blob: 14ac5e5b093b371610dafb3a2c0140b8dae39f1d [file] [log] [blame]
Guido van Rossume7b146f2000-02-04 15:28:42 +00001"""Random variable generators.
Guido van Rossumff03b1a1994-03-09 12:55:02 +00002
Tim Petersd7b5e882001-01-25 03:36:26 +00003 integers
4 --------
5 uniform within range
6
7 sequences
8 ---------
9 pick random element
Raymond Hettingerf24eb352002-11-12 17:41:57 +000010 pick random sample
Tim Petersd7b5e882001-01-25 03:36:26 +000011 generate random permutation
12
Guido van Rossume7b146f2000-02-04 15:28:42 +000013 distributions on the real line:
14 ------------------------------
Tim Petersd7b5e882001-01-25 03:36:26 +000015 uniform
Christian Heimesfe337bf2008-03-23 21:54:12 +000016 triangular
Guido van Rossume7b146f2000-02-04 15:28:42 +000017 normal (Gaussian)
18 lognormal
19 negative exponential
20 gamma
21 beta
Raymond Hettinger40f62172002-12-29 23:03:38 +000022 pareto
23 Weibull
Guido van Rossumff03b1a1994-03-09 12:55:02 +000024
Guido van Rossume7b146f2000-02-04 15:28:42 +000025 distributions on the circle (angles 0 to 2pi)
26 ---------------------------------------------
27 circular uniform
28 von Mises
29
Raymond Hettinger40f62172002-12-29 23:03:38 +000030General notes on the underlying Mersenne Twister core generator:
Guido van Rossume7b146f2000-02-04 15:28:42 +000031
Raymond Hettinger40f62172002-12-29 23:03:38 +000032* The period is 2**19937-1.
Thomas Wouters0e3f5912006-08-11 14:57:12 +000033* It is one of the most extensively tested generators in existence.
Thomas Wouters0e3f5912006-08-11 14:57:12 +000034* The random() method is implemented in C, executes in a single Python step,
35 and is, therefore, threadsafe.
Tim Peterse360d952001-01-26 10:00:39 +000036
Guido van Rossume7b146f2000-02-04 15:28:42 +000037"""
Guido van Rossumd03e1191998-05-29 17:51:31 +000038
Raymond Hettinger2f726e92003-10-05 09:09:15 +000039from warnings import warn as _warn
40from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
Raymond Hettinger91e27c22005-08-19 01:36:35 +000041from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
Tim Petersd7b5e882001-01-25 03:36:26 +000042from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
Raymond Hettingerc1c43ca2004-09-05 00:00:42 +000043from os import urandom as _urandom
Raymond Hettinger57d1a882011-02-23 00:46:28 +000044from collections.abc import Set as _Set, Sequence as _Sequence
Raymond Hettinger3fcf0022010-12-08 01:13:53 +000045from hashlib import sha512 as _sha512
Guido van Rossumff03b1a1994-03-09 12:55:02 +000046
Raymond Hettingerf24eb352002-11-12 17:41:57 +000047__all__ = ["Random","seed","random","uniform","randint","choice","sample",
Skip Montanaro0de65802001-02-15 22:15:14 +000048 "randrange","shuffle","normalvariate","lognormvariate",
Christian Heimesfe337bf2008-03-23 21:54:12 +000049 "expovariate","vonmisesvariate","gammavariate","triangular",
Raymond Hettingerf8a52d32003-08-05 12:23:19 +000050 "gauss","betavariate","paretovariate","weibullvariate",
Raymond Hettinger28de64f2008-01-13 23:40:30 +000051 "getstate","setstate", "getrandbits",
Raymond Hettinger23f12412004-09-13 22:23:21 +000052 "SystemRandom"]
Tim Petersd7b5e882001-01-25 03:36:26 +000053
54NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
Tim Petersd7b5e882001-01-25 03:36:26 +000055TWOPI = 2.0*_pi
Tim Petersd7b5e882001-01-25 03:36:26 +000056LOG4 = _log(4.0)
Tim Petersd7b5e882001-01-25 03:36:26 +000057SG_MAGICCONST = 1.0 + _log(4.5)
Raymond Hettinger2f726e92003-10-05 09:09:15 +000058BPF = 53 # Number of bits in a float
Tim Peters7c2a85b2004-08-31 02:19:55 +000059RECIP_BPF = 2**-BPF
Tim Petersd7b5e882001-01-25 03:36:26 +000060
Raymond Hettinger356a4592004-08-30 06:14:31 +000061
Tim Petersd7b5e882001-01-25 03:36:26 +000062# Translated by Guido van Rossum from C source provided by
Raymond Hettinger40f62172002-12-29 23:03:38 +000063# Adrian Baddeley. Adapted by Raymond Hettinger for use with
Raymond Hettinger3fa19d72004-08-31 01:05:15 +000064# the Mersenne Twister and os.urandom() core generators.
Tim Petersd7b5e882001-01-25 03:36:26 +000065
Raymond Hettinger145a4a02003-01-07 10:25:55 +000066import _random
Raymond Hettinger40f62172002-12-29 23:03:38 +000067
Raymond Hettinger145a4a02003-01-07 10:25:55 +000068class Random(_random.Random):
Raymond Hettingerc32f0332002-05-23 19:44:49 +000069 """Random number generator base class used by bound module functions.
70
71 Used to instantiate instances of Random to get generators that don't
Raymond Hettinger28de64f2008-01-13 23:40:30 +000072 share state.
Raymond Hettingerc32f0332002-05-23 19:44:49 +000073
74 Class Random can also be subclassed if you want to use a different basic
75 generator of your own devising: in that case, override the following
Raymond Hettinger28de64f2008-01-13 23:40:30 +000076 methods: random(), seed(), getstate(), and setstate().
Benjamin Petersond18de0e2008-07-31 20:21:46 +000077 Optionally, implement a getrandbits() method so that randrange()
Raymond Hettinger2f726e92003-10-05 09:09:15 +000078 can cover arbitrarily large ranges.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +000079
Raymond Hettingerc32f0332002-05-23 19:44:49 +000080 """
Tim Petersd7b5e882001-01-25 03:36:26 +000081
Christian Heimescbf3b5c2007-12-03 21:02:03 +000082 VERSION = 3 # used by getstate/setstate
Tim Petersd7b5e882001-01-25 03:36:26 +000083
84 def __init__(self, x=None):
85 """Initialize an instance.
86
87 Optional argument x controls seeding, as for Random.seed().
88 """
89
90 self.seed(x)
Raymond Hettinger40f62172002-12-29 23:03:38 +000091 self.gauss_next = None
Tim Petersd7b5e882001-01-25 03:36:26 +000092
Raymond Hettingerf763a722010-09-07 00:38:15 +000093 def seed(self, a=None, version=2):
Tim Peters0de88fc2001-02-01 04:59:18 +000094 """Initialize internal state from hashable object.
Tim Petersd7b5e882001-01-25 03:36:26 +000095
Raymond Hettinger23f12412004-09-13 22:23:21 +000096 None or no argument seeds from current time or from an operating
97 system specific randomness source if available.
Tim Peters0de88fc2001-02-01 04:59:18 +000098
Sandro Tosi29d09aa2012-06-02 19:40:02 +020099 For version 2 (the default), all of the bits are used if *a* is a str,
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000100 bytes, or bytearray. For version 1, the hash() of *a* is used instead.
Raymond Hettingerf763a722010-09-07 00:38:15 +0000101
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000102 If *a* is an int, all bits are used.
Raymond Hettingerf763a722010-09-07 00:38:15 +0000103
Tim Petersd7b5e882001-01-25 03:36:26 +0000104 """
105
Raymond Hettinger3081d592003-08-09 18:30:57 +0000106 if a is None:
Raymond Hettingerc1c43ca2004-09-05 00:00:42 +0000107 try:
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000108 a = int.from_bytes(_urandom(32), 'big')
Raymond Hettingerc1c43ca2004-09-05 00:00:42 +0000109 except NotImplementedError:
Raymond Hettinger356a4592004-08-30 06:14:31 +0000110 import time
Guido van Rossume2a383d2007-01-15 16:59:06 +0000111 a = int(time.time() * 256) # use fractional seconds
Raymond Hettinger356a4592004-08-30 06:14:31 +0000112
Raymond Hettinger3fcf0022010-12-08 01:13:53 +0000113 if version == 2:
114 if isinstance(a, (str, bytes, bytearray)):
115 if isinstance(a, str):
Raymond Hettingerf90ba8a2011-05-05 11:35:50 -0700116 a = a.encode()
Raymond Hettinger3fcf0022010-12-08 01:13:53 +0000117 a += _sha512(a).digest()
118 a = int.from_bytes(a, 'big')
Raymond Hettingerf763a722010-09-07 00:38:15 +0000119
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000120 super().seed(a)
Tim Peters46c04e12002-05-05 20:40:00 +0000121 self.gauss_next = None
122
Tim Peterscd804102001-01-25 20:25:57 +0000123 def getstate(self):
124 """Return internal state; can be passed to setstate() later."""
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000125 return self.VERSION, super().getstate(), self.gauss_next
Tim Peterscd804102001-01-25 20:25:57 +0000126
127 def setstate(self, state):
128 """Restore internal state from object returned by getstate()."""
129 version = state[0]
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000130 if version == 3:
Raymond Hettinger40f62172002-12-29 23:03:38 +0000131 version, internalstate, self.gauss_next = state
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000132 super().setstate(internalstate)
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000133 elif version == 2:
134 version, internalstate, self.gauss_next = state
135 # In version 2, the state was saved as signed ints, which causes
136 # inconsistencies between 32/64-bit systems. The state is
137 # really unsigned 32-bit ints, so we convert negative ints from
138 # version 2 to positive longs for version 3.
139 try:
Raymond Hettingerc585eec2010-09-07 15:00:15 +0000140 internalstate = tuple(x % (2**32) for x in internalstate)
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000141 except ValueError as e:
142 raise TypeError from e
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000143 super().setstate(internalstate)
Tim Peterscd804102001-01-25 20:25:57 +0000144 else:
145 raise ValueError("state with version %s passed to "
146 "Random.setstate() of version %s" %
147 (version, self.VERSION))
148
Tim Peterscd804102001-01-25 20:25:57 +0000149## ---- Methods below this point do not need to be overridden when
150## ---- subclassing for the purpose of using a different core generator.
151
152## -------------------- pickle support -------------------
153
154 def __getstate__(self): # for pickle
155 return self.getstate()
156
157 def __setstate__(self, state): # for pickle
158 self.setstate(state)
159
Raymond Hettinger5f078ff2003-06-24 20:29:04 +0000160 def __reduce__(self):
161 return self.__class__, (), self.getstate()
162
Tim Peterscd804102001-01-25 20:25:57 +0000163## -------------------- integer methods -------------------
164
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700165 def randrange(self, start, stop=None, step=1, _int=int):
Tim Petersd7b5e882001-01-25 03:36:26 +0000166 """Choose a random item from range(start, stop[, step]).
167
168 This fixes the problem with randint() which includes the
169 endpoint; in Python this is usually not what you want.
Raymond Hettinger3051cc32010-09-07 00:48:40 +0000170
Tim Petersd7b5e882001-01-25 03:36:26 +0000171 """
172
173 # This code is a bit messy to make it fast for the
Tim Peters9146f272002-08-16 03:41:39 +0000174 # common case while still doing adequate error checking.
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700175 istart = _int(start)
Tim Petersd7b5e882001-01-25 03:36:26 +0000176 if istart != start:
Collin Winterce36ad82007-08-30 01:19:48 +0000177 raise ValueError("non-integer arg 1 for randrange()")
Raymond Hettinger3051cc32010-09-07 00:48:40 +0000178 if stop is None:
Tim Petersd7b5e882001-01-25 03:36:26 +0000179 if istart > 0:
Raymond Hettinger05156612010-09-07 04:44:52 +0000180 return self._randbelow(istart)
Collin Winterce36ad82007-08-30 01:19:48 +0000181 raise ValueError("empty range for randrange()")
Tim Peters9146f272002-08-16 03:41:39 +0000182
183 # stop argument supplied.
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700184 istop = _int(stop)
Tim Petersd7b5e882001-01-25 03:36:26 +0000185 if istop != stop:
Collin Winterce36ad82007-08-30 01:19:48 +0000186 raise ValueError("non-integer stop for randrange()")
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000187 width = istop - istart
188 if step == 1 and width > 0:
Raymond Hettingerc3246972010-09-07 09:32:57 +0000189 return istart + self._randbelow(width)
Tim Petersd7b5e882001-01-25 03:36:26 +0000190 if step == 1:
Collin Winterce36ad82007-08-30 01:19:48 +0000191 raise ValueError("empty range for randrange() (%d,%d, %d)" % (istart, istop, width))
Tim Peters9146f272002-08-16 03:41:39 +0000192
193 # Non-unit step argument supplied.
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700194 istep = _int(step)
Tim Petersd7b5e882001-01-25 03:36:26 +0000195 if istep != step:
Collin Winterce36ad82007-08-30 01:19:48 +0000196 raise ValueError("non-integer step for randrange()")
Tim Petersd7b5e882001-01-25 03:36:26 +0000197 if istep > 0:
Raymond Hettingerffdb8bb2004-09-27 15:29:05 +0000198 n = (width + istep - 1) // istep
Tim Petersd7b5e882001-01-25 03:36:26 +0000199 elif istep < 0:
Raymond Hettingerffdb8bb2004-09-27 15:29:05 +0000200 n = (width + istep + 1) // istep
Tim Petersd7b5e882001-01-25 03:36:26 +0000201 else:
Collin Winterce36ad82007-08-30 01:19:48 +0000202 raise ValueError("zero step for randrange()")
Tim Petersd7b5e882001-01-25 03:36:26 +0000203
204 if n <= 0:
Collin Winterce36ad82007-08-30 01:19:48 +0000205 raise ValueError("empty range for randrange()")
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000206
Raymond Hettinger05156612010-09-07 04:44:52 +0000207 return istart + istep*self._randbelow(n)
Tim Petersd7b5e882001-01-25 03:36:26 +0000208
209 def randint(self, a, b):
Tim Peterscd804102001-01-25 20:25:57 +0000210 """Return random integer in range [a, b], including both end points.
Tim Petersd7b5e882001-01-25 03:36:26 +0000211 """
212
213 return self.randrange(a, b+1)
214
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000215 def _randbelow(self, n, int=int, maxsize=1<<BPF, type=type,
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000216 Method=_MethodType, BuiltinMethod=_BuiltinMethodType):
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000217 "Return a random int in the range [0,n). Raises ValueError if n==0."
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000218
Raymond Hettingerc3246972010-09-07 09:32:57 +0000219 getrandbits = self.getrandbits
220 # Only call self.getrandbits if the original random() builtin method
221 # has not been overridden or if a new getrandbits() was supplied.
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000222 if type(self.random) is BuiltinMethod or type(getrandbits) is Method:
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000223 k = n.bit_length() # don't use (n-1) here because n can be 1
Raymond Hettingerf015b3f2010-09-07 20:04:42 +0000224 r = getrandbits(k) # 0 <= r < 2**k
Raymond Hettingerc3246972010-09-07 09:32:57 +0000225 while r >= n:
226 r = getrandbits(k)
227 return r
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000228 # There's an overriden random() method but no new getrandbits() method,
229 # so we can only use random() from here.
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000230 random = self.random
231 if n >= maxsize:
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000232 _warn("Underlying random() generator does not supply \n"
Raymond Hettingerf015b3f2010-09-07 20:04:42 +0000233 "enough bits to choose from a population range this large.\n"
234 "To remove the range limitation, add a getrandbits() method.")
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000235 return int(random() * n)
236 rem = maxsize % n
237 limit = (maxsize - rem) / maxsize # int(limit * maxsize) % n == 0
238 r = random()
239 while r >= limit:
240 r = random()
241 return int(r*maxsize) % n
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000242
Tim Peterscd804102001-01-25 20:25:57 +0000243## -------------------- sequence methods -------------------
244
Tim Petersd7b5e882001-01-25 03:36:26 +0000245 def choice(self, seq):
246 """Choose a random element from a non-empty sequence."""
Raymond Hettingerdc4872e2010-09-07 10:06:56 +0000247 try:
248 i = self._randbelow(len(seq))
249 except ValueError:
250 raise IndexError('Cannot choose from an empty sequence')
251 return seq[i]
Tim Petersd7b5e882001-01-25 03:36:26 +0000252
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700253 def shuffle(self, x, random=None):
Tim Petersd7b5e882001-01-25 03:36:26 +0000254 """x, random=random.random -> shuffle list x in place; return None.
255
256 Optional arg random is a 0-argument function returning a random
257 float in [0.0, 1.0); by default, the standard random.random.
Senthil Kumaranf8ce51a2013-09-11 22:54:31 -0700258
Tim Petersd7b5e882001-01-25 03:36:26 +0000259 """
260
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700261 if random is None:
262 randbelow = self._randbelow
263 for i in reversed(range(1, len(x))):
264 # pick an element in x[:i+1] with which to exchange x[i]
265 j = randbelow(i+1)
266 x[i], x[j] = x[j], x[i]
267 else:
268 _int = int
269 for i in reversed(range(1, len(x))):
270 # pick an element in x[:i+1] with which to exchange x[i]
271 j = _int(random() * (i+1))
272 x[i], x[j] = x[j], x[i]
Tim Petersd7b5e882001-01-25 03:36:26 +0000273
Raymond Hettingerfdbe5222003-06-13 07:01:51 +0000274 def sample(self, population, k):
Raymond Hettinger1acde192008-01-14 01:00:53 +0000275 """Chooses k unique random elements from a population sequence or set.
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000276
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000277 Returns a new list containing elements from the population while
278 leaving the original population unchanged. The resulting list is
279 in selection order so that all sub-slices will also be valid random
280 samples. This allows raffle winners (the sample) to be partitioned
281 into grand prize and second place winners (the subslices).
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000282
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000283 Members of the population need not be hashable or unique. If the
284 population contains repeats, then each occurrence is a possible
285 selection in the sample.
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000286
Guido van Rossum805365e2007-05-07 22:24:25 +0000287 To choose a sample in a range of integers, use range as an argument.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000288 This is especially fast and space efficient for sampling from a
Guido van Rossum805365e2007-05-07 22:24:25 +0000289 large population: sample(range(10000000), 60)
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000290 """
291
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000292 # Sampling without replacement entails tracking either potential
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000293 # selections (the pool) in a list or previous selections in a set.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000294
Jeremy Hylton2b55d352004-02-23 17:27:57 +0000295 # When the number of selections is small compared to the
296 # population, then tracking selections is efficient, requiring
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000297 # only a small set and an occasional reselection. For
Jeremy Hylton2b55d352004-02-23 17:27:57 +0000298 # a larger number of selections, the pool tracking method is
299 # preferred since the list takes less space than the
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000300 # set and it doesn't suffer from frequent reselections.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000301
Raymond Hettinger57d1a882011-02-23 00:46:28 +0000302 if isinstance(population, _Set):
Raymond Hettinger1acde192008-01-14 01:00:53 +0000303 population = tuple(population)
Raymond Hettinger57d1a882011-02-23 00:46:28 +0000304 if not isinstance(population, _Sequence):
305 raise TypeError("Population must be a sequence or set. For dicts, use list(d).")
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000306 randbelow = self._randbelow
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000307 n = len(population)
308 if not 0 <= k <= n:
Raymond Hettinger1acde192008-01-14 01:00:53 +0000309 raise ValueError("Sample larger than population")
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000310 result = [None] * k
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000311 setsize = 21 # size of a small set minus size of an empty list
312 if k > 5:
Tim Peters9e34c042005-08-26 15:20:46 +0000313 setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
Raymond Hettinger1acde192008-01-14 01:00:53 +0000314 if n <= setsize:
315 # An n-length list is smaller than a k-length set
Raymond Hettinger311f4192002-11-18 09:01:24 +0000316 pool = list(population)
Guido van Rossum805365e2007-05-07 22:24:25 +0000317 for i in range(k): # invariant: non-selected at [0,n-i)
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000318 j = randbelow(n-i)
Raymond Hettinger311f4192002-11-18 09:01:24 +0000319 result[i] = pool[j]
Raymond Hettinger8b9aa8d2003-01-04 05:20:33 +0000320 pool[j] = pool[n-i-1] # move non-selected item into vacancy
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000321 else:
Raymond Hettinger1acde192008-01-14 01:00:53 +0000322 selected = set()
323 selected_add = selected.add
324 for i in range(k):
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000325 j = randbelow(n)
Raymond Hettinger1acde192008-01-14 01:00:53 +0000326 while j in selected:
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000327 j = randbelow(n)
Raymond Hettinger1acde192008-01-14 01:00:53 +0000328 selected_add(j)
329 result[i] = population[j]
Raymond Hettinger311f4192002-11-18 09:01:24 +0000330 return result
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000331
Tim Peterscd804102001-01-25 20:25:57 +0000332## -------------------- real-valued distributions -------------------
333
334## -------------------- uniform distribution -------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000335
336 def uniform(self, a, b):
Raymond Hettingerbe40db02009-06-11 23:12:14 +0000337 "Get a random number in the range [a, b) or [a, b] depending on rounding."
Tim Petersd7b5e882001-01-25 03:36:26 +0000338 return a + (b-a) * self.random()
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000339
Christian Heimesfe337bf2008-03-23 21:54:12 +0000340## -------------------- triangular --------------------
341
342 def triangular(self, low=0.0, high=1.0, mode=None):
343 """Triangular distribution.
344
345 Continuous distribution bounded by given lower and upper limits,
346 and having a given mode value in-between.
347
348 http://en.wikipedia.org/wiki/Triangular_distribution
349
350 """
351 u = self.random()
352 c = 0.5 if mode is None else (mode - low) / (high - low)
353 if u > c:
354 u = 1.0 - u
355 c = 1.0 - c
356 low, high = high, low
357 return low + (high - low) * (u * c) ** 0.5
358
Tim Peterscd804102001-01-25 20:25:57 +0000359## -------------------- normal distribution --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000360
Tim Petersd7b5e882001-01-25 03:36:26 +0000361 def normalvariate(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000362 """Normal distribution.
363
364 mu is the mean, and sigma is the standard deviation.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000365
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000366 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000367 # mu = mean, sigma = standard deviation
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000368
Tim Petersd7b5e882001-01-25 03:36:26 +0000369 # Uses Kinderman and Monahan method. Reference: Kinderman,
370 # A.J. and Monahan, J.F., "Computer generation of random
371 # variables using the ratio of uniform deviates", ACM Trans
372 # Math Software, 3, (1977), pp257-260.
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000373
Tim Petersd7b5e882001-01-25 03:36:26 +0000374 random = self.random
Raymond Hettinger42406e62005-04-30 09:02:51 +0000375 while 1:
Tim Peters0c9886d2001-01-15 01:18:21 +0000376 u1 = random()
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000377 u2 = 1.0 - random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000378 z = NV_MAGICCONST*(u1-0.5)/u2
379 zz = z*z/4.0
380 if zz <= -_log(u2):
381 break
382 return mu + z*sigma
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000383
Tim Peterscd804102001-01-25 20:25:57 +0000384## -------------------- lognormal distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000385
386 def lognormvariate(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000387 """Log normal distribution.
388
389 If you take the natural logarithm of this distribution, you'll get a
390 normal distribution with mean mu and standard deviation sigma.
391 mu can have any value, and sigma must be greater than zero.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000392
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000393 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000394 return _exp(self.normalvariate(mu, sigma))
395
Tim Peterscd804102001-01-25 20:25:57 +0000396## -------------------- exponential distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000397
398 def expovariate(self, lambd):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000399 """Exponential distribution.
400
Mark Dickinson2f947362009-01-07 17:54:07 +0000401 lambd is 1.0 divided by the desired mean. It should be
402 nonzero. (The parameter would be called "lambda", but that is
403 a reserved word in Python.) Returned values range from 0 to
404 positive infinity if lambd is positive, and from negative
405 infinity to 0 if lambd is negative.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000406
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000407 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000408 # lambd: rate lambd = 1/mean
409 # ('lambda' is a Python reserved word)
410
Raymond Hettinger5279fb92011-06-25 11:30:53 +0200411 # we use 1-random() instead of random() to preclude the
412 # possibility of taking the log of zero.
413 return -_log(1.0 - self.random())/lambd
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000414
Tim Peterscd804102001-01-25 20:25:57 +0000415## -------------------- von Mises distribution --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000416
Tim Petersd7b5e882001-01-25 03:36:26 +0000417 def vonmisesvariate(self, mu, kappa):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000418 """Circular data distribution.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000419
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000420 mu is the mean angle, expressed in radians between 0 and 2*pi, and
421 kappa is the concentration parameter, which must be greater than or
422 equal to zero. If kappa is equal to zero, this distribution reduces
423 to a uniform random angle over the range 0 to 2*pi.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000424
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000425 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000426 # mu: mean angle (in radians between 0 and 2*pi)
427 # kappa: concentration parameter kappa (>= 0)
428 # if kappa = 0 generate uniform random angle
429
430 # Based upon an algorithm published in: Fisher, N.I.,
431 # "Statistical Analysis of Circular Data", Cambridge
432 # University Press, 1993.
433
434 # Thanks to Magnus Kessler for a correction to the
435 # implementation of step 4.
436
437 random = self.random
438 if kappa <= 1e-6:
439 return TWOPI * random()
440
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200441 s = 0.5 / kappa
442 r = s + _sqrt(1.0 + s * s)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000443
Raymond Hettinger42406e62005-04-30 09:02:51 +0000444 while 1:
Tim Peters0c9886d2001-01-15 01:18:21 +0000445 u1 = random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000446 z = _cos(_pi * u1)
Tim Petersd7b5e882001-01-25 03:36:26 +0000447
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200448 d = z / (r + z)
Tim Petersd7b5e882001-01-25 03:36:26 +0000449 u2 = random()
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200450 if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
Tim Peters0c9886d2001-01-15 01:18:21 +0000451 break
Tim Petersd7b5e882001-01-25 03:36:26 +0000452
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200453 q = 1.0 / r
454 f = (q + z) / (1.0 + q * z)
Tim Petersd7b5e882001-01-25 03:36:26 +0000455 u3 = random()
456 if u3 > 0.5:
Mark Dickinsonbe5f9192013-02-10 14:16:10 +0000457 theta = (mu + _acos(f)) % TWOPI
Tim Petersd7b5e882001-01-25 03:36:26 +0000458 else:
Mark Dickinsonbe5f9192013-02-10 14:16:10 +0000459 theta = (mu - _acos(f)) % TWOPI
Tim Petersd7b5e882001-01-25 03:36:26 +0000460
461 return theta
462
Tim Peterscd804102001-01-25 20:25:57 +0000463## -------------------- gamma distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000464
465 def gammavariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000466 """Gamma distribution. Not the gamma function!
467
468 Conditions on the parameters are alpha > 0 and beta > 0.
469
Raymond Hettingera8e4d6e2011-03-22 15:55:51 -0700470 The probability distribution function is:
471
472 x ** (alpha - 1) * math.exp(-x / beta)
473 pdf(x) = --------------------------------------
474 math.gamma(alpha) * beta ** alpha
475
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000476 """
Tim Peters8ac14952002-05-23 15:15:30 +0000477
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000478 # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
Tim Peters8ac14952002-05-23 15:15:30 +0000479
Guido van Rossum570764d2002-05-14 14:08:12 +0000480 # Warning: a few older sources define the gamma distribution in terms
481 # of alpha > -1.0
482 if alpha <= 0.0 or beta <= 0.0:
Collin Winterce36ad82007-08-30 01:19:48 +0000483 raise ValueError('gammavariate: alpha and beta must be > 0.0')
Tim Peters8ac14952002-05-23 15:15:30 +0000484
Tim Petersd7b5e882001-01-25 03:36:26 +0000485 random = self.random
Tim Petersd7b5e882001-01-25 03:36:26 +0000486 if alpha > 1.0:
487
488 # Uses R.C.H. Cheng, "The generation of Gamma
489 # variables with non-integral shape parameters",
490 # Applied Statistics, (1977), 26, No. 1, p71-74
491
Raymond Hettingerca6cdc22002-05-13 23:40:14 +0000492 ainv = _sqrt(2.0 * alpha - 1.0)
493 bbb = alpha - LOG4
494 ccc = alpha + ainv
Tim Peters8ac14952002-05-23 15:15:30 +0000495
Raymond Hettinger42406e62005-04-30 09:02:51 +0000496 while 1:
Tim Petersd7b5e882001-01-25 03:36:26 +0000497 u1 = random()
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000498 if not 1e-7 < u1 < .9999999:
499 continue
500 u2 = 1.0 - random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000501 v = _log(u1/(1.0-u1))/ainv
502 x = alpha*_exp(v)
503 z = u1*u1*u2
504 r = bbb+ccc*v-x
505 if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000506 return x * beta
Tim Petersd7b5e882001-01-25 03:36:26 +0000507
508 elif alpha == 1.0:
509 # expovariate(1)
510 u = random()
511 while u <= 1e-7:
512 u = random()
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000513 return -_log(u) * beta
Tim Petersd7b5e882001-01-25 03:36:26 +0000514
515 else: # alpha is between 0 and 1 (exclusive)
516
517 # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
518
Raymond Hettinger42406e62005-04-30 09:02:51 +0000519 while 1:
Tim Petersd7b5e882001-01-25 03:36:26 +0000520 u = random()
521 b = (_e + alpha)/_e
522 p = b*u
523 if p <= 1.0:
Raymond Hettinger42406e62005-04-30 09:02:51 +0000524 x = p ** (1.0/alpha)
Tim Petersd7b5e882001-01-25 03:36:26 +0000525 else:
Tim Petersd7b5e882001-01-25 03:36:26 +0000526 x = -_log((b-p)/alpha)
527 u1 = random()
Raymond Hettinger42406e62005-04-30 09:02:51 +0000528 if p > 1.0:
529 if u1 <= x ** (alpha - 1.0):
530 break
531 elif u1 <= _exp(-x):
Tim Petersd7b5e882001-01-25 03:36:26 +0000532 break
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000533 return x * beta
534
Tim Peterscd804102001-01-25 20:25:57 +0000535## -------------------- Gauss (faster alternative) --------------------
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000536
Tim Petersd7b5e882001-01-25 03:36:26 +0000537 def gauss(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000538 """Gaussian distribution.
539
540 mu is the mean, and sigma is the standard deviation. This is
541 slightly faster than the normalvariate() function.
542
543 Not thread-safe without a lock around calls.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000544
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000545 """
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000546
Tim Petersd7b5e882001-01-25 03:36:26 +0000547 # When x and y are two variables from [0, 1), uniformly
548 # distributed, then
549 #
550 # cos(2*pi*x)*sqrt(-2*log(1-y))
551 # sin(2*pi*x)*sqrt(-2*log(1-y))
552 #
553 # are two *independent* variables with normal distribution
554 # (mu = 0, sigma = 1).
555 # (Lambert Meertens)
556 # (corrected version; bug discovered by Mike Miller, fixed by LM)
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000557
Tim Petersd7b5e882001-01-25 03:36:26 +0000558 # Multithreading note: When two threads call this function
559 # simultaneously, it is possible that they will receive the
560 # same return value. The window is very small though. To
561 # avoid this, you have to use a lock around all calls. (I
562 # didn't want to slow this down in the serial case by using a
563 # lock here.)
Guido van Rossumd03e1191998-05-29 17:51:31 +0000564
Tim Petersd7b5e882001-01-25 03:36:26 +0000565 random = self.random
566 z = self.gauss_next
567 self.gauss_next = None
568 if z is None:
569 x2pi = random() * TWOPI
570 g2rad = _sqrt(-2.0 * _log(1.0 - random()))
571 z = _cos(x2pi) * g2rad
572 self.gauss_next = _sin(x2pi) * g2rad
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000573
Tim Petersd7b5e882001-01-25 03:36:26 +0000574 return mu + z*sigma
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000575
Tim Peterscd804102001-01-25 20:25:57 +0000576## -------------------- beta --------------------
Tim Peters85e2e472001-01-26 06:49:56 +0000577## See
Ezio Melotti20f53f12011-04-15 08:25:16 +0300578## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
Tim Peters85e2e472001-01-26 06:49:56 +0000579## for Ivan Frohne's insightful analysis of why the original implementation:
580##
581## def betavariate(self, alpha, beta):
582## # Discrete Event Simulation in C, pp 87-88.
583##
584## y = self.expovariate(alpha)
585## z = self.expovariate(1.0/beta)
586## return z/(y+z)
587##
588## was dead wrong, and how it probably got that way.
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000589
Tim Petersd7b5e882001-01-25 03:36:26 +0000590 def betavariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000591 """Beta distribution.
592
Thomas Woutersb2137042007-02-01 18:02:27 +0000593 Conditions on the parameters are alpha > 0 and beta > 0.
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000594 Returned values range between 0 and 1.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000595
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000596 """
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000597
Tim Peters85e2e472001-01-26 06:49:56 +0000598 # This version due to Janne Sinkkonen, and matches all the std
599 # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
600 y = self.gammavariate(alpha, 1.)
601 if y == 0:
602 return 0.0
603 else:
604 return y / (y + self.gammavariate(beta, 1.))
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000605
Tim Peterscd804102001-01-25 20:25:57 +0000606## -------------------- Pareto --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000607
Tim Petersd7b5e882001-01-25 03:36:26 +0000608 def paretovariate(self, alpha):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000609 """Pareto distribution. alpha is the shape parameter."""
Tim Petersd7b5e882001-01-25 03:36:26 +0000610 # Jain, pg. 495
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000611
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000612 u = 1.0 - self.random()
Raymond Hettinger8ff10992010-09-08 18:58:33 +0000613 return 1.0 / u ** (1.0/alpha)
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000614
Tim Peterscd804102001-01-25 20:25:57 +0000615## -------------------- Weibull --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000616
Tim Petersd7b5e882001-01-25 03:36:26 +0000617 def weibullvariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000618 """Weibull distribution.
619
620 alpha is the scale parameter and beta is the shape parameter.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000621
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000622 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000623 # Jain, pg. 499; bug fix courtesy Bill Arms
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000624
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000625 u = 1.0 - self.random()
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000626 return alpha * (-_log(u)) ** (1.0/beta)
Guido van Rossum6c395ba1999-08-18 13:53:28 +0000627
Raymond Hettinger23f12412004-09-13 22:23:21 +0000628## --------------- Operating System Random Source ------------------
Raymond Hettinger356a4592004-08-30 06:14:31 +0000629
Raymond Hettinger23f12412004-09-13 22:23:21 +0000630class SystemRandom(Random):
631 """Alternate random number generator using sources provided
632 by the operating system (such as /dev/urandom on Unix or
633 CryptGenRandom on Windows).
Raymond Hettinger356a4592004-08-30 06:14:31 +0000634
635 Not available on all systems (see os.urandom() for details).
636 """
637
638 def random(self):
639 """Get the next random number in the range [0.0, 1.0)."""
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000640 return (int.from_bytes(_urandom(7), 'big') >> 3) * RECIP_BPF
Raymond Hettinger356a4592004-08-30 06:14:31 +0000641
642 def getrandbits(self, k):
Serhiy Storchaka95949422013-08-27 19:40:23 +0300643 """getrandbits(k) -> x. Generates an int with k random bits."""
Raymond Hettinger356a4592004-08-30 06:14:31 +0000644 if k <= 0:
645 raise ValueError('number of bits must be greater than zero')
646 if k != int(k):
647 raise TypeError('number of bits should be an integer')
Raymond Hettinger63b17672010-09-08 19:27:59 +0000648 numbytes = (k + 7) // 8 # bits / 8 and rounded up
649 x = int.from_bytes(_urandom(numbytes), 'big')
650 return x >> (numbytes * 8 - k) # trim excess bits
Raymond Hettinger356a4592004-08-30 06:14:31 +0000651
Raymond Hettinger28de64f2008-01-13 23:40:30 +0000652 def seed(self, *args, **kwds):
Raymond Hettinger23f12412004-09-13 22:23:21 +0000653 "Stub method. Not used for a system random number generator."
Raymond Hettinger356a4592004-08-30 06:14:31 +0000654 return None
Raymond Hettinger356a4592004-08-30 06:14:31 +0000655
656 def _notimplemented(self, *args, **kwds):
Raymond Hettinger23f12412004-09-13 22:23:21 +0000657 "Method should not be called for a system random number generator."
658 raise NotImplementedError('System entropy source does not have state.')
Raymond Hettinger356a4592004-08-30 06:14:31 +0000659 getstate = setstate = _notimplemented
660
Tim Peterscd804102001-01-25 20:25:57 +0000661## -------------------- test program --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000662
Raymond Hettinger62297132003-08-30 01:24:19 +0000663def _test_generator(n, func, args):
Tim Peters0c9886d2001-01-15 01:18:21 +0000664 import time
Guido van Rossumbe19ed72007-02-09 05:37:30 +0000665 print(n, 'times', func.__name__)
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000666 total = 0.0
Tim Peters0c9886d2001-01-15 01:18:21 +0000667 sqsum = 0.0
668 smallest = 1e10
669 largest = -1e10
670 t0 = time.time()
671 for i in range(n):
Raymond Hettinger62297132003-08-30 01:24:19 +0000672 x = func(*args)
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000673 total += x
Tim Peters0c9886d2001-01-15 01:18:21 +0000674 sqsum = sqsum + x*x
675 smallest = min(x, smallest)
676 largest = max(x, largest)
677 t1 = time.time()
Guido van Rossumbe19ed72007-02-09 05:37:30 +0000678 print(round(t1-t0, 3), 'sec,', end=' ')
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000679 avg = total/n
Tim Petersd7b5e882001-01-25 03:36:26 +0000680 stddev = _sqrt(sqsum/n - avg*avg)
Guido van Rossumbe19ed72007-02-09 05:37:30 +0000681 print('avg %g, stddev %g, min %g, max %g' % \
682 (avg, stddev, smallest, largest))
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000683
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000684
685def _test(N=2000):
Raymond Hettinger62297132003-08-30 01:24:19 +0000686 _test_generator(N, random, ())
687 _test_generator(N, normalvariate, (0.0, 1.0))
688 _test_generator(N, lognormvariate, (0.0, 1.0))
689 _test_generator(N, vonmisesvariate, (0.0, 1.0))
690 _test_generator(N, gammavariate, (0.01, 1.0))
691 _test_generator(N, gammavariate, (0.1, 1.0))
692 _test_generator(N, gammavariate, (0.1, 2.0))
693 _test_generator(N, gammavariate, (0.5, 1.0))
694 _test_generator(N, gammavariate, (0.9, 1.0))
695 _test_generator(N, gammavariate, (1.0, 1.0))
696 _test_generator(N, gammavariate, (2.0, 1.0))
697 _test_generator(N, gammavariate, (20.0, 1.0))
698 _test_generator(N, gammavariate, (200.0, 1.0))
699 _test_generator(N, gauss, (0.0, 1.0))
700 _test_generator(N, betavariate, (3.0, 3.0))
Christian Heimesfe337bf2008-03-23 21:54:12 +0000701 _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))
Tim Peterscd804102001-01-25 20:25:57 +0000702
Tim Peters715c4c42001-01-26 22:56:56 +0000703# Create one instance, seeded from current time, and export its methods
Raymond Hettinger40f62172002-12-29 23:03:38 +0000704# as module-level functions. The functions share state across all uses
705#(both in the user's code and in the Python libraries), but that's fine
706# for most programs and is easier for the casual user than making them
707# instantiate their own Random() instance.
708
Tim Petersd7b5e882001-01-25 03:36:26 +0000709_inst = Random()
710seed = _inst.seed
711random = _inst.random
712uniform = _inst.uniform
Christian Heimesfe337bf2008-03-23 21:54:12 +0000713triangular = _inst.triangular
Tim Petersd7b5e882001-01-25 03:36:26 +0000714randint = _inst.randint
715choice = _inst.choice
716randrange = _inst.randrange
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000717sample = _inst.sample
Tim Petersd7b5e882001-01-25 03:36:26 +0000718shuffle = _inst.shuffle
719normalvariate = _inst.normalvariate
720lognormvariate = _inst.lognormvariate
Tim Petersd7b5e882001-01-25 03:36:26 +0000721expovariate = _inst.expovariate
722vonmisesvariate = _inst.vonmisesvariate
723gammavariate = _inst.gammavariate
Tim Petersd7b5e882001-01-25 03:36:26 +0000724gauss = _inst.gauss
725betavariate = _inst.betavariate
726paretovariate = _inst.paretovariate
727weibullvariate = _inst.weibullvariate
728getstate = _inst.getstate
729setstate = _inst.setstate
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000730getrandbits = _inst.getrandbits
Tim Petersd7b5e882001-01-25 03:36:26 +0000731
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000732if __name__ == '__main__':
Tim Petersd7b5e882001-01-25 03:36:26 +0000733 _test()