULong x[1];
307};
308
309typedef struct Bigint Bigint;
310
311/* Memory management: memory is allocated from, and returned to, Kmax+1 pools
312 of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds ==
313 1 << k. These pools are maintained as linked lists, with freelist[k]
314 pointing to the head of the list for pool k.
315
316 On allocation, if there's no free slot in the appropriate pool, MALLOC is
317 called to get more memory. This memory is not returned to the system until
318 Python quits. There's also a private memory pool that's allocated from
319 in preference to using MALLOC.
320
321 For Bigints with more than (1 << Kmax) digits (which implies at least 1233
322 decimal digits), memory is directly allocated using MALLOC, and freed using
323 FREE.
324
325 XXX: it would be easy to bypass this memory-management system and
326 translate each call to Balloc into a call to PyMem_Malloc, and each
327 Bfree to PyMem_Free. Investigate whether this has any significant
328 performance on impact. */
329
330static Bigint *freelist[Kmax+1];
331
332/* Allocate space for a Bigint with up to 1<<k digits */
333
334static Bigint *
335Balloc(int k)
336{
337 int x;
338 Bigint *rv;
339 unsigned int len;
340
341 if (k <= Kmax && (rv = freelist[k]))
342 freelist[k] = rv->next;
343 else {
344 x = 1 << k;
345 len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
346 /sizeof(double);
347 if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
348 rv = (Bigint*)pmem_next;
349 pmem_next += len;
350 }
351 else {
352 rv = (Bigint*)MALLOC(len*sizeof(double));
353 if (rv == NULL)
354 return NULL;
355 }
356 rv->k = k;
357 rv->maxwds = x;
358 }
359 rv->sign = rv->wds = 0;
360 return rv;
361}
362
363/* Free a Bigint allocated with Balloc */
364
365static void
366Bfree(Bigint *v)
367{
368 if (v) {
369 if (v->k > Kmax)
370 FREE((void*)v);
371 else {
372 v->next = freelist[v->k];
373 freelist[v->k] = v;
374 }
375 }
376}
377
378#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
379 y->wds*sizeof(Long) + 2*sizeof(int))
380
381/* Multiply a Bigint b by m and add a. Either modifies b in place and returns
382 a pointer to the modified b, or Bfrees b and returns a pointer to a copy.
383 On failure, return NULL. In this case, b will have been already freed. */
384
385static Bigint *
386multadd(Bigint *b, int m, int a) /* multiply by m and add a */
387{
388 int i, wds;
389#ifdef ULLong
390 ULong *x;
391 ULLong carry, y;
392#else
393 ULong carry, *x, y;
394 ULong xi, z;
395#endif
396 Bigint *b1;
397
398 wds = b->wds;
399 x = b->x;
400 i = 0;
401 carry = a;
402 do {
403#ifdef ULLong
404 y = *x * (ULLong)m + carry;
405 carry = y >> 32;
406 *x++ = (ULong)(y & FFFFFFFF);
407#else
408 xi = *x;
409 y = (xi & 0xffff) * m + carry;
410 z = (xi >> 16) * m + (y >> 16);
411 carry = z >> 16;
412 *x++ = (z << 16) + (y & 0xffff);
413#endif
414 }
415 while(++i < wds);
416 if (carry) {
417 if (wds >= b->maxwds) {
418 b1 = Balloc(b->k+1);
419 if (b1 == NULL){
420 Bfree(b);
421 return NULL;
422 }
423 Bcopy(b1, b);
424 Bfree(b);
425 b = b1;
426 }
427 b->x[wds++] = (ULong)carry;
428 b->wds = wds;
429 }
430 return b;
431}
432
433/* convert a string s containing nd decimal digits (possibly containing a
434 decimal separator at position nd0, which is ignored) to a Bigint. This
435 function carries on where the parsing code in _Py_dg_strtod leaves off: on
436 entry, y9 contains the result of converting the first 9 digits. Returns
437 NULL on failure. */
438
439static Bigint *
Mark Dickinsond2a99402010-01-13 22:20:10 +0000440s2b(const char *s, int nd0, int nd, ULong y9)
Mark Dickinsonbb282852009-10-24 12:13:30 +0000441{
442 Bigint *b;
443 int i, k;
444 Long x, y;
445
446 x = (nd + 8) / 9;
447 for(k = 0, y = 1; x > y; y <<= 1, k++) ;
448 b = Balloc(k);
449 if (b == NULL)
450 return NULL;
451 b->x[0] = y9;
452 b->wds = 1;
453
Mark Dickinsond2a99402010-01-13 22:20:10 +0000454 if (nd <= 9)
455 return b;
456
457 s += 9;
458 for (i = 9; i < nd0; i++) {
459 b = multadd(b, 10, *s++ - '0');
460 if (b == NULL)
461 return NULL;
Mark Dickinsonbb282852009-10-24 12:13:30 +0000462 }
Mark Dickinsond2a99402010-01-13 22:20:10 +0000463 s++;
Mark Dickinsonbb282852009-10-24 12:13:30 +0000464 for(; i < nd; i++) {
465 b = multadd(b, 10, *s++ - '0');
466 if (b == NULL)
467 return NULL;
468 }
469 return b;
470}
471
472/* count leading 0 bits in the 32-bit integer x. */
473
474static int
475hi0bits(ULong x)
476{
477 int k = 0;
478
479 if (!(x & 0xffff0000)) {
480 k = 16;
481 x <<= 16;
482 }
483 if (!(x & 0xff000000)) {
484 k += 8;
485 x <<= 8;
486 }
487 if (!(x & 0xf0000000)) {
488 k += 4;
489 x <<= 4;
490 }
491 if (!(x & 0xc0000000)) {
492 k += 2;
493 x <<= 2;
494 }
495 if (!(x & 0x80000000)) {
496 k++;
497 if (!(x & 0x40000000))
498 return 32;
499 }
500 return k;
501}
502
503/* count trailing 0 bits in the 32-bit integer y, and shift y right by that
504 number of bits. */
505
506static int
507lo0bits(ULong *y)
508{
509 int k;
510 ULong x = *y;
511
512 if (x & 7) {
513 if (x & 1)
514 return 0;
515 if (x & 2) {
516 *y = x >> 1;
517 return 1;
518 }
519 *y = x >> 2;
520 return 2;
521 }
522 k = 0;
523 if (!(x & 0xffff)) {
524 k = 16;
525 x >>= 16;
526 }
527 if (!(x & 0xff)) {
528 k += 8;
529 x >>= 8;
530 }
531 if (!(x & 0xf)) {
532 k += 4;
533 x >>= 4;
534 }
535 if (!(x & 0x3)) {
536 k += 2;
537 x >>= 2;
538 }
539 if (!(x & 1)) {
540 k++;
541 x >>= 1;
542 if (!x)
543 return 32;
544 }
545 *y = x;
546 return k;
547}
548
549/* convert a small nonnegative integer to a Bigint */
550
551static Bigint *
552i2b(int i)
553{
554 Bigint *b;
555
556 b = Balloc(1);
557 if (b == NULL)
558 return NULL;
559 b->x[0] = i;
560 b->wds = 1;
561 return b;
562}
563
564/* multiply two Bigints. Returns a new Bigint, or NULL on failure. Ignores
565 the signs of a and b. */
566
567static Bigint *
568mult(Bigint *a, Bigint *b)
569{
570 Bigint *c;
571 int k, wa, wb, wc;
572 ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
573 ULong y;
574#ifdef ULLong
575 ULLong carry, z;
576#else
577 ULong carry, z;
578 ULong z2;
579#endif
580
581 if (a->wds < b->wds) {
582 c = a;
583 a = b;
584 b = c;
585 }
586 k = a->k;
587 wa = a->wds;
588 wb = b->wds;
589 wc = wa + wb;
590 if (wc > a->maxwds)
591 k++;
592 c = Balloc(k);
593 if (c == NULL)
594 return NULL;
595 for(x = c->x, xa = x + wc; x < xa; x++)
596 *x = 0;
597 xa = a->x;
598 xae = xa + wa;
599 xb = b->x;
600 xbe = xb + wb;
601 xc0 = c->x;
602#ifdef ULLong
603 for(; xb < xbe; xc0++) {
604 if ((y = *xb++)) {
605 x = xa;
606 xc = xc0;
607 carry = 0;
608 do {
609 z = *x++ * (ULLong)y + *xc + carry;
610 carry = z >> 32;
611 *xc++ = (ULong)(z & FFFFFFFF);
612 }
613 while(x < xae);
614 *xc = (ULong)carry;
615 }
616 }
617#else
618 for(; xb < xbe; xb++, xc0++) {
619 if (y = *xb & 0xffff) {
620 x = xa;
621 xc = xc0;
622 carry = 0;
623 do {
624 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
625 carry = z >> 16;
626 z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
627 carry = z2 >> 16;
628 Storeinc(xc, z2, z);
629 }
630 while(x < xae);
631 *xc = carry;
632 }
633 if (y = *xb >> 16) {
634 x = xa;
635 xc = xc0;
636 carry = 0;
637 z2 = *xc;
638 do {
639 z = (*x & 0xffff) * y + (*xc >> 16) + carry;
640 carry = z >> 16;
641 Storeinc(xc, z, z2);
642 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
643 carry = z2 >> 16;
644 }
645 while(x < xae);
646 *xc = z2;
647 }
648 }
649#endif
650 for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
651 c->wds = wc;
652 return c;
653}
654
655/* p5s is a linked list of powers of 5 of the form 5**(2**i), i >= 2 */
656
657static Bigint *p5s;
658
659/* multiply the Bigint b by 5**k. Returns a pointer to the result, or NULL on
660 failure; if the returned pointer is distinct from b then the original
661 Bigint b will have been Bfree'd. Ignores the sign of b. */
662
663static Bigint *
664pow5mult(Bigint *b, int k)
665{
666 Bigint *b1, *p5, *p51;
667 int i;
668 static int p05[3] = { 5, 25, 125 };
669
670 if ((i = k & 3)) {
671 b = multadd(b, p05[i-1], 0);
672 if (b == NULL)
673 return NULL;
674 }
675
676 if (!(k >>= 2))
677 return b;
678 p5 = p5s;
679 if (!p5) {
680 /* first time */
681 p5 = i2b(625);
682 if (p5 == NULL) {
683 Bfree(b);
684 return NULL;
685 }
686 p5s = p5;
687 p5->next = 0;
688 }
689 for(;;) {
690 if (k & 1) {
691 b1 = mult(b, p5);
692 Bfree(b);
693 b = b1;
694 if (b == NULL)
695 return NULL;
696 }
697 if (!(k >>= 1))
698 break;
699 p51 = p5->next;
700 if (!p51) {
701 p51 = mult(p5,p5);
702 if (p51 == NULL) {
703 Bfree(b);
704 return NULL;
705 }
706 p51->next = 0;
707 p5->next = p51;
708 }
709 p5 = p51;
710 }
711 return b;
712}
713
714/* shift a Bigint b left by k bits. Return a pointer to the shifted result,
715 or NULL on failure. If the returned pointer is distinct from b then the
716 original b will have been Bfree'd. Ignores the sign of b. */
717
718static Bigint *
719lshift(Bigint *b, int k)
720{
721 int i, k1, n, n1;
722 Bigint *b1;
723 ULong *x, *x1, *xe, z;
724
725 n = k >> 5;
726 k1 = b->k;
727 n1 = n + b->wds + 1;
728 for(i = b->maxwds; n1 > i; i <<= 1)
729 k1++;
730 b1 = Balloc(k1);
731 if (b1 == NULL) {
732 Bfree(b);
733 return NULL;
734 }
735 x1 = b1->x;
736 for(i = 0; i < n; i++)
737 *x1++ = 0;
738 x = b->x;
739 xe = x + b->wds;
740 if (k &= 0x1f) {
741 k1 = 32 - k;
742 z = 0;
743 do {
744 *x1++ = *x << k | z;
745 z = *x++ >> k1;
746 }
747 while(x < xe);
748 if ((*x1 = z))
749 ++n1;
750 }
751 else do
752 *x1++ = *x++;
753 while(x < xe);
754 b1->wds = n1 - 1;
755 Bfree(b);
756 return b1;
757}
758
759/* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and
760 1 if a > b. Ignores signs of a and b. */
761
762static int
763cmp(Bigint *a, Bigint *b)
764{
765 ULong *xa, *xa0, *xb, *xb0;
766 int i, j;
767
768 i = a->wds;
769 j = b->wds;
770#ifdef DEBUG
771 if (i > 1 && !a->x[i-1])
772 Bug("cmp called with a->x[a->wds-1] == 0");
773 if (j > 1 && !b->x[j-1])
774 Bug("cmp called with b->x[b->wds-1] == 0");
775#endif
776 if (i -= j)
777 return i;
778 xa0 = a->x;
779 xa = xa0 + j;
780 xb0 = b->x;
781 xb = xb0 + j;
782 for(;;) {
783 if (*--xa != *--xb)
784 return *xa < *xb ? -1 : 1;
785 if (xa <= xa0)
786 break;
787 }
788 return 0;
789}
790
791/* Take the difference of Bigints a and b, returning a new Bigint. Returns
792 NULL on failure. The signs of a and b are ignored, but the sign of the
793 result is set appropriately. */
794
795static Bigint *
796diff(Bigint *a, Bigint *b)
797{
798 Bigint *c;
799 int i, wa, wb;
800 ULong *xa, *xae, *xb, *xbe, *xc;
801#ifdef ULLong
802 ULLong borrow, y;
803#else
804 ULong borrow, y;
805 ULong z;
806#endif
807
808 i = cmp(a,b);
809 if (!i) {
810 c = Balloc(0);
811 if (c == NULL)
812 return NULL;
813 c->wds = 1;
814 c->x[0] = 0;
815 return c;
816 }
817 if (i < 0) {
818 c = a;
819 a = b;
820 b = c;
821 i = 1;
822 }
823 else
824 i = 0;
825 c = Balloc(a->k);
826 if (c == NULL)
827 return NULL;
828 c->sign = i;
829 wa = a->wds;
830 xa = a->x;
831 xae = xa + wa;
832 wb = b->wds;
833 xb = b->x;
834 xbe = xb + wb;
835 xc = c->x;
836 borrow = 0;
837#ifdef ULLong
838 do {
839 y = (ULLong)*xa++ - *xb++ - borrow;
840 borrow = y >> 32 & (ULong)1;
841 *xc++ = (ULong)(y & FFFFFFFF);
842 }
843 while(xb < xbe);
844 while(xa < xae) {
845 y = *xa++ - borrow;
846 borrow = y >> 32 & (ULong)1;
847 *xc++ = (ULong)(y & FFFFFFFF);
848 }
849#else
850 do {
851 y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
852 borrow = (y & 0x10000) >> 16;
853 z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
854 borrow = (z & 0x10000) >> 16;
855 Storeinc(xc, z, y);
856 }
857 while(xb < xbe);
858 while(xa < xae) {
859 y = (*xa & 0xffff) - borrow;
860 borrow = (y & 0x10000) >> 16;
861 z = (*xa++ >> 16) - borrow;
862 borrow = (z & 0x10000) >> 16;
863 Storeinc(xc, z, y);
864 }
865#endif
866 while(!*--xc)
867 wa--;
868 c->wds = wa;
869 return c;
870}
871
872/* Given a positive normal double x, return the difference between x and the next
873 double up. Doesn't give correct results for subnormals. */
874
875static double
876ulp(U *x)
877{
878 Long L;
879 U u;
880
881 L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
882 word0(&u) = L;
883 word1(&u) = 0;
884 return dval(&u);
885}
886
887/* Convert a Bigint to a double plus an exponent */
888
889static double
890b2d(Bigint *a, int *e)
891{
892 ULong *xa, *xa0, w, y, z;
893 int k;
894 U d;
895
896 xa0 = a->x;
897 xa = xa0 + a->wds;
898 y = *--xa;
899#ifdef DEBUG
900 if (!y) Bug("zero y in b2d");
901#endif
902 k = hi0bits(y);
903 *e = 32 - k;
904 if (k < Ebits) {
905 word0(&d) = Exp_1 | y >> (Ebits - k);
906 w = xa > xa0 ? *--xa : 0;
907 word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k);
908 goto ret_d;
909 }
910 z = xa > xa0 ? *--xa : 0;
911 if (k -= Ebits) {
912 word0(&d) = Exp_1 | y << k | z >> (32 - k);
913 y = xa > xa0 ? *--xa : 0;
914 word1(&d) = z << k | y >> (32 - k);
915 }
916 else {
917 word0(&d) = Exp_1 | y;
918 word1(&d) = z;
919 }
920 ret_d:
921 return dval(&d);
922}
923
924/* Convert a double to a Bigint plus an exponent. Return NULL on failure.
925
926 Given a finite nonzero double d, return an odd Bigint b and exponent *e
927 such that fabs(d) = b * 2**e. On return, *bbits gives the number of
Mark Dickinson2bcd1772010-01-04 21:32:02 +0000928 significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits).
Mark Dickinsonbb282852009-10-24 12:13:30 +0000929
930 If d is zero, then b == 0, *e == -1010, *bbits = 0.
931 */
932
933
934static Bigint *
935d2b(U *d, int *e, int *bits)
936{
937 Bigint *b;
938 int de, k;
939 ULong *x, y, z;
940 int i;
941
942 b = Balloc(1);
943 if (b == NULL)
944 return NULL;
945 x = b->x;
946
947 z = word0(d) & Frac_mask;
948 word0(d) &= 0x7fffffff; /* clear sign bit, which we ignore */
949 if ((de = (int)(word0(d) >> Exp_shift)))
950 z |= Exp_msk1;
951 if ((y = word1(d))) {
952 if ((k = lo0bits(&y))) {
953 x[0] = y | z << (32 - k);
954 z >>= k;
955 }
956 else
957 x[0] = y;
958 i =
959 b->wds = (x[1] = z) ? 2 : 1;
960 }
961 else {
962 k = lo0bits(&z);
963 x[0] = z;
964 i =
965 b->wds = 1;
966 k += 32;
967 }
968 if (de) {
969 *e = de - Bias - (P-1) + k;
970 *bits = P - k;
971 }
972 else {
973 *e = de - Bias - (P-1) + 1 + k;
974 *bits = 32*i - hi0bits(x[i-1]);
975 }
976 return b;
977}
978
979/* Compute the ratio of two Bigints, as a double. The result may have an
980 error of up to 2.5 ulps. */
981
982static double
983ratio(Bigint *a, Bigint *b)
984{
985 U da, db;
986 int k, ka, kb;
987
988 dval(&da) = b2d(a, &ka);
989 dval(&db) = b2d(b, &kb);
990 k = ka - kb + 32*(a->wds - b->wds);
991 if (k > 0)
992 word0(&da) += k*Exp_msk1;
993 else {
994 k = -k;
995 word0(&db) += k*Exp_msk1;
996 }
997 return dval(&da) / dval(&db);
998}
999
1000static const double
1001tens[] = {
1002 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1003 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1004 1e20, 1e21, 1e22
1005};
1006
1007static const double
1008bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1009static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1010 9007199254740992.*9007199254740992.e-256
1011 /* = 2^106 * 1e-256 */
1012};
1013/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1014/* flag unnecessarily. It leads to a song and dance at the end of strtod. */
1015#define Scale_Bit 0x10
1016#define n_bigtens 5
1017
1018#define ULbits 32
1019#define kshift 5
1020#define kmask 31
1021
1022
1023static int
1024dshift(Bigint *b, int p2)
1025{
1026 int rv = hi0bits(b->x[b->wds-1]) - 4;
1027 if (p2 > 0)
1028 rv -= p2;
1029 return rv & kmask;
1030}
1031
1032/* special case of Bigint division. The quotient is always in the range 0 <=
1033 quotient < 10, and on entry the divisor S is normalized so that its top 4
1034 bits (28--31) are zero and bit 27 is set. */
1035
1036static int
1037quorem(Bigint *b, Bigint *S)
1038{
1039 int n;
1040 ULong *bx, *bxe, q, *sx, *sxe;
1041#ifdef ULLong
1042 ULLong borrow, carry, y, ys;
1043#else
1044 ULong borrow, carry, y, ys;
1045 ULong si, z, zs;
1046#endif
1047
1048 n = S->wds;
1049#ifdef DEBUG
1050 /*debug*/ if (b->wds > n)
1051 /*debug*/ Bug("oversize b in quorem");
1052#endif
1053 if (b->wds < n)
1054 return 0;
1055 sx = S->x;
1056 sxe = sx + --n;
1057 bx = b->x;
1058 bxe = bx + n;
1059 q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
1060#ifdef DEBUG
1061 /*debug*/ if (q > 9)
1062 /*debug*/ Bug("oversized quotient in quorem");
1063#endif
1064 if (q) {
1065 borrow = 0;
1066 carry = 0;
1067 do {
1068#ifdef ULLong
1069 ys = *sx++ * (ULLong)q + carry;
1070 carry = ys >> 32;
1071 y = *bx - (ys & FFFFFFFF) - borrow;
1072 borrow = y >> 32 & (ULong)1;
1073 *bx++ = (ULong)(y & FFFFFFFF);
1074#else
1075 si = *sx++;
1076 ys = (si & 0xffff) * q + carry;
1077 zs = (si >> 16) * q + (ys >> 16);
1078 carry = zs >> 16;
1079 y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
1080 borrow = (y & 0x10000) >> 16;
1081 z = (*bx >> 16) - (zs & 0xffff) - borrow;
1082 borrow = (z & 0x10000) >> 16;
1083 Storeinc(bx, z, y);
1084#endif
1085 }
1086 while(sx <= sxe);
1087 if (!*bxe) {
1088 bx = b->x;
1089 while(--bxe > bx && !*bxe)
1090 --n;
1091 b->wds = n;
1092 }
1093 }
1094 if (cmp(b, S) >= 0) {
1095 q++;
1096 borrow = 0;
1097 carry = 0;
1098 bx = b->x;
1099 sx = S->x;
1100 do {
1101#ifdef ULLong
1102 ys = *sx++ + carry;
1103 carry = ys >> 32;
1104 y = *bx - (ys & FFFFFFFF) - borrow;
1105 borrow = y >> 32 & (ULong)1;
1106 *bx++ = (ULong)(y & FFFFFFFF);
1107#else
1108 si = *sx++;
1109 ys = (si & 0xffff) + carry;
1110 zs = (si >> 16) + (ys >> 16);
1111 carry = zs >> 16;
1112 y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
1113 borrow = (y & 0x10000) >> 16;
1114 z = (*bx >> 16) - (zs & 0xffff) - borrow;
1115 borrow = (z & 0x10000) >> 16;
1116 Storeinc(bx, z, y);
1117#endif
1118 }
1119 while(sx <= sxe);
1120 bx = b->x;
1121 bxe = bx + n;
1122 if (!*bxe) {
1123 while(--bxe > bx && !*bxe)
1124 --n;
1125 b->wds = n;
1126 }
1127 }
1128 return q;
1129}
1130
Mark Dickinson5818e012010-01-13 19:02:37 +00001131/* sulp(x) is a version of ulp(x) that takes bc.scale into account.
Mark Dickinson5ff4f272010-01-12 22:55:51 +00001132
Mark Dickinson5818e012010-01-13 19:02:37 +00001133 Assuming that x is finite and nonnegative (positive zero is fine
1134 here) and x / 2^bc.scale is exactly representable as a double,
1135 sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */
Mark Dickinson5ff4f272010-01-12 22:55:51 +00001136
1137static double
1138sulp(U *x, BCinfo *bc)
1139{
1140 U u;
1141
Mark Dickinson02139d72010-01-13 22:15:53 +00001142 if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) {
Mark Dickinson5ff4f272010-01-12 22:55:51 +00001143 /* rv/2^bc->scale is subnormal */
1144 word0(&u) = (P+2)*Exp_msk1;
1145 word1(&u) = 0;
1146 return u.d;
1147 }
Mark Dickinson5818e012010-01-13 19:02:37 +00001148 else {
1149 assert(word0(x) || word1(x)); /* x != 0.0 */
Mark Dickinson5ff4f272010-01-12 22:55:51 +00001150 return ulp(x);
Mark Dickinson5818e012010-01-13 19:02:37 +00001151 }
Mark Dickinson5ff4f272010-01-12 22:55:51 +00001152}
Mark Dickinsonbb282852009-10-24 12:13:30 +00001153
Mark Dickinsonb26d56a2010-01-13 18:21:53 +00001154/* The bigcomp function handles some hard cases for strtod, for inputs
1155 with more than STRTOD_DIGLIM digits. It's called once an initial
1156 estimate for the double corresponding to the input string has
1157 already been obtained by the code in _Py_dg_strtod.
1158
1159 The bigcomp function is only called after _Py_dg_strtod has found a
1160 double value rv such that either rv or rv + 1ulp represents the
1161 correctly rounded value corresponding to the original string. It
1162 determines which of these two values is the correct one by
1163 computing the decimal digits of rv + 0.5ulp and comparing them with
Mark Dickinson6e0d3d62010-01-13 20:55:03 +00001164 the corresponding digits of s0.
Mark Dickinsonb26d56a2010-01-13 18:21:53 +00001165
1166 In the following, write dv for the absolute value of the number represented
1167 by the input string.
1168
1169 Inputs:
1170
1171 s0 points to the first significant digit of the input string.
1172
1173 rv is a (possibly scaled) estimate for the closest double value to the
1174 value represented by the original input to _Py_dg_strtod. If
1175 bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to
1176 the input value.
1177
1178 bc is a struct containing information gathered during the parsing and
1179 estimation steps of _Py_dg_strtod. Description of fields follows:
1180
Mark Dickinsonb26d56a2010-01-13 18:21:53 +00001181 bc->dsign is 1 if rv < decimal value, 0 if rv >= decimal value. In
1182 normal use, it should almost always be 1 when bigcomp is entered.
1183
1184 bc->e0 gives the exponent of the input value, such that dv = (integer
1185 given by the bd->nd digits of s0) * 10**e0
1186
Mark Dickinsond2a99402010-01-13 22:20:10 +00001187 bc->nd gives the total number of significant digits of s0. It will
1188 be at least 1.
Mark Dickinsonb26d56a2010-01-13 18:21:53 +00001189
1190 bc->nd0 gives the number of significant digits of s0 before the
1191 decimal separator. If there's no decimal separator, bc->nd0 ==
1192 bc->nd.
1193
1194 bc->scale is the value used to scale rv to avoid doing arithmetic with
1195 subnormal values. It's either 0 or 2*P (=106).
1196
1197 Outputs:
1198
1199 On successful exit, rv/2^(bc->scale) is the closest double to dv.
1200
1201 Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */
Mark Dickinsonbb282852009-10-24 12:13:30 +00001202
1203static int
1204bigcomp(U *rv, const char *s0, BCinfo *bc)
1205{
1206 Bigint *b, *d;
Mark Dickinson50b60c62010-01-14 13:14:49 +00001207 int b2, bbits, d2, dd, i, nd, nd0, odd, p2, p5;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001208
Mark Dickinsond2a99402010-01-13 22:20:10 +00001209 dd = 0; /* silence compiler warning about possibly unused variable */
Mark Dickinsonbb282852009-10-24 12:13:30 +00001210 nd = bc->nd;
1211 nd0 = bc->nd0;
Mark Dickinson8efef5c2010-01-12 22:23:56 +00001212 p5 = nd + bc->e0;
Mark Dickinsond2a99402010-01-13 22:20:10 +00001213 if (rv->d == 0.) {
1214 /* special case because d2b doesn't handle 0.0 */
Mark Dickinson6e0d3d62010-01-13 20:55:03 +00001215 b = i2b(0);
Mark Dickinsonbb282852009-10-24 12:13:30 +00001216 if (b == NULL)
1217 return -1;
Mark Dickinson6e0d3d62010-01-13 20:55:03 +00001218 p2 = Emin - P + 1; /* = -1074 for IEEE 754 binary64 */
1219 bbits = 0;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001220 }
Mark Dickinson6e0d3d62010-01-13 20:55:03 +00001221 else {
Mark Dickinsonbb282852009-10-24 12:13:30 +00001222 b = d2b(rv, &p2, &bbits);
1223 if (b == NULL)
1224 return -1;
Mark Dickinson6e0d3d62010-01-13 20:55:03 +00001225 p2 -= bc->scale;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001226 }
Mark Dickinson6e0d3d62010-01-13 20:55:03 +00001227 /* now rv/2^(bc->scale) = b * 2**p2, and b has bbits significant bits */
1228
1229 /* Replace (b, p2) by (b << i, p2 - i), with i the largest integer such
1230 that b << i has at most P significant bits and p2 - i >= Emin - P +
1231 1. */
Mark Dickinsonbb282852009-10-24 12:13:30 +00001232 i = P - bbits;
Mark Dickinsond2a99402010-01-13 22:20:10 +00001233 if (i > p2 - (Emin - P + 1))
1234 i = p2 - (Emin - P + 1);
Mark Dickinson6e0d3d62010-01-13 20:55:03 +00001235 /* increment i so that we shift b by an extra bit; then or-ing a 1 into
1236 the lsb of b gives us rv/2^(bc->scale) + 0.5ulp. */
1237 b = lshift(b, ++i);
1238 if (b == NULL)
1239 return -1;
Mark Dickinson50b60c62010-01-14 13:14:49 +00001240 /* record whether the lsb of rv/2^(bc->scale) is odd: in the exact halfway
1241 case, this is used for round to even. */
1242 odd = b->x[0] & 2;
Mark Dickinson6e0d3d62010-01-13 20:55:03 +00001243 b->x[0] |= 1;
1244
Mark Dickinsonbb282852009-10-24 12:13:30 +00001245 p2 -= p5 + i;
1246 d = i2b(1);
1247 if (d == NULL) {
1248 Bfree(b);
1249 return -1;
1250 }
1251 /* Arrange for convenient computation of quotients:
1252 * shift left if necessary so divisor has 4 leading 0 bits.
1253 */
1254 if (p5 > 0) {
1255 d = pow5mult(d, p5);
1256 if (d == NULL) {
1257 Bfree(b);
1258 return -1;
1259 }
1260 }
1261 else if (p5 < 0) {
1262 b = pow5mult(b, -p5);
1263 if (b == NULL) {
1264 Bfree(d);
1265 return -1;
1266 }
1267 }
1268 if (p2 > 0) {
1269 b2 = p2;
1270 d2 = 0;
1271 }
1272 else {
1273 b2 = 0;
1274 d2 = -p2;
1275 }
1276 i = dshift(d, d2);
1277 if ((b2 += i) > 0) {
1278 b = lshift(b, b2);
1279 if (b == NULL) {
1280 Bfree(d);
1281 return -1;
1282 }
1283 }
1284 if ((d2 += i) > 0) {
1285 d = lshift(d, d2);
1286 if (d == NULL) {
1287 Bfree(b);
1288 return -1;
1289 }
1290 }
1291
Mark Dickinsond2a99402010-01-13 22:20:10 +00001292 /* if b >= d, round down */
Mark Dickinson8efef5c2010-01-12 22:23:56 +00001293 if (cmp(b, d) >= 0) {
1294 dd = -1;
1295 goto ret;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001296 }
Mark Dickinson50b60c62010-01-14 13:14:49 +00001297
Mark Dickinsonbb282852009-10-24 12:13:30 +00001298 /* Compare b/d with s0 */
Mark Dickinsond2a99402010-01-13 22:20:10 +00001299 for(i = 0; i < nd0; i++) {
1300 b = multadd(b, 10, 0);
1301 if (b == NULL) {
1302 Bfree(d);
1303 return -1;
1304 }
1305 dd = *s0++ - '0' - quorem(b, d);
1306 if (dd)
Mark Dickinsonbb282852009-10-24 12:13:30 +00001307 goto ret;
1308 if (!b->x[0] && b->wds == 1) {
Mark Dickinson03774fa2010-01-14 13:02:36 +00001309 if (i < nd - 1)
Mark Dickinsonbb282852009-10-24 12:13:30 +00001310 dd = 1;
1311 goto ret;
1312 }
Mark Dickinsonbb282852009-10-24 12:13:30 +00001313 }
Mark Dickinsond2a99402010-01-13 22:20:10 +00001314 s0++;
1315 for(; i < nd; i++) {
1316 b = multadd(b, 10, 0);
1317 if (b == NULL) {
1318 Bfree(d);
1319 return -1;
1320 }
1321 dd = *s0++ - '0' - quorem(b, d);
1322 if (dd)
Mark Dickinsonbb282852009-10-24 12:13:30 +00001323 goto ret;
1324 if (!b->x[0] && b->wds == 1) {
Mark Dickinson03774fa2010-01-14 13:02:36 +00001325 if (i < nd - 1)
Mark Dickinsonbb282852009-10-24 12:13:30 +00001326 dd = 1;
1327 goto ret;
1328 }
Mark Dickinsonbb282852009-10-24 12:13:30 +00001329 }
1330 if (b->x[0] || b->wds > 1)
1331 dd = -1;
1332 ret:
1333 Bfree(b);
1334 Bfree(d);
Mark Dickinson50b60c62010-01-14 13:14:49 +00001335 if (dd > 0 || (dd == 0 && odd))
Mark Dickinson6e0d3d62010-01-13 20:55:03 +00001336 dval(rv) += sulp(rv, bc);
Mark Dickinsonbb282852009-10-24 12:13:30 +00001337 return 0;
1338}
1339
1340double
1341_Py_dg_strtod(const char *s00, char **se)
1342{
Mark Dickinson476279f2010-01-16 10:44:00 +00001343 int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1, error;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001344 int esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
1345 const char *s, *s0, *s1;
1346 double aadj, aadj1;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001347 U aadj2, adj, rv, rv0;
Mark Dickinson0ca74522010-01-11 17:15:13 +00001348 ULong y, z, L;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001349 BCinfo bc;
1350 Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
1351
Mark Dickinson476279f2010-01-16 10:44:00 +00001352 sign = nz0 = nz = 0;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001353 dval(&rv) = 0.;
1354 for(s = s00;;s++) switch(*s) {
1355 case '-':
1356 sign = 1;
1357 /* no break */
1358 case '+':
1359 if (*++s)
1360 goto break2;
1361 /* no break */
1362 case 0:
1363 goto ret0;
1364 /* modify original dtoa.c so that it doesn't accept leading whitespace
1365 case '\t':
1366 case '\n':
1367 case '\v':
1368 case '\f':
1369 case '\r':
1370 case ' ':
1371 continue;
1372 */
1373 default:
1374 goto break2;
1375 }
1376 break2:
1377 if (*s == '0') {
1378 nz0 = 1;
1379 while(*++s == '0') ;
1380 if (!*s)
1381 goto ret;
1382 }
1383 s0 = s;
1384 y = z = 0;
1385 for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
1386 if (nd < 9)
1387 y = 10*y + c - '0';
1388 else if (nd < 16)
1389 z = 10*z + c - '0';
1390 nd0 = nd;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001391 if (c == '.') {
1392 c = *++s;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001393 if (!nd) {
1394 for(; c == '0'; c = *++s)
1395 nz++;
1396 if (c > '0' && c <= '9') {
1397 s0 = s;
1398 nf += nz;
1399 nz = 0;
1400 goto have_dig;
1401 }
1402 goto dig_done;
1403 }
1404 for(; c >= '0' && c <= '9'; c = *++s) {
1405 have_dig:
1406 nz++;
1407 if (c -= '0') {
1408 nf += nz;
1409 for(i = 1; i < nz; i++)
1410 if (nd++ < 9)
1411 y *= 10;
1412 else if (nd <= DBL_DIG + 1)
1413 z *= 10;
1414 if (nd++ < 9)
1415 y = 10*y + c;
1416 else if (nd <= DBL_DIG + 1)
1417 z = 10*z + c;
1418 nz = 0;
1419 }
1420 }
1421 }
1422 dig_done:
1423 e = 0;
1424 if (c == 'e' || c == 'E') {
1425 if (!nd && !nz && !nz0) {
1426 goto ret0;
1427 }
1428 s00 = s;
1429 esign = 0;
1430 switch(c = *++s) {
1431 case '-':
1432 esign = 1;
1433 case '+':
1434 c = *++s;
1435 }
1436 if (c >= '0' && c <= '9') {
1437 while(c == '0')
1438 c = *++s;
1439 if (c > '0' && c <= '9') {
1440 L = c - '0';
1441 s1 = s;
1442 while((c = *++s) >= '0' && c <= '9')
1443 L = 10*L + c - '0';
Mark Dickinson0ca74522010-01-11 17:15:13 +00001444 if (s - s1 > 8 || L > MAX_ABS_EXP)
Mark Dickinsonbb282852009-10-24 12:13:30 +00001445 /* Avoid confusion from exponents
1446 * so large that e might overflow.
1447 */
Mark Dickinson0ca74522010-01-11 17:15:13 +00001448 e = (int)MAX_ABS_EXP; /* safe for 16 bit ints */
Mark Dickinsonbb282852009-10-24 12:13:30 +00001449 else
1450 e = (int)L;
1451 if (esign)
1452 e = -e;
1453 }
1454 else
1455 e = 0;
1456 }
1457 else
1458 s = s00;
1459 }
1460 if (!nd) {
1461 if (!nz && !nz0) {
1462 ret0:
1463 s = s00;
1464 sign = 0;
1465 }
1466 goto ret;
1467 }
1468 bc.e0 = e1 = e -= nf;
1469
1470 /* Now we have nd0 digits, starting at s0, followed by a
1471 * decimal point, followed by nd-nd0 digits. The number we're
1472 * after is the integer represented by those digits times
1473 * 10**e */
1474
1475 if (!nd0)
1476 nd0 = nd;
Mark Dickinson476279f2010-01-16 10:44:00 +00001477
1478 /* Summary of parsing results. The parsing stage gives values
1479 * s0, nd0, nd, e, y and z such that:
1480 *
1481 * - nd >= nd0 >= 1
1482 *
1483 * - the nd significant digits are in s0[0:nd0] and s0[nd0+1:nd+1]
1484 * (using the usual Python half-open slice notation)
1485 *
1486 * - the absolute value of the number represented by the original input
1487 * string is n * 10**e, where n is the integer represented by the
1488 * concatenation of s0[0:nd0] and s0[nd0+1:nd+1]
1489 *
1490 * - the first significant digit is nonzero
1491 *
1492 * - the last significant digit may or may not be nonzero; (some code
1493 * currently assumes that it's nonzero; this is a bug)
1494 *
1495 * - y contains the value represented by the first min(9, nd)
1496 * significant digits
1497 *
1498 * - if nd > 9, z contains the value represented by significant digits
1499 * with indices in [9, min(16, nd)). So y * 10**(min(16, nd) - 9) + z
1500 * gives the value represented by the first min(16, nd) sig. digits.
1501 */
1502
Mark Dickinsonbb282852009-10-24 12:13:30 +00001503 k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1504 dval(&rv) = y;
1505 if (k > 9) {
1506 dval(&rv) = tens[k - 9] * dval(&rv) + z;
1507 }
1508 bd0 = 0;
1509 if (nd <= DBL_DIG
1510 && Flt_Rounds == 1
1511 ) {
1512 if (!e)
1513 goto ret;
1514 if (e > 0) {
1515 if (e <= Ten_pmax) {
1516 dval(&rv) *= tens[e];
1517 goto ret;
1518 }
1519 i = DBL_DIG - nd;
1520 if (e <= Ten_pmax + i) {
1521 /* A fancier test would sometimes let us do
1522 * this for larger i values.
1523 */
1524 e -= i;
1525 dval(&rv) *= tens[i];
1526 dval(&rv) *= tens[e];
1527 goto ret;
1528 }
1529 }
1530 else if (e >= -Ten_pmax) {
1531 dval(&rv) /= tens[-e];
1532 goto ret;
1533 }
1534 }
1535 e1 += nd - k;
1536
1537 bc.scale = 0;
1538
1539 /* Get starting approximation = rv * 10**e1 */
1540
1541 if (e1 > 0) {
1542 if ((i = e1 & 15))
1543 dval(&rv) *= tens[i];
1544 if (e1 &= ~15) {
1545 if (e1 > DBL_MAX_10_EXP) {
1546 ovfl:
1547 errno = ERANGE;
1548 /* Can't trust HUGE_VAL */
1549 word0(&rv) = Exp_mask;
1550 word1(&rv) = 0;
1551 goto ret;
1552 }
1553 e1 >>= 4;
1554 for(j = 0; e1 > 1; j++, e1 >>= 1)
1555 if (e1 & 1)
1556 dval(&rv) *= bigtens[j];
1557 /* The last multiplication could overflow. */
1558 word0(&rv) -= P*Exp_msk1;
1559 dval(&rv) *= bigtens[j];
1560 if ((z = word0(&rv) & Exp_mask)
1561 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1562 goto ovfl;
1563 if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1564 /* set to largest number */
1565 /* (Can't trust DBL_MAX) */
1566 word0(&rv) = Big0;
1567 word1(&rv) = Big1;
1568 }
1569 else
1570 word0(&rv) += P*Exp_msk1;
1571 }
1572 }
1573 else if (e1 < 0) {
1574 e1 = -e1;
1575 if ((i = e1 & 15))
1576 dval(&rv) /= tens[i];
1577 if (e1 >>= 4) {
1578 if (e1 >= 1 << n_bigtens)
1579 goto undfl;
1580 if (e1 & Scale_Bit)
1581 bc.scale = 2*P;
1582 for(j = 0; e1 > 0; j++, e1 >>= 1)
1583 if (e1 & 1)
1584 dval(&rv) *= tinytens[j];
1585 if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
1586 >> Exp_shift)) > 0) {
1587 /* scaled rv is denormal; clear j low bits */
1588 if (j >= 32) {
1589 word1(&rv) = 0;
1590 if (j >= 53)
1591 word0(&rv) = (P+2)*Exp_msk1;
1592 else
1593 word0(&rv) &= 0xffffffff << (j-32);
1594 }
1595 else
1596 word1(&rv) &= 0xffffffff << j;
1597 }
1598 if (!dval(&rv)) {
1599 undfl:
1600 dval(&rv) = 0.;
1601 errno = ERANGE;
1602 goto ret;
1603 }
1604 }
1605 }
1606
1607 /* Now the hard part -- adjusting rv to the correct value.*/
1608
1609 /* Put digits into bd: true value = bd * 10^e */
1610
1611 bc.nd = nd;
Mark Dickinson5a0b3992010-01-10 13:06:31 +00001612 bc.nd0 = nd0; /* Only needed if nd > STRTOD_DIGLIM, but done here */
Mark Dickinsonbb282852009-10-24 12:13:30 +00001613 /* to silence an erroneous warning about bc.nd0 */
1614 /* possibly not being initialized. */
Mark Dickinson5a0b3992010-01-10 13:06:31 +00001615 if (nd > STRTOD_DIGLIM) {
1616 /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */
Mark Dickinsonbb282852009-10-24 12:13:30 +00001617 /* minimum number of decimal digits to distinguish double values */
1618 /* in IEEE arithmetic. */
Mark Dickinson476279f2010-01-16 10:44:00 +00001619
1620 /* Truncate input to 18 significant digits, then discard any trailing
1621 zeros on the result by updating nd, nd0, e and y suitably. (There's
1622 no need to update z; it's not reused beyond this point.) */
1623 for (i = 18; i > 0; ) {
1624 /* scan back until we hit a nonzero digit. significant digit 'i'
1625 is s0[i] if i < nd0, s0[i+1] if i >= nd0. */
Mark Dickinsonbb282852009-10-24 12:13:30 +00001626 --i;
Mark Dickinson476279f2010-01-16 10:44:00 +00001627 if (s0[i < nd0 ? i : i+1] != '0') {
1628 ++i;
1629 break;
1630 }
Mark Dickinsonbb282852009-10-24 12:13:30 +00001631 }
1632 e += nd - i;
1633 nd = i;
1634 if (nd0 > nd)
1635 nd0 = nd;
1636 if (nd < 9) { /* must recompute y */
1637 y = 0;
1638 for(i = 0; i < nd0; ++i)
1639 y = 10*y + s0[i] - '0';
Mark Dickinson476279f2010-01-16 10:44:00 +00001640 for(; i < nd; ++i)
1641 y = 10*y + s0[i+1] - '0';
Mark Dickinsonbb282852009-10-24 12:13:30 +00001642 }
1643 }
Mark Dickinsond2a99402010-01-13 22:20:10 +00001644 bd0 = s2b(s0, nd0, nd, y);
Mark Dickinsonbb282852009-10-24 12:13:30 +00001645 if (bd0 == NULL)
1646 goto failed_malloc;
1647
1648 for(;;) {
1649 bd = Balloc(bd0->k);
1650 if (bd == NULL) {
1651 Bfree(bd0);
1652 goto failed_malloc;
1653 }
1654 Bcopy(bd, bd0);
1655 bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
1656 if (bb == NULL) {
1657 Bfree(bd);
1658 Bfree(bd0);
1659 goto failed_malloc;
1660 }
1661 bs = i2b(1);
1662 if (bs == NULL) {
1663 Bfree(bb);
1664 Bfree(bd);
1665 Bfree(bd0);
1666 goto failed_malloc;
1667 }
1668
1669 if (e >= 0) {
1670 bb2 = bb5 = 0;
1671 bd2 = bd5 = e;
1672 }
1673 else {
1674 bb2 = bb5 = -e;
1675 bd2 = bd5 = 0;
1676 }
1677 if (bbe >= 0)
1678 bb2 += bbe;
1679 else
1680 bd2 -= bbe;
1681 bs2 = bb2;
1682 j = bbe - bc.scale;
1683 i = j + bbbits - 1; /* logb(rv) */
1684 if (i < Emin) /* denormal */
1685 j += P - Emin;
1686 else
1687 j = P + 1 - bbbits;
1688 bb2 += j;
1689 bd2 += j;
1690 bd2 += bc.scale;
1691 i = bb2 < bd2 ? bb2 : bd2;
1692 if (i > bs2)
1693 i = bs2;
1694 if (i > 0) {
1695 bb2 -= i;
1696 bd2 -= i;
1697 bs2 -= i;
1698 }
1699 if (bb5 > 0) {
1700 bs = pow5mult(bs, bb5);
1701 if (bs == NULL) {
1702 Bfree(bb);
1703 Bfree(bd);
1704 Bfree(bd0);
1705 goto failed_malloc;
1706 }
1707 bb1 = mult(bs, bb);
1708 Bfree(bb);
1709 bb = bb1;
1710 if (bb == NULL) {
1711 Bfree(bs);
1712 Bfree(bd);
1713 Bfree(bd0);
1714 goto failed_malloc;
1715 }
1716 }
1717 if (bb2 > 0) {
1718 bb = lshift(bb, bb2);
1719 if (bb == NULL) {
1720 Bfree(bs);
1721 Bfree(bd);
1722 Bfree(bd0);
1723 goto failed_malloc;
1724 }
1725 }
1726 if (bd5 > 0) {
1727 bd = pow5mult(bd, bd5);
1728 if (bd == NULL) {
1729 Bfree(bb);
1730 Bfree(bs);
1731 Bfree(bd0);
1732 goto failed_malloc;
1733 }
1734 }
1735 if (bd2 > 0) {
1736 bd = lshift(bd, bd2);
1737 if (bd == NULL) {
1738 Bfree(bb);
1739 Bfree(bs);
1740 Bfree(bd0);
1741 goto failed_malloc;
1742 }
1743 }
1744 if (bs2 > 0) {
1745 bs = lshift(bs, bs2);
1746 if (bs == NULL) {
1747 Bfree(bb);
1748 Bfree(bd);
1749 Bfree(bd0);
1750 goto failed_malloc;
1751 }
1752 }
1753 delta = diff(bb, bd);
1754 if (delta == NULL) {
1755 Bfree(bb);
1756 Bfree(bs);
1757 Bfree(bd);
1758 Bfree(bd0);
1759 goto failed_malloc;
1760 }
1761 bc.dsign = delta->sign;
1762 delta->sign = 0;
1763 i = cmp(delta, bs);
1764 if (bc.nd > nd && i <= 0) {
1765 if (bc.dsign)
1766 break; /* Must use bigcomp(). */
Mark Dickinsonf8747c12010-01-14 14:40:20 +00001767
1768 /* Here rv overestimates the truncated decimal value by at most
1769 0.5 ulp(rv). Hence rv either overestimates the true decimal
1770 value by <= 0.5 ulp(rv), or underestimates it by some small
1771 amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of
1772 the true decimal value, so it's possible to exit.
1773
1774 Exception: if scaled rv is a normal exact power of 2, but not
1775 DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the
1776 next double, so the correctly rounded result is either rv - 0.5
1777 ulp(rv) or rv; in this case, use bigcomp to distinguish. */
1778
1779 if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) {
1780 /* rv can't be 0, since it's an overestimate for some
1781 nonzero value. So rv is a normal power of 2. */
1782 j = (int)(word0(&rv) & Exp_mask) >> Exp_shift;
1783 /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if
1784 rv / 2^bc.scale >= 2^-1021. */
1785 if (j - bc.scale >= 2) {
1786 dval(&rv) -= 0.5 * sulp(&rv, &bc);
1787 break;
1788 }
1789 }
1790
Mark Dickinsonbb282852009-10-24 12:13:30 +00001791 {
1792 bc.nd = nd;
1793 i = -1; /* Discarded digits make delta smaller. */
1794 }
1795 }
1796
1797 if (i < 0) {
1798 /* Error is less than half an ulp -- check for
1799 * special case of mantissa a power of two.
1800 */
1801 if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
1802 || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
1803 ) {
1804 break;
1805 }
1806 if (!delta->x[0] && delta->wds <= 1) {
1807 /* exact result */
1808 break;
1809 }
1810 delta = lshift(delta,Log2P);
1811 if (delta == NULL) {
1812 Bfree(bb);
1813 Bfree(bs);
1814 Bfree(bd);
1815 Bfree(bd0);
1816 goto failed_malloc;
1817 }
1818 if (cmp(delta, bs) > 0)
1819 goto drop_down;
1820 break;
1821 }
1822 if (i == 0) {
1823 /* exactly half-way between */
1824 if (bc.dsign) {
1825 if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
1826 && word1(&rv) == (
1827 (bc.scale &&
1828 (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ?
1829 (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
1830 0xffffffff)) {
1831 /*boundary case -- increment exponent*/
1832 word0(&rv) = (word0(&rv) & Exp_mask)
1833 + Exp_msk1
1834 ;
1835 word1(&rv) = 0;
1836 bc.dsign = 0;
1837 break;
1838 }
1839 }
1840 else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
1841 drop_down:
1842 /* boundary case -- decrement exponent */
1843 if (bc.scale) {
1844 L = word0(&rv) & Exp_mask;
1845 if (L <= (2*P+1)*Exp_msk1) {
1846 if (L > (P+2)*Exp_msk1)
1847 /* round even ==> */
1848 /* accept rv */
1849 break;
1850 /* rv = smallest denormal */
Mark Dickinson5a0b3992010-01-10 13:06:31 +00001851 if (bc.nd >nd)
Mark Dickinsonbb282852009-10-24 12:13:30 +00001852 break;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001853 goto undfl;
1854 }
1855 }
1856 L = (word0(&rv) & Exp_mask) - Exp_msk1;
1857 word0(&rv) = L | Bndry_mask1;
1858 word1(&rv) = 0xffffffff;
1859 break;
1860 }
1861 if (!(word1(&rv) & LSB))
1862 break;
1863 if (bc.dsign)
1864 dval(&rv) += ulp(&rv);
1865 else {
1866 dval(&rv) -= ulp(&rv);
1867 if (!dval(&rv)) {
Mark Dickinson5a0b3992010-01-10 13:06:31 +00001868 if (bc.nd >nd)
Mark Dickinsonbb282852009-10-24 12:13:30 +00001869 break;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001870 goto undfl;
1871 }
1872 }
1873 bc.dsign = 1 - bc.dsign;
1874 break;
1875 }
1876 if ((aadj = ratio(delta, bs)) <= 2.) {
1877 if (bc.dsign)
1878 aadj = aadj1 = 1.;
1879 else if (word1(&rv) || word0(&rv) & Bndry_mask) {
1880 if (word1(&rv) == Tiny1 && !word0(&rv)) {
Mark Dickinson5a0b3992010-01-10 13:06:31 +00001881 if (bc.nd >nd)
Mark Dickinsonbb282852009-10-24 12:13:30 +00001882 break;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001883 goto undfl;
1884 }
1885 aadj = 1.;
1886 aadj1 = -1.;
1887 }
1888 else {
1889 /* special case -- power of FLT_RADIX to be */
1890 /* rounded down... */
1891
1892 if (aadj < 2./FLT_RADIX)
1893 aadj = 1./FLT_RADIX;
1894 else
1895 aadj *= 0.5;
1896 aadj1 = -aadj;
1897 }
1898 }
1899 else {
1900 aadj *= 0.5;
1901 aadj1 = bc.dsign ? aadj : -aadj;
1902 if (Flt_Rounds == 0)
1903 aadj1 += 0.5;
1904 }
1905 y = word0(&rv) & Exp_mask;
1906
1907 /* Check for overflow */
1908
1909 if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
1910 dval(&rv0) = dval(&rv);
1911 word0(&rv) -= P*Exp_msk1;
1912 adj.d = aadj1 * ulp(&rv);
1913 dval(&rv) += adj.d;
1914 if ((word0(&rv) & Exp_mask) >=
1915 Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
1916 if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
1917 goto ovfl;
1918 word0(&rv) = Big0;
1919 word1(&rv) = Big1;
1920 goto cont;
1921 }
1922 else
1923 word0(&rv) += P*Exp_msk1;
1924 }
1925 else {
1926 if (bc.scale && y <= 2*P*Exp_msk1) {
1927 if (aadj <= 0x7fffffff) {
1928 if ((z = (ULong)aadj) <= 0)
1929 z = 1;
1930 aadj = z;
1931 aadj1 = bc.dsign ? aadj : -aadj;
1932 }
1933 dval(&aadj2) = aadj1;
1934 word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
1935 aadj1 = dval(&aadj2);
1936 }
1937 adj.d = aadj1 * ulp(&rv);
1938 dval(&rv) += adj.d;
1939 }
1940 z = word0(&rv) & Exp_mask;
1941 if (bc.nd == nd) {
1942 if (!bc.scale)
1943 if (y == z) {
1944 /* Can we stop now? */
1945 L = (Long)aadj;
1946 aadj -= L;
1947 /* The tolerances below are conservative. */
1948 if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
1949 if (aadj < .4999999 || aadj > .5000001)
1950 break;
1951 }
1952 else if (aadj < .4999999/FLT_RADIX)
1953 break;
1954 }
1955 }
1956 cont:
1957 Bfree(bb);
1958 Bfree(bd);
1959 Bfree(bs);
1960 Bfree(delta);
1961 }
1962 Bfree(bb);
1963 Bfree(bd);
1964 Bfree(bs);
1965 Bfree(bd0);
1966 Bfree(delta);
1967 if (bc.nd > nd) {
1968 error = bigcomp(&rv, s0, &bc);
1969 if (error)
1970 goto failed_malloc;
1971 }
1972
1973 if (bc.scale) {
1974 word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
1975 word1(&rv0) = 0;
1976 dval(&rv) *= dval(&rv0);
1977 /* try to avoid the bug of testing an 8087 register value */
1978 if (!(word0(&rv) & Exp_mask))
1979 errno = ERANGE;
1980 }
1981 ret:
1982 if (se)
1983 *se = (char *)s;
1984 return sign ? -dval(&rv) : dval(&rv);
1985
1986 failed_malloc:
1987 if (se)
1988 *se = (char *)s00;
1989 errno = ENOMEM;
1990 return -1.0;
1991}
1992
1993static char *
1994rv_alloc(int i)
1995{
1996 int j, k, *r;
1997
1998 j = sizeof(ULong);
1999 for(k = 0;
2000 sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;
2001 j <<= 1)
2002 k++;
2003 r = (int*)Balloc(k);
2004 if (r == NULL)
2005 return NULL;
2006 *r = k;
2007 return (char *)(r+1);
2008}
2009
2010static char *
2011nrv_alloc(char *s, char **rve, int n)
2012{
2013 char *rv, *t;
2014
2015 rv = rv_alloc(n);
2016 if (rv == NULL)
2017 return NULL;
2018 t = rv;
2019 while((*t = *s++)) t++;
2020 if (rve)
2021 *rve = t;
2022 return rv;
2023}
2024
2025/* freedtoa(s) must be used to free values s returned by dtoa
2026 * when MULTIPLE_THREADS is #defined. It should be used in all cases,
2027 * but for consistency with earlier versions of dtoa, it is optional
2028 * when MULTIPLE_THREADS is not defined.
2029 */
2030
2031void
2032_Py_dg_freedtoa(char *s)
2033{
2034 Bigint *b = (Bigint *)((int *)s - 1);
2035 b->maxwds = 1 << (b->k = *(int*)b);
2036 Bfree(b);
2037}
2038
2039/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
2040 *
2041 * Inspired by "How to Print Floating-Point Numbers Accurately" by
2042 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
2043 *
2044 * Modifications:
2045 * 1. Rather than iterating, we use a simple numeric overestimate
2046 * to determine k = floor(log10(d)). We scale relevant
2047 * quantities using O(log2(k)) rather than O(k) multiplications.
2048 * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
2049 * try to generate digits strictly left to right. Instead, we
2050 * compute with fewer bits and propagate the carry if necessary
2051 * when rounding the final digit up. This is often faster.
2052 * 3. Under the assumption that input will be rounded nearest,
2053 * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
2054 * That is, we allow equality in stopping tests when the
2055 * round-nearest rule will give the same floating-point value
2056 * as would satisfaction of the stopping test with strict
2057 * inequality.
2058 * 4. We remove common factors of powers of 2 from relevant
2059 * quantities.
2060 * 5. When converting floating-point integers less than 1e16,
2061 * we use floating-point arithmetic rather than resorting
2062 * to multiple-precision integers.
2063 * 6. When asked to produce fewer than 15 digits, we first try
2064 * to get by with floating-point arithmetic; we resort to
2065 * multiple-precision integer arithmetic only if we cannot
2066 * guarantee that the floating-point calculation has given
2067 * the correctly rounded result. For k requested digits and
2068 * "uniformly" distributed input, the probability is
2069 * something like 10^(k-15) that we must resort to the Long
2070 * calculation.
2071 */
2072
2073/* Additional notes (METD): (1) returns NULL on failure. (2) to avoid memory
2074 leakage, a successful call to _Py_dg_dtoa should always be matched by a
2075 call to _Py_dg_freedtoa. */
2076
2077char *
2078_Py_dg_dtoa(double dd, int mode, int ndigits,
2079 int *decpt, int *sign, char **rve)
2080{
2081 /* Arguments ndigits, decpt, sign are similar to those
2082 of ecvt and fcvt; trailing zeros are suppressed from
2083 the returned string. If not null, *rve is set to point
2084 to the end of the return value. If d is +-Infinity or NaN,
2085 then *decpt is set to 9999.
2086
2087 mode:
2088 0 ==> shortest string that yields d when read in
2089 and rounded to nearest.
2090 1 ==> like 0, but with Steele & White stopping rule;
2091 e.g. with IEEE P754 arithmetic , mode 0 gives
2092 1e23 whereas mode 1 gives 9.999999999999999e22.
2093 2 ==> max(1,ndigits) significant digits. This gives a
2094 return value similar to that of ecvt, except
2095 that trailing zeros are suppressed.
2096 3 ==> through ndigits past the decimal point. This
2097 gives a return value similar to that from fcvt,
2098 except that trailing zeros are suppressed, and
2099 ndigits can be negative.
2100 4,5 ==> similar to 2 and 3, respectively, but (in
2101 round-nearest mode) with the tests of mode 0 to
2102 possibly return a shorter string that rounds to d.
2103 With IEEE arithmetic and compilation with
2104 -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
2105 as modes 2 and 3 when FLT_ROUNDS != 1.
2106 6-9 ==> Debugging modes similar to mode - 4: don't try
2107 fast floating-point estimate (if applicable).
2108
2109 Values of mode other than 0-9 are treated as mode 0.
2110
2111 Sufficient space is allocated to the return value
2112 to hold the suppressed trailing zeros.
2113 */
2114
2115 int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
2116 j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
2117 spec_case, try_quick;
2118 Long L;
2119 int denorm;
2120 ULong x;
2121 Bigint *b, *b1, *delta, *mlo, *mhi, *S;
2122 U d2, eps, u;
2123 double ds;
2124 char *s, *s0;
2125
2126 /* set pointers to NULL, to silence gcc compiler warnings and make
2127 cleanup easier on error */
2128 mlo = mhi = b = S = 0;
2129 s0 = 0;
2130
2131 u.d = dd;
2132 if (word0(&u) & Sign_bit) {
2133 /* set sign for everything, including 0's and NaNs */
2134 *sign = 1;
2135 word0(&u) &= ~Sign_bit; /* clear sign bit */
2136 }
2137 else
2138 *sign = 0;
2139
2140 /* quick return for Infinities, NaNs and zeros */
2141 if ((word0(&u) & Exp_mask) == Exp_mask)
2142 {
2143 /* Infinity or NaN */
2144 *decpt = 9999;
2145 if (!word1(&u) && !(word0(&u) & 0xfffff))
2146 return nrv_alloc("Infinity", rve, 8);
2147 return nrv_alloc("NaN", rve, 3);
2148 }
2149 if (!dval(&u)) {
2150 *decpt = 1;
2151 return nrv_alloc("0", rve, 1);
2152 }
2153
2154 /* compute k = floor(log10(d)). The computation may leave k
2155 one too large, but should never leave k too small. */
2156 b = d2b(&u, &be, &bbits);
2157 if (b == NULL)
2158 goto failed_malloc;
2159 if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
2160 dval(&d2) = dval(&u);
2161 word0(&d2) &= Frac_mask1;
2162 word0(&d2) |= Exp_11;
2163
2164 /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
2165 * log10(x) = log(x) / log(10)
2166 * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
2167 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
2168 *
2169 * This suggests computing an approximation k to log10(d) by
2170 *
2171 * k = (i - Bias)*0.301029995663981
2172 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
2173 *
2174 * We want k to be too large rather than too small.
2175 * The error in the first-order Taylor series approximation
2176 * is in our favor, so we just round up the constant enough
2177 * to compensate for any error in the multiplication of
2178 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
2179 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
2180 * adding 1e-13 to the constant term more than suffices.
2181 * Hence we adjust the constant term to 0.1760912590558.
2182 * (We could get a more accurate k by invoking log10,
2183 * but this is probably not worthwhile.)
2184 */
2185
2186 i -= Bias;
2187 denorm = 0;
2188 }
2189 else {
2190 /* d is denormalized */
2191
2192 i = bbits + be + (Bias + (P-1) - 1);
2193 x = i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
2194 : word1(&u) << (32 - i);
2195 dval(&d2) = x;
2196 word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
2197 i -= (Bias + (P-1) - 1) + 1;
2198 denorm = 1;
2199 }
2200 ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 +
2201 i*0.301029995663981;
2202 k = (int)ds;
2203 if (ds < 0. && ds != k)
2204 k--; /* want k = floor(ds) */
2205 k_check = 1;
2206 if (k >= 0 && k <= Ten_pmax) {
2207 if (dval(&u) < tens[k])
2208 k--;
2209 k_check = 0;
2210 }
2211 j = bbits - i - 1;
2212 if (j >= 0) {
2213 b2 = 0;
2214 s2 = j;
2215 }
2216 else {
2217 b2 = -j;
2218 s2 = 0;
2219 }
2220 if (k >= 0) {
2221 b5 = 0;
2222 s5 = k;
2223 s2 += k;
2224 }
2225 else {
2226 b2 -= k;
2227 b5 = -k;
2228 s5 = 0;
2229 }
2230 if (mode < 0 || mode > 9)
2231 mode = 0;
2232
2233 try_quick = 1;
2234
2235 if (mode > 5) {
2236 mode -= 4;
2237 try_quick = 0;
2238 }
2239 leftright = 1;
2240 ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */
2241 /* silence erroneous "gcc -Wall" warning. */
2242 switch(mode) {
2243 case 0:
2244 case 1:
2245 i = 18;
2246 ndigits = 0;
2247 break;
2248 case 2:
2249 leftright = 0;
2250 /* no break */
2251 case 4:
2252 if (ndigits <= 0)
2253 ndigits = 1;
2254 ilim = ilim1 = i = ndigits;
2255 break;
2256 case 3:
2257 leftright = 0;
2258 /* no break */
2259 case 5:
2260 i = ndigits + k + 1;
2261 ilim = i;
2262 ilim1 = i - 1;
2263 if (i <= 0)
2264 i = 1;
2265 }
2266 s0 = rv_alloc(i);
2267 if (s0 == NULL)
2268 goto failed_malloc;
2269 s = s0;
2270
2271
2272 if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2273
2274 /* Try to get by with floating-point arithmetic. */
2275
2276 i = 0;
2277 dval(&d2) = dval(&u);
2278 k0 = k;
2279 ilim0 = ilim;
2280 ieps = 2; /* conservative */
2281 if (k > 0) {
2282 ds = tens[k&0xf];
2283 j = k >> 4;
2284 if (j & Bletch) {
2285 /* prevent overflows */
2286 j &= Bletch - 1;
2287 dval(&u) /= bigtens[n_bigtens-1];
2288 ieps++;
2289 }
2290 for(; j; j >>= 1, i++)
2291 if (j & 1) {
2292 ieps++;
2293 ds *= bigtens[i];
2294 }
2295 dval(&u) /= ds;
2296 }
2297 else if ((j1 = -k)) {
2298 dval(&u) *= tens[j1 & 0xf];
2299 for(j = j1 >> 4; j; j >>= 1, i++)
2300 if (j & 1) {
2301 ieps++;
2302 dval(&u) *= bigtens[i];
2303 }
2304 }
2305 if (k_check && dval(&u) < 1. && ilim > 0) {
2306 if (ilim1 <= 0)
2307 goto fast_failed;
2308 ilim = ilim1;
2309 k--;
2310 dval(&u) *= 10.;
2311 ieps++;
2312 }
2313 dval(&eps) = ieps*dval(&u) + 7.;
2314 word0(&eps) -= (P-1)*Exp_msk1;
2315 if (ilim == 0) {
2316 S = mhi = 0;
2317 dval(&u) -= 5.;
2318 if (dval(&u) > dval(&eps))
2319 goto one_digit;
2320 if (dval(&u) < -dval(&eps))
2321 goto no_digits;
2322 goto fast_failed;
2323 }
2324 if (leftright) {
2325 /* Use Steele & White method of only
2326 * generating digits needed.
2327 */
2328 dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
2329 for(i = 0;;) {
2330 L = (Long)dval(&u);
2331 dval(&u) -= L;
2332 *s++ = '0' + (int)L;
2333 if (dval(&u) < dval(&eps))
2334 goto ret1;
2335 if (1. - dval(&u) < dval(&eps))
2336 goto bump_up;
2337 if (++i >= ilim)
2338 break;
2339 dval(&eps) *= 10.;
2340 dval(&u) *= 10.;
2341 }
2342 }
2343 else {
2344 /* Generate ilim digits, then fix them up. */
2345 dval(&eps) *= tens[ilim-1];
2346 for(i = 1;; i++, dval(&u) *= 10.) {
2347 L = (Long)(dval(&u));
2348 if (!(dval(&u) -= L))
2349 ilim = i;
2350 *s++ = '0' + (int)L;
2351 if (i == ilim) {
2352 if (dval(&u) > 0.5 + dval(&eps))
2353 goto bump_up;
2354 else if (dval(&u) < 0.5 - dval(&eps)) {
2355 while(*--s == '0');
2356 s++;
2357 goto ret1;
2358 }
2359 break;
2360 }
2361 }
2362 }
2363 fast_failed:
2364 s = s0;
2365 dval(&u) = dval(&d2);
2366 k = k0;
2367 ilim = ilim0;
2368 }
2369
2370 /* Do we have a "small" integer? */
2371
2372 if (be >= 0 && k <= Int_max) {
2373 /* Yes. */
2374 ds = tens[k];
2375 if (ndigits < 0 && ilim <= 0) {
2376 S = mhi = 0;
2377 if (ilim < 0 || dval(&u) <= 5*ds)
2378 goto no_digits;
2379 goto one_digit;
2380 }
2381 for(i = 1;; i++, dval(&u) *= 10.) {
2382 L = (Long)(dval(&u) / ds);
2383 dval(&u) -= L*ds;
2384 *s++ = '0' + (int)L;
2385 if (!dval(&u)) {
2386 break;
2387 }
2388 if (i == ilim) {
2389 dval(&u) += dval(&u);
2390 if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
2391 bump_up:
2392 while(*--s == '9')
2393 if (s == s0) {
2394 k++;
2395 *s = '0';
2396 break;
2397 }
2398 ++*s++;
2399 }
2400 break;
2401 }
2402 }
2403 goto ret1;
2404 }
2405
2406 m2 = b2;
2407 m5 = b5;
2408 if (leftright) {
2409 i =
2410 denorm ? be + (Bias + (P-1) - 1 + 1) :
2411 1 + P - bbits;
2412 b2 += i;
2413 s2 += i;
2414 mhi = i2b(1);
2415 if (mhi == NULL)
2416 goto failed_malloc;
2417 }
2418 if (m2 > 0 && s2 > 0) {
2419 i = m2 < s2 ? m2 : s2;
2420 b2 -= i;
2421 m2 -= i;
2422 s2 -= i;
2423 }
2424 if (b5 > 0) {
2425 if (leftright) {
2426 if (m5 > 0) {
2427 mhi = pow5mult(mhi, m5);
2428 if (mhi == NULL)
2429 goto failed_malloc;
2430 b1 = mult(mhi, b);
2431 Bfree(b);
2432 b = b1;
2433 if (b == NULL)
2434 goto failed_malloc;
2435 }
2436 if ((j = b5 - m5)) {
2437 b = pow5mult(b, j);
2438 if (b == NULL)
2439 goto failed_malloc;
2440 }
2441 }
2442 else {
2443 b = pow5mult(b, b5);
2444 if (b == NULL)
2445 goto failed_malloc;
2446 }
2447 }
2448 S = i2b(1);
2449 if (S == NULL)
2450 goto failed_malloc;
2451 if (s5 > 0) {
2452 S = pow5mult(S, s5);
2453 if (S == NULL)
2454 goto failed_malloc;
2455 }
2456
2457 /* Check for special case that d is a normalized power of 2. */
2458
2459 spec_case = 0;
2460 if ((mode < 2 || leftright)
2461 ) {
2462 if (!word1(&u) && !(word0(&u) & Bndry_mask)
2463 && word0(&u) & (Exp_mask & ~Exp_msk1)
2464 ) {
2465 /* The special case */
2466 b2 += Log2P;
2467 s2 += Log2P;
2468 spec_case = 1;
2469 }
2470 }
2471
2472 /* Arrange for convenient computation of quotients:
2473 * shift left if necessary so divisor has 4 leading 0 bits.
2474 *
2475 * Perhaps we should just compute leading 28 bits of S once
2476 * and for all and pass them and a shift to quorem, so it
2477 * can do shifts and ors to compute the numerator for q.
2478 */
2479 if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f))
2480 i = 32 - i;
2481#define iInc 28
2482 i = dshift(S, s2);
2483 b2 += i;
2484 m2 += i;
2485 s2 += i;
2486 if (b2 > 0) {
2487 b = lshift(b, b2);
2488 if (b == NULL)
2489 goto failed_malloc;
2490 }
2491 if (s2 > 0) {
2492 S = lshift(S, s2);
2493 if (S == NULL)
2494 goto failed_malloc;
2495 }
2496 if (k_check) {
2497 if (cmp(b,S) < 0) {
2498 k--;
2499 b = multadd(b, 10, 0); /* we botched the k estimate */
2500 if (b == NULL)
2501 goto failed_malloc;
2502 if (leftright) {
2503 mhi = multadd(mhi, 10, 0);
2504 if (mhi == NULL)
2505 goto failed_malloc;
2506 }
2507 ilim = ilim1;
2508 }
2509 }
2510 if (ilim <= 0 && (mode == 3 || mode == 5)) {
2511 if (ilim < 0) {
2512 /* no digits, fcvt style */
2513 no_digits:
2514 k = -1 - ndigits;
2515 goto ret;
2516 }
2517 else {
2518 S = multadd(S, 5, 0);
2519 if (S == NULL)
2520 goto failed_malloc;
2521 if (cmp(b, S) <= 0)
2522 goto no_digits;
2523 }
2524 one_digit:
2525 *s++ = '1';
2526 k++;
2527 goto ret;
2528 }
2529 if (leftright) {
2530 if (m2 > 0) {
2531 mhi = lshift(mhi, m2);
2532 if (mhi == NULL)
2533 goto failed_malloc;
2534 }
2535
2536 /* Compute mlo -- check for special case
2537 * that d is a normalized power of 2.
2538 */
2539
2540 mlo = mhi;
2541 if (spec_case) {
2542 mhi = Balloc(mhi->k);
2543 if (mhi == NULL)
2544 goto failed_malloc;
2545 Bcopy(mhi, mlo);
2546 mhi = lshift(mhi, Log2P);
2547 if (mhi == NULL)
2548 goto failed_malloc;
2549 }
2550
2551 for(i = 1;;i++) {
2552 dig = quorem(b,S) + '0';
2553 /* Do we yet have the shortest decimal string
2554 * that will round to d?
2555 */
2556 j = cmp(b, mlo);
2557 delta = diff(S, mhi);
2558 if (delta == NULL)
2559 goto failed_malloc;
2560 j1 = delta->sign ? 1 : cmp(b, delta);
2561 Bfree(delta);
2562 if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
2563 ) {
2564 if (dig == '9')
2565 goto round_9_up;
2566 if (j > 0)
2567 dig++;
2568 *s++ = dig;
2569 goto ret;
2570 }
2571 if (j < 0 || (j == 0 && mode != 1
2572 && !(word1(&u) & 1)
2573 )) {
2574 if (!b->x[0] && b->wds <= 1) {
2575 goto accept_dig;
2576 }
2577 if (j1 > 0) {
2578 b = lshift(b, 1);
2579 if (b == NULL)
2580 goto failed_malloc;
2581 j1 = cmp(b, S);
2582 if ((j1 > 0 || (j1 == 0 && dig & 1))
2583 && dig++ == '9')
2584 goto round_9_up;
2585 }
2586 accept_dig:
2587 *s++ = dig;
2588 goto ret;
2589 }
2590 if (j1 > 0) {
2591 if (dig == '9') { /* possible if i == 1 */
2592 round_9_up:
2593 *s++ = '9';
2594 goto roundoff;
2595 }
2596 *s++ = dig + 1;
2597 goto ret;
2598 }
2599 *s++ = dig;
2600 if (i == ilim)
2601 break;
2602 b = multadd(b, 10, 0);
2603 if (b == NULL)
2604 goto failed_malloc;
2605 if (mlo == mhi) {
2606 mlo = mhi = multadd(mhi, 10, 0);
2607 if (mlo == NULL)
2608 goto failed_malloc;
2609 }
2610 else {
2611 mlo = multadd(mlo, 10, 0);
2612 if (mlo == NULL)
2613 goto failed_malloc;
2614 mhi = multadd(mhi, 10, 0);
2615 if (mhi == NULL)
2616 goto failed_malloc;
2617 }
2618 }
2619 }
2620 else
2621 for(i = 1;; i++) {
2622 *s++ = dig = quorem(b,S) + '0';
2623 if (!b->x[0] && b->wds <= 1) {
2624 goto ret;
2625 }
2626 if (i >= ilim)
2627 break;
2628 b = multadd(b, 10, 0);
2629 if (b == NULL)
2630 goto failed_malloc;
2631 }
2632
2633 /* Round off last digit */
2634
2635 b = lshift(b, 1);
2636 if (b == NULL)
2637 goto failed_malloc;
2638 j = cmp(b, S);
2639 if (j > 0 || (j == 0 && dig & 1)) {
2640 roundoff:
2641 while(*--s == '9')
2642 if (s == s0) {
2643 k++;
2644 *s++ = '1';
2645 goto ret;
2646 }
2647 ++*s++;
2648 }
2649 else {
2650 while(*--s == '0');
2651 s++;
2652 }
2653 ret:
2654 Bfree(S);
2655 if (mhi) {
2656 if (mlo && mlo != mhi)
2657 Bfree(mlo);
2658 Bfree(mhi);
2659 }
2660 ret1:
2661 Bfree(b);
2662 *s = 0;
2663 *decpt = k + 1;
2664 if (rve)
2665 *rve = s;
2666 return s0;
2667 failed_malloc:
2668 if (S)
2669 Bfree(S);
2670 if (mlo && mlo != mhi)
2671 Bfree(mlo);
2672 if (mhi)
2673 Bfree(mhi);
2674 if (b)
2675 Bfree(b);
2676 if (s0)
2677 _Py_dg_freedtoa(s0);
2678 return NULL;
2679}
2680#ifdef __cplusplus
2681}
2682#endif
2683
2684#endif /* PY_NO_SHORT_FLOAT_REPR */