blob: 821309221f820aeb3260f2fa23a5a050453103ce [file] [log] [blame]
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001/* Math module -- standard C math library functions, pi and e */
2
Christian Heimes53876d92008-04-19 00:31:39 +00003/* Here are some comments from Tim Peters, extracted from the
4 discussion attached to http://bugs.python.org/issue1640. They
5 describe the general aims of the math module with respect to
6 special values, IEEE-754 floating-point exceptions, and Python
7 exceptions.
8
9These are the "spirit of 754" rules:
10
111. If the mathematical result is a real number, but of magnitude too
12large to approximate by a machine float, overflow is signaled and the
13result is an infinity (with the appropriate sign).
14
152. If the mathematical result is a real number, but of magnitude too
16small to approximate by a machine float, underflow is signaled and the
17result is a zero (with the appropriate sign).
18
193. At a singularity (a value x such that the limit of f(y) as y
20approaches x exists and is an infinity), "divide by zero" is signaled
21and the result is an infinity (with the appropriate sign). This is
22complicated a little by that the left-side and right-side limits may
23not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
24from the positive or negative directions. In that specific case, the
25sign of the zero determines the result of 1/0.
26
274. At a point where a function has no defined result in the extended
28reals (i.e., the reals plus an infinity or two), invalid operation is
29signaled and a NaN is returned.
30
31And these are what Python has historically /tried/ to do (but not
32always successfully, as platform libm behavior varies a lot):
33
34For #1, raise OverflowError.
35
36For #2, return a zero (with the appropriate sign if that happens by
37accident ;-)).
38
39For #3 and #4, raise ValueError. It may have made sense to raise
40Python's ZeroDivisionError in #3, but historically that's only been
41raised for division by zero and mod by zero.
42
43*/
44
45/*
46 In general, on an IEEE-754 platform the aim is to follow the C99
47 standard, including Annex 'F', whenever possible. Where the
48 standard recommends raising the 'divide-by-zero' or 'invalid'
49 floating-point exceptions, Python should raise a ValueError. Where
50 the standard recommends raising 'overflow', Python should raise an
51 OverflowError. In all other circumstances a value should be
52 returned.
53 */
54
Barry Warsaw8b43b191996-12-09 22:32:36 +000055#include "Python.h"
Mark Dickinson664b5112009-12-16 20:23:42 +000056#include "_math.h"
Guido van Rossum85a5fbb1990-10-14 12:07:46 +000057
Serhiy Storchakac9ea9332017-01-19 18:13:09 +020058#include "clinic/mathmodule.c.h"
59
60/*[clinic input]
61module math
62[clinic start generated code]*/
63/*[clinic end generated code: output=da39a3ee5e6b4b0d input=76bc7002685dd942]*/
64
65
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000066/*
67 sin(pi*x), giving accurate results for all finite x (especially x
68 integral or close to an integer). This is here for use in the
69 reflection formula for the gamma function. It conforms to IEEE
70 754-2008 for finite arguments, but not for infinities or nans.
71*/
Tim Petersa40c7932001-09-05 22:36:56 +000072
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000073static const double pi = 3.141592653589793238462643383279502884197;
Mark Dickinson9c91eb82010-07-07 16:17:31 +000074static const double logpi = 1.144729885849400174143427351353058711647;
Louie Lu7a264642017-03-31 01:05:10 +080075#if !defined(HAVE_ERF) || !defined(HAVE_ERFC)
76static const double sqrtpi = 1.772453850905516027298167483341145182798;
77#endif /* !defined(HAVE_ERF) || !defined(HAVE_ERFC) */
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000078
Raymond Hettingercfd735e2019-01-29 20:39:53 -080079
80/* Version of PyFloat_AsDouble() with in-line fast paths
81 for exact floats and integers. Gives a substantial
82 speed improvement for extracting float arguments.
83*/
84
85#define ASSIGN_DOUBLE(target_var, obj, error_label) \
86 if (PyFloat_CheckExact(obj)) { \
87 target_var = PyFloat_AS_DOUBLE(obj); \
88 } \
89 else if (PyLong_CheckExact(obj)) { \
90 target_var = PyLong_AsDouble(obj); \
91 if (target_var == -1.0 && PyErr_Occurred()) { \
92 goto error_label; \
93 } \
94 } \
95 else { \
96 target_var = PyFloat_AsDouble(obj); \
97 if (target_var == -1.0 && PyErr_Occurred()) { \
98 goto error_label; \
99 } \
100 }
101
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000102static double
Dima Pasechnikf57cd822019-02-26 06:36:11 +0000103m_sinpi(double x)
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000104{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000105 double y, r;
106 int n;
107 /* this function should only ever be called for finite arguments */
108 assert(Py_IS_FINITE(x));
109 y = fmod(fabs(x), 2.0);
110 n = (int)round(2.0*y);
111 assert(0 <= n && n <= 4);
112 switch (n) {
113 case 0:
114 r = sin(pi*y);
115 break;
116 case 1:
117 r = cos(pi*(y-0.5));
118 break;
119 case 2:
120 /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
121 -0.0 instead of 0.0 when y == 1.0. */
122 r = sin(pi*(1.0-y));
123 break;
124 case 3:
125 r = -cos(pi*(y-1.5));
126 break;
127 case 4:
128 r = sin(pi*(y-2.0));
129 break;
130 default:
Barry Warsawb2e57942017-09-14 18:13:16 -0700131 Py_UNREACHABLE();
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000132 }
133 return copysign(1.0, x)*r;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000134}
135
136/* Implementation of the real gamma function. In extensive but non-exhaustive
137 random tests, this function proved accurate to within <= 10 ulps across the
138 entire float domain. Note that accuracy may depend on the quality of the
139 system math functions, the pow function in particular. Special cases
140 follow C99 annex F. The parameters and method are tailored to platforms
141 whose double format is the IEEE 754 binary64 format.
142
143 Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
144 and g=6.024680040776729583740234375; these parameters are amongst those
145 used by the Boost library. Following Boost (again), we re-express the
146 Lanczos sum as a rational function, and compute it that way. The
147 coefficients below were computed independently using MPFR, and have been
148 double-checked against the coefficients in the Boost source code.
149
150 For x < 0.0 we use the reflection formula.
151
152 There's one minor tweak that deserves explanation: Lanczos' formula for
153 Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x
154 values, x+g-0.5 can be represented exactly. However, in cases where it
155 can't be represented exactly the small error in x+g-0.5 can be magnified
156 significantly by the pow and exp calls, especially for large x. A cheap
157 correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
158 involved in the computation of x+g-0.5 (that is, e = computed value of
159 x+g-0.5 - exact value of x+g-0.5). Here's the proof:
160
161 Correction factor
162 -----------------
163 Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
164 double, and e is tiny. Then:
165
166 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
167 = pow(y, x-0.5)/exp(y) * C,
168
169 where the correction_factor C is given by
170
171 C = pow(1-e/y, x-0.5) * exp(e)
172
173 Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
174
175 C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
176
177 But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and
178
179 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
180
181 Note that for accuracy, when computing r*C it's better to do
182
183 r + e*g/y*r;
184
185 than
186
187 r * (1 + e*g/y);
188
189 since the addition in the latter throws away most of the bits of
190 information in e*g/y.
191*/
192
193#define LANCZOS_N 13
194static const double lanczos_g = 6.024680040776729583740234375;
195static const double lanczos_g_minus_half = 5.524680040776729583740234375;
196static const double lanczos_num_coeffs[LANCZOS_N] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000197 23531376880.410759688572007674451636754734846804940,
198 42919803642.649098768957899047001988850926355848959,
199 35711959237.355668049440185451547166705960488635843,
200 17921034426.037209699919755754458931112671403265390,
201 6039542586.3520280050642916443072979210699388420708,
202 1439720407.3117216736632230727949123939715485786772,
203 248874557.86205415651146038641322942321632125127801,
204 31426415.585400194380614231628318205362874684987640,
205 2876370.6289353724412254090516208496135991145378768,
206 186056.26539522349504029498971604569928220784236328,
207 8071.6720023658162106380029022722506138218516325024,
208 210.82427775157934587250973392071336271166969580291,
209 2.5066282746310002701649081771338373386264310793408
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000210};
211
212/* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
213static const double lanczos_den_coeffs[LANCZOS_N] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000214 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
215 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000216
217/* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
218#define NGAMMA_INTEGRAL 23
219static const double gamma_integral[NGAMMA_INTEGRAL] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000220 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
221 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
222 1307674368000.0, 20922789888000.0, 355687428096000.0,
223 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
224 51090942171709440000.0, 1124000727777607680000.0,
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000225};
226
227/* Lanczos' sum L_g(x), for positive x */
228
229static double
230lanczos_sum(double x)
231{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000232 double num = 0.0, den = 0.0;
233 int i;
234 assert(x > 0.0);
235 /* evaluate the rational function lanczos_sum(x). For large
236 x, the obvious algorithm risks overflow, so we instead
237 rescale the denominator and numerator of the rational
238 function by x**(1-LANCZOS_N) and treat this as a
239 rational function in 1/x. This also reduces the error for
240 larger x values. The choice of cutoff point (5.0 below) is
241 somewhat arbitrary; in tests, smaller cutoff values than
242 this resulted in lower accuracy. */
243 if (x < 5.0) {
244 for (i = LANCZOS_N; --i >= 0; ) {
245 num = num * x + lanczos_num_coeffs[i];
246 den = den * x + lanczos_den_coeffs[i];
247 }
248 }
249 else {
250 for (i = 0; i < LANCZOS_N; i++) {
251 num = num / x + lanczos_num_coeffs[i];
252 den = den / x + lanczos_den_coeffs[i];
253 }
254 }
255 return num/den;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000256}
257
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +0000258/* Constant for +infinity, generated in the same way as float('inf'). */
259
260static double
261m_inf(void)
262{
263#ifndef PY_NO_SHORT_FLOAT_REPR
264 return _Py_dg_infinity(0);
265#else
266 return Py_HUGE_VAL;
267#endif
268}
269
270/* Constant nan value, generated in the same way as float('nan'). */
271/* We don't currently assume that Py_NAN is defined everywhere. */
272
273#if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
274
275static double
276m_nan(void)
277{
278#ifndef PY_NO_SHORT_FLOAT_REPR
279 return _Py_dg_stdnan(0);
280#else
281 return Py_NAN;
282#endif
283}
284
285#endif
286
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000287static double
288m_tgamma(double x)
289{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000290 double absx, r, y, z, sqrtpow;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000291
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000292 /* special cases */
293 if (!Py_IS_FINITE(x)) {
294 if (Py_IS_NAN(x) || x > 0.0)
295 return x; /* tgamma(nan) = nan, tgamma(inf) = inf */
296 else {
297 errno = EDOM;
298 return Py_NAN; /* tgamma(-inf) = nan, invalid */
299 }
300 }
301 if (x == 0.0) {
302 errno = EDOM;
Mark Dickinson50203a62011-09-25 15:26:43 +0100303 /* tgamma(+-0.0) = +-inf, divide-by-zero */
304 return copysign(Py_HUGE_VAL, x);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000305 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000306
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000307 /* integer arguments */
308 if (x == floor(x)) {
309 if (x < 0.0) {
310 errno = EDOM; /* tgamma(n) = nan, invalid for */
311 return Py_NAN; /* negative integers n */
312 }
313 if (x <= NGAMMA_INTEGRAL)
314 return gamma_integral[(int)x - 1];
315 }
316 absx = fabs(x);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000317
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000318 /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
319 if (absx < 1e-20) {
320 r = 1.0/x;
321 if (Py_IS_INFINITY(r))
322 errno = ERANGE;
323 return r;
324 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000325
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000326 /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
327 x > 200, and underflows to +-0.0 for x < -200, not a negative
328 integer. */
329 if (absx > 200.0) {
330 if (x < 0.0) {
Dima Pasechnikf57cd822019-02-26 06:36:11 +0000331 return 0.0/m_sinpi(x);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000332 }
333 else {
334 errno = ERANGE;
335 return Py_HUGE_VAL;
336 }
337 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000338
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000339 y = absx + lanczos_g_minus_half;
340 /* compute error in sum */
341 if (absx > lanczos_g_minus_half) {
342 /* note: the correction can be foiled by an optimizing
343 compiler that (incorrectly) thinks that an expression like
344 a + b - a - b can be optimized to 0.0. This shouldn't
345 happen in a standards-conforming compiler. */
346 double q = y - absx;
347 z = q - lanczos_g_minus_half;
348 }
349 else {
350 double q = y - lanczos_g_minus_half;
351 z = q - absx;
352 }
353 z = z * lanczos_g / y;
354 if (x < 0.0) {
Dima Pasechnikf57cd822019-02-26 06:36:11 +0000355 r = -pi / m_sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000356 r -= z * r;
357 if (absx < 140.0) {
358 r /= pow(y, absx - 0.5);
359 }
360 else {
361 sqrtpow = pow(y, absx / 2.0 - 0.25);
362 r /= sqrtpow;
363 r /= sqrtpow;
364 }
365 }
366 else {
367 r = lanczos_sum(absx) / exp(y);
368 r += z * r;
369 if (absx < 140.0) {
370 r *= pow(y, absx - 0.5);
371 }
372 else {
373 sqrtpow = pow(y, absx / 2.0 - 0.25);
374 r *= sqrtpow;
375 r *= sqrtpow;
376 }
377 }
378 if (Py_IS_INFINITY(r))
379 errno = ERANGE;
380 return r;
Guido van Rossum8832b621991-12-16 15:44:24 +0000381}
382
Christian Heimes53876d92008-04-19 00:31:39 +0000383/*
Mark Dickinson05d2e082009-12-11 20:17:17 +0000384 lgamma: natural log of the absolute value of the Gamma function.
385 For large arguments, Lanczos' formula works extremely well here.
386*/
387
388static double
389m_lgamma(double x)
390{
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200391 double r;
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200392 double absx;
Mark Dickinson05d2e082009-12-11 20:17:17 +0000393
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000394 /* special cases */
395 if (!Py_IS_FINITE(x)) {
396 if (Py_IS_NAN(x))
397 return x; /* lgamma(nan) = nan */
398 else
399 return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
400 }
Mark Dickinson05d2e082009-12-11 20:17:17 +0000401
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000402 /* integer arguments */
403 if (x == floor(x) && x <= 2.0) {
404 if (x <= 0.0) {
405 errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */
406 return Py_HUGE_VAL; /* integers n <= 0 */
407 }
408 else {
409 return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
410 }
411 }
Mark Dickinson05d2e082009-12-11 20:17:17 +0000412
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000413 absx = fabs(x);
414 /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
415 if (absx < 1e-20)
416 return -log(absx);
Mark Dickinson05d2e082009-12-11 20:17:17 +0000417
Mark Dickinson9c91eb82010-07-07 16:17:31 +0000418 /* Lanczos' formula. We could save a fraction of a ulp in accuracy by
419 having a second set of numerator coefficients for lanczos_sum that
420 absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g
421 subtraction below; it's probably not worth it. */
422 r = log(lanczos_sum(absx)) - lanczos_g;
423 r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1);
424 if (x < 0.0)
425 /* Use reflection formula to get value for negative x. */
Dima Pasechnikf57cd822019-02-26 06:36:11 +0000426 r = logpi - log(fabs(m_sinpi(absx))) - log(absx) - r;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000427 if (Py_IS_INFINITY(r))
428 errno = ERANGE;
429 return r;
Mark Dickinson05d2e082009-12-11 20:17:17 +0000430}
431
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200432#if !defined(HAVE_ERF) || !defined(HAVE_ERFC)
433
Mark Dickinson45f992a2009-12-19 11:20:49 +0000434/*
435 Implementations of the error function erf(x) and the complementary error
436 function erfc(x).
437
Brett Cannon45adb312016-01-15 09:38:24 -0800438 Method: we use a series approximation for erf for small x, and a continued
439 fraction approximation for erfc(x) for larger x;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000440 combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
441 this gives us erf(x) and erfc(x) for all x.
442
443 The series expansion used is:
444
445 erf(x) = x*exp(-x*x)/sqrt(pi) * [
446 2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]
447
448 The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
449 This series converges well for smallish x, but slowly for larger x.
450
451 The continued fraction expansion used is:
452
453 erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
454 3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]
455
456 after the first term, the general term has the form:
457
458 k*(k-0.5)/(2*k+0.5 + x**2 - ...).
459
460 This expansion converges fast for larger x, but convergence becomes
461 infinitely slow as x approaches 0.0. The (somewhat naive) continued
462 fraction evaluation algorithm used below also risks overflow for large x;
463 but for large x, erfc(x) == 0.0 to within machine precision. (For
464 example, erfc(30.0) is approximately 2.56e-393).
465
466 Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
467 continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
468 ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
469 numbers of terms to use for the relevant expansions. */
470
471#define ERF_SERIES_CUTOFF 1.5
472#define ERF_SERIES_TERMS 25
473#define ERFC_CONTFRAC_CUTOFF 30.0
474#define ERFC_CONTFRAC_TERMS 50
475
476/*
477 Error function, via power series.
478
479 Given a finite float x, return an approximation to erf(x).
480 Converges reasonably fast for small x.
481*/
482
483static double
484m_erf_series(double x)
485{
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000486 double x2, acc, fk, result;
487 int i, saved_errno;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000488
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000489 x2 = x * x;
490 acc = 0.0;
491 fk = (double)ERF_SERIES_TERMS + 0.5;
492 for (i = 0; i < ERF_SERIES_TERMS; i++) {
493 acc = 2.0 + x2 * acc / fk;
494 fk -= 1.0;
495 }
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000496 /* Make sure the exp call doesn't affect errno;
497 see m_erfc_contfrac for more. */
498 saved_errno = errno;
499 result = acc * x * exp(-x2) / sqrtpi;
500 errno = saved_errno;
501 return result;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000502}
503
504/*
505 Complementary error function, via continued fraction expansion.
506
507 Given a positive float x, return an approximation to erfc(x). Converges
508 reasonably fast for x large (say, x > 2.0), and should be safe from
509 overflow if x and nterms are not too large. On an IEEE 754 machine, with x
510 <= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller
511 than the smallest representable nonzero float. */
512
513static double
514m_erfc_contfrac(double x)
515{
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000516 double x2, a, da, p, p_last, q, q_last, b, result;
517 int i, saved_errno;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000518
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000519 if (x >= ERFC_CONTFRAC_CUTOFF)
520 return 0.0;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000521
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000522 x2 = x*x;
523 a = 0.0;
524 da = 0.5;
525 p = 1.0; p_last = 0.0;
526 q = da + x2; q_last = 1.0;
527 for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
528 double temp;
529 a += da;
530 da += 2.0;
531 b = da + x2;
532 temp = p; p = b*p - a*p_last; p_last = temp;
533 temp = q; q = b*q - a*q_last; q_last = temp;
534 }
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000535 /* Issue #8986: On some platforms, exp sets errno on underflow to zero;
536 save the current errno value so that we can restore it later. */
537 saved_errno = errno;
538 result = p / q * x * exp(-x2) / sqrtpi;
539 errno = saved_errno;
540 return result;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000541}
542
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200543#endif /* !defined(HAVE_ERF) || !defined(HAVE_ERFC) */
544
Mark Dickinson45f992a2009-12-19 11:20:49 +0000545/* Error function erf(x), for general x */
546
547static double
548m_erf(double x)
549{
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200550#ifdef HAVE_ERF
551 return erf(x);
552#else
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000553 double absx, cf;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000554
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000555 if (Py_IS_NAN(x))
556 return x;
557 absx = fabs(x);
558 if (absx < ERF_SERIES_CUTOFF)
559 return m_erf_series(x);
560 else {
561 cf = m_erfc_contfrac(absx);
562 return x > 0.0 ? 1.0 - cf : cf - 1.0;
563 }
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200564#endif
Mark Dickinson45f992a2009-12-19 11:20:49 +0000565}
566
567/* Complementary error function erfc(x), for general x. */
568
569static double
570m_erfc(double x)
571{
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200572#ifdef HAVE_ERFC
573 return erfc(x);
574#else
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000575 double absx, cf;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000576
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000577 if (Py_IS_NAN(x))
578 return x;
579 absx = fabs(x);
580 if (absx < ERF_SERIES_CUTOFF)
581 return 1.0 - m_erf_series(x);
582 else {
583 cf = m_erfc_contfrac(absx);
584 return x > 0.0 ? cf : 2.0 - cf;
585 }
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200586#endif
Mark Dickinson45f992a2009-12-19 11:20:49 +0000587}
Mark Dickinson05d2e082009-12-11 20:17:17 +0000588
589/*
Christian Heimese57950f2008-04-21 13:08:03 +0000590 wrapper for atan2 that deals directly with special cases before
591 delegating to the platform libm for the remaining cases. This
592 is necessary to get consistent behaviour across platforms.
593 Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
594 always follow C99.
595*/
596
597static double
598m_atan2(double y, double x)
599{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000600 if (Py_IS_NAN(x) || Py_IS_NAN(y))
601 return Py_NAN;
602 if (Py_IS_INFINITY(y)) {
603 if (Py_IS_INFINITY(x)) {
604 if (copysign(1., x) == 1.)
605 /* atan2(+-inf, +inf) == +-pi/4 */
606 return copysign(0.25*Py_MATH_PI, y);
607 else
608 /* atan2(+-inf, -inf) == +-pi*3/4 */
609 return copysign(0.75*Py_MATH_PI, y);
610 }
611 /* atan2(+-inf, x) == +-pi/2 for finite x */
612 return copysign(0.5*Py_MATH_PI, y);
613 }
614 if (Py_IS_INFINITY(x) || y == 0.) {
615 if (copysign(1., x) == 1.)
616 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
617 return copysign(0., y);
618 else
619 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
620 return copysign(Py_MATH_PI, y);
621 }
622 return atan2(y, x);
Christian Heimese57950f2008-04-21 13:08:03 +0000623}
624
Mark Dickinsona0ce3752017-04-05 18:34:27 +0100625
626/* IEEE 754-style remainder operation: x - n*y where n*y is the nearest
627 multiple of y to x, taking n even in the case of a tie. Assuming an IEEE 754
628 binary floating-point format, the result is always exact. */
629
630static double
631m_remainder(double x, double y)
632{
633 /* Deal with most common case first. */
634 if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) {
635 double absx, absy, c, m, r;
636
637 if (y == 0.0) {
638 return Py_NAN;
639 }
640
641 absx = fabs(x);
642 absy = fabs(y);
643 m = fmod(absx, absy);
644
645 /*
646 Warning: some subtlety here. What we *want* to know at this point is
647 whether the remainder m is less than, equal to, or greater than half
648 of absy. However, we can't do that comparison directly because we
649 can't be sure that 0.5*absy is representable (the mutiplication
650 might incur precision loss due to underflow). So instead we compare
651 m with the complement c = absy - m: m < 0.5*absy if and only if m <
652 c, and so on. The catch is that absy - m might also not be
653 representable, but it turns out that it doesn't matter:
654
655 - if m > 0.5*absy then absy - m is exactly representable, by
656 Sterbenz's lemma, so m > c
657 - if m == 0.5*absy then again absy - m is exactly representable
658 and m == c
659 - if m < 0.5*absy then either (i) 0.5*absy is exactly representable,
660 in which case 0.5*absy < absy - m, so 0.5*absy <= c and hence m <
661 c, or (ii) absy is tiny, either subnormal or in the lowest normal
662 binade. Then absy - m is exactly representable and again m < c.
663 */
664
665 c = absy - m;
666 if (m < c) {
667 r = m;
668 }
669 else if (m > c) {
670 r = -c;
671 }
672 else {
673 /*
674 Here absx is exactly halfway between two multiples of absy,
675 and we need to choose the even multiple. x now has the form
676
677 absx = n * absy + m
678
679 for some integer n (recalling that m = 0.5*absy at this point).
680 If n is even we want to return m; if n is odd, we need to
681 return -m.
682
683 So
684
685 0.5 * (absx - m) = (n/2) * absy
686
687 and now reducing modulo absy gives us:
688
689 | m, if n is odd
690 fmod(0.5 * (absx - m), absy) = |
691 | 0, if n is even
692
693 Now m - 2.0 * fmod(...) gives the desired result: m
694 if n is even, -m if m is odd.
695
696 Note that all steps in fmod(0.5 * (absx - m), absy)
697 will be computed exactly, with no rounding error
698 introduced.
699 */
700 assert(m == c);
701 r = m - 2.0 * fmod(0.5 * (absx - m), absy);
702 }
703 return copysign(1.0, x) * r;
704 }
705
706 /* Special values. */
707 if (Py_IS_NAN(x)) {
708 return x;
709 }
710 if (Py_IS_NAN(y)) {
711 return y;
712 }
713 if (Py_IS_INFINITY(x)) {
714 return Py_NAN;
715 }
716 assert(Py_IS_INFINITY(y));
717 return x;
718}
719
720
Christian Heimese57950f2008-04-21 13:08:03 +0000721/*
Mark Dickinsone675f082008-12-11 21:56:00 +0000722 Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
723 log(-ve), log(NaN). Here are wrappers for log and log10 that deal with
724 special values directly, passing positive non-special values through to
725 the system log/log10.
726 */
727
728static double
729m_log(double x)
730{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000731 if (Py_IS_FINITE(x)) {
732 if (x > 0.0)
733 return log(x);
734 errno = EDOM;
735 if (x == 0.0)
736 return -Py_HUGE_VAL; /* log(0) = -inf */
737 else
738 return Py_NAN; /* log(-ve) = nan */
739 }
740 else if (Py_IS_NAN(x))
741 return x; /* log(nan) = nan */
742 else if (x > 0.0)
743 return x; /* log(inf) = inf */
744 else {
745 errno = EDOM;
746 return Py_NAN; /* log(-inf) = nan */
747 }
Mark Dickinsone675f082008-12-11 21:56:00 +0000748}
749
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200750/*
751 log2: log to base 2.
752
753 Uses an algorithm that should:
Mark Dickinson83b8c0b2011-05-09 08:40:20 +0100754
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200755 (a) produce exact results for powers of 2, and
Mark Dickinson83b8c0b2011-05-09 08:40:20 +0100756 (b) give a monotonic log2 (for positive finite floats),
757 assuming that the system log is monotonic.
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200758*/
759
760static double
761m_log2(double x)
762{
763 if (!Py_IS_FINITE(x)) {
764 if (Py_IS_NAN(x))
765 return x; /* log2(nan) = nan */
766 else if (x > 0.0)
767 return x; /* log2(+inf) = +inf */
768 else {
769 errno = EDOM;
770 return Py_NAN; /* log2(-inf) = nan, invalid-operation */
771 }
772 }
773
774 if (x > 0.0) {
Victor Stinner8f9f8d62011-05-09 12:45:41 +0200775#ifdef HAVE_LOG2
776 return log2(x);
777#else
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200778 double m;
779 int e;
780 m = frexp(x, &e);
781 /* We want log2(m * 2**e) == log(m) / log(2) + e. Care is needed when
782 * x is just greater than 1.0: in that case e is 1, log(m) is negative,
783 * and we get significant cancellation error from the addition of
784 * log(m) / log(2) to e. The slight rewrite of the expression below
785 * avoids this problem.
786 */
787 if (x >= 1.0) {
788 return log(2.0 * m) / log(2.0) + (e - 1);
789 }
790 else {
791 return log(m) / log(2.0) + e;
792 }
Victor Stinner8f9f8d62011-05-09 12:45:41 +0200793#endif
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200794 }
795 else if (x == 0.0) {
796 errno = EDOM;
797 return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */
798 }
799 else {
800 errno = EDOM;
Mark Dickinson23442582011-05-09 08:05:00 +0100801 return Py_NAN; /* log2(-inf) = nan, invalid-operation */
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200802 }
803}
804
Mark Dickinsone675f082008-12-11 21:56:00 +0000805static double
806m_log10(double x)
807{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000808 if (Py_IS_FINITE(x)) {
809 if (x > 0.0)
810 return log10(x);
811 errno = EDOM;
812 if (x == 0.0)
813 return -Py_HUGE_VAL; /* log10(0) = -inf */
814 else
815 return Py_NAN; /* log10(-ve) = nan */
816 }
817 else if (Py_IS_NAN(x))
818 return x; /* log10(nan) = nan */
819 else if (x > 0.0)
820 return x; /* log10(inf) = inf */
821 else {
822 errno = EDOM;
823 return Py_NAN; /* log10(-inf) = nan */
824 }
Mark Dickinsone675f082008-12-11 21:56:00 +0000825}
826
827
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200828/*[clinic input]
829math.gcd
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300830
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200831 x as a: object
832 y as b: object
833 /
834
835greatest common divisor of x and y
836[clinic start generated code]*/
837
838static PyObject *
839math_gcd_impl(PyObject *module, PyObject *a, PyObject *b)
840/*[clinic end generated code: output=7b2e0c151bd7a5d8 input=c2691e57fb2a98fa]*/
841{
842 PyObject *g;
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300843
844 a = PyNumber_Index(a);
845 if (a == NULL)
846 return NULL;
847 b = PyNumber_Index(b);
848 if (b == NULL) {
849 Py_DECREF(a);
850 return NULL;
851 }
852 g = _PyLong_GCD(a, b);
853 Py_DECREF(a);
854 Py_DECREF(b);
855 return g;
856}
857
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300858
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000859/* Call is_error when errno != 0, and where x is the result libm
860 * returned. is_error will usually set up an exception and return
861 * true (1), but may return false (0) without setting up an exception.
862 */
863static int
864is_error(double x)
865{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000866 int result = 1; /* presumption of guilt */
867 assert(errno); /* non-zero errno is a precondition for calling */
868 if (errno == EDOM)
869 PyErr_SetString(PyExc_ValueError, "math domain error");
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000870
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000871 else if (errno == ERANGE) {
872 /* ANSI C generally requires libm functions to set ERANGE
873 * on overflow, but also generally *allows* them to set
874 * ERANGE on underflow too. There's no consistency about
875 * the latter across platforms.
876 * Alas, C99 never requires that errno be set.
877 * Here we suppress the underflow errors (libm functions
878 * should return a zero on underflow, and +- HUGE_VAL on
879 * overflow, so testing the result for zero suffices to
880 * distinguish the cases).
881 *
882 * On some platforms (Ubuntu/ia64) it seems that errno can be
883 * set to ERANGE for subnormal results that do *not* underflow
884 * to zero. So to be safe, we'll ignore ERANGE whenever the
885 * function result is less than one in absolute value.
886 */
887 if (fabs(x) < 1.0)
888 result = 0;
889 else
890 PyErr_SetString(PyExc_OverflowError,
891 "math range error");
892 }
893 else
894 /* Unexpected math error */
895 PyErr_SetFromErrno(PyExc_ValueError);
896 return result;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000897}
898
Mark Dickinsone675f082008-12-11 21:56:00 +0000899/*
Christian Heimes53876d92008-04-19 00:31:39 +0000900 math_1 is used to wrap a libm function f that takes a double
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200901 argument and returns a double.
Christian Heimes53876d92008-04-19 00:31:39 +0000902
903 The error reporting follows these rules, which are designed to do
904 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
905 platforms.
906
907 - a NaN result from non-NaN inputs causes ValueError to be raised
908 - an infinite result from finite inputs causes OverflowError to be
909 raised if can_overflow is 1, or raises ValueError if can_overflow
910 is 0.
911 - if the result is finite and errno == EDOM then ValueError is
912 raised
913 - if the result is finite and nonzero and errno == ERANGE then
914 OverflowError is raised
915
916 The last rule is used to catch overflow on platforms which follow
917 C89 but for which HUGE_VAL is not an infinity.
918
919 For the majority of one-argument functions these rules are enough
920 to ensure that Python's functions behave as specified in 'Annex F'
921 of the C99 standard, with the 'invalid' and 'divide-by-zero'
922 floating-point exceptions mapping to Python's ValueError and the
923 'overflow' floating-point exception mapping to OverflowError.
924 math_1 only works for functions that don't have singularities *and*
925 the possibility of overflow; fortunately, that covers everything we
926 care about right now.
927*/
928
Barry Warsaw8b43b191996-12-09 22:32:36 +0000929static PyObject *
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000930math_1_to_whatever(PyObject *arg, double (*func) (double),
Christian Heimes53876d92008-04-19 00:31:39 +0000931 PyObject *(*from_double_func) (double),
932 int can_overflow)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000933{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000934 double x, r;
935 x = PyFloat_AsDouble(arg);
936 if (x == -1.0 && PyErr_Occurred())
937 return NULL;
938 errno = 0;
939 PyFPE_START_PROTECT("in math_1", return 0);
940 r = (*func)(x);
941 PyFPE_END_PROTECT(r);
942 if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
943 PyErr_SetString(PyExc_ValueError,
944 "math domain error"); /* invalid arg */
945 return NULL;
946 }
947 if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
Benjamin Peterson2354a752012-03-13 16:13:09 -0500948 if (can_overflow)
949 PyErr_SetString(PyExc_OverflowError,
950 "math range error"); /* overflow */
951 else
952 PyErr_SetString(PyExc_ValueError,
953 "math domain error"); /* singularity */
954 return NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000955 }
956 if (Py_IS_FINITE(r) && errno && is_error(r))
957 /* this branch unnecessary on most platforms */
958 return NULL;
Mark Dickinsonde429622008-05-01 00:19:23 +0000959
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000960 return (*from_double_func)(r);
Christian Heimes53876d92008-04-19 00:31:39 +0000961}
962
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000963/* variant of math_1, to be used when the function being wrapped is known to
964 set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
965 errno = ERANGE for overflow). */
966
967static PyObject *
968math_1a(PyObject *arg, double (*func) (double))
969{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000970 double x, r;
971 x = PyFloat_AsDouble(arg);
972 if (x == -1.0 && PyErr_Occurred())
973 return NULL;
974 errno = 0;
975 PyFPE_START_PROTECT("in math_1a", return 0);
976 r = (*func)(x);
977 PyFPE_END_PROTECT(r);
978 if (errno && is_error(r))
979 return NULL;
980 return PyFloat_FromDouble(r);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000981}
982
Christian Heimes53876d92008-04-19 00:31:39 +0000983/*
984 math_2 is used to wrap a libm function f that takes two double
985 arguments and returns a double.
986
987 The error reporting follows these rules, which are designed to do
988 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
989 platforms.
990
991 - a NaN result from non-NaN inputs causes ValueError to be raised
992 - an infinite result from finite inputs causes OverflowError to be
993 raised.
994 - if the result is finite and errno == EDOM then ValueError is
995 raised
996 - if the result is finite and nonzero and errno == ERANGE then
997 OverflowError is raised
998
999 The last rule is used to catch overflow on platforms which follow
1000 C89 but for which HUGE_VAL is not an infinity.
1001
1002 For most two-argument functions (copysign, fmod, hypot, atan2)
1003 these rules are enough to ensure that Python's functions behave as
1004 specified in 'Annex F' of the C99 standard, with the 'invalid' and
1005 'divide-by-zero' floating-point exceptions mapping to Python's
1006 ValueError and the 'overflow' floating-point exception mapping to
1007 OverflowError.
1008*/
1009
1010static PyObject *
1011math_1(PyObject *arg, double (*func) (double), int can_overflow)
1012{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001013 return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow);
Jeffrey Yasskinc2155832008-01-05 20:03:11 +00001014}
1015
1016static PyObject *
Christian Heimes53876d92008-04-19 00:31:39 +00001017math_1_to_int(PyObject *arg, double (*func) (double), int can_overflow)
Jeffrey Yasskinc2155832008-01-05 20:03:11 +00001018{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001019 return math_1_to_whatever(arg, func, PyLong_FromDouble, can_overflow);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001020}
1021
Barry Warsaw8b43b191996-12-09 22:32:36 +00001022static PyObject *
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02001023math_2(PyObject *const *args, Py_ssize_t nargs,
1024 double (*func) (double, double), const char *funcname)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001025{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001026 double x, y, r;
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02001027 if (!_PyArg_CheckPositional(funcname, nargs, 2, 2))
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001028 return NULL;
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02001029 x = PyFloat_AsDouble(args[0]);
1030 y = PyFloat_AsDouble(args[1]);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001031 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1032 return NULL;
1033 errno = 0;
1034 PyFPE_START_PROTECT("in math_2", return 0);
1035 r = (*func)(x, y);
1036 PyFPE_END_PROTECT(r);
1037 if (Py_IS_NAN(r)) {
1038 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
1039 errno = EDOM;
1040 else
1041 errno = 0;
1042 }
1043 else if (Py_IS_INFINITY(r)) {
1044 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
1045 errno = ERANGE;
1046 else
1047 errno = 0;
1048 }
1049 if (errno && is_error(r))
1050 return NULL;
1051 else
1052 return PyFloat_FromDouble(r);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001053}
1054
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001055#define FUNC1(funcname, func, can_overflow, docstring) \
1056 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
1057 return math_1(args, func, can_overflow); \
1058 }\
1059 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001060
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001061#define FUNC1A(funcname, func, docstring) \
1062 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
1063 return math_1a(args, func); \
1064 }\
1065 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +00001066
Fred Drake40c48682000-07-03 18:11:56 +00001067#define FUNC2(funcname, func, docstring) \
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02001068 static PyObject * math_##funcname(PyObject *self, PyObject *const *args, Py_ssize_t nargs) { \
1069 return math_2(args, nargs, func, #funcname); \
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001070 }\
1071 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001072
Christian Heimes53876d92008-04-19 00:31:39 +00001073FUNC1(acos, acos, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001074 "acos($module, x, /)\n--\n\n"
1075 "Return the arc cosine (measured in radians) of x.")
Mark Dickinsonf3718592009-12-21 15:27:41 +00001076FUNC1(acosh, m_acosh, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001077 "acosh($module, x, /)\n--\n\n"
1078 "Return the inverse hyperbolic cosine of x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001079FUNC1(asin, asin, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001080 "asin($module, x, /)\n--\n\n"
1081 "Return the arc sine (measured in radians) of x.")
Mark Dickinsonf3718592009-12-21 15:27:41 +00001082FUNC1(asinh, m_asinh, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001083 "asinh($module, x, /)\n--\n\n"
1084 "Return the inverse hyperbolic sine of x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001085FUNC1(atan, atan, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001086 "atan($module, x, /)\n--\n\n"
1087 "Return the arc tangent (measured in radians) of x.")
Christian Heimese57950f2008-04-21 13:08:03 +00001088FUNC2(atan2, m_atan2,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001089 "atan2($module, y, x, /)\n--\n\n"
1090 "Return the arc tangent (measured in radians) of y/x.\n\n"
Tim Petersfe71f812001-08-07 22:10:00 +00001091 "Unlike atan(y/x), the signs of both x and y are considered.")
Mark Dickinsonf3718592009-12-21 15:27:41 +00001092FUNC1(atanh, m_atanh, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001093 "atanh($module, x, /)\n--\n\n"
1094 "Return the inverse hyperbolic tangent of x.")
Guido van Rossum13e05de2007-08-23 22:56:55 +00001095
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001096/*[clinic input]
1097math.ceil
1098
1099 x as number: object
1100 /
1101
1102Return the ceiling of x as an Integral.
1103
1104This is the smallest integer >= x.
1105[clinic start generated code]*/
1106
1107static PyObject *
1108math_ceil(PyObject *module, PyObject *number)
1109/*[clinic end generated code: output=6c3b8a78bc201c67 input=2725352806399cab]*/
1110{
Benjamin Petersonce798522012-01-22 11:24:29 -05001111 _Py_IDENTIFIER(__ceil__);
Mark Dickinson6d02d9c2010-07-02 16:05:15 +00001112 PyObject *method, *result;
Guido van Rossum13e05de2007-08-23 22:56:55 +00001113
Benjamin Petersonce798522012-01-22 11:24:29 -05001114 method = _PyObject_LookupSpecial(number, &PyId___ceil__);
Benjamin Petersonf751bc92010-07-02 13:46:42 +00001115 if (method == NULL) {
1116 if (PyErr_Occurred())
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001117 return NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001118 return math_1_to_int(number, ceil, 0);
Benjamin Petersonf751bc92010-07-02 13:46:42 +00001119 }
Victor Stinnerf17c3de2016-12-06 18:46:19 +01001120 result = _PyObject_CallNoArg(method);
Mark Dickinson6d02d9c2010-07-02 16:05:15 +00001121 Py_DECREF(method);
1122 return result;
Guido van Rossum13e05de2007-08-23 22:56:55 +00001123}
1124
Christian Heimes072c0f12008-01-03 23:01:04 +00001125FUNC2(copysign, copysign,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001126 "copysign($module, x, y, /)\n--\n\n"
1127 "Return a float with the magnitude (absolute value) of x but the sign of y.\n\n"
1128 "On platforms that support signed zeros, copysign(1.0, -0.0)\n"
1129 "returns -1.0.\n")
Christian Heimes53876d92008-04-19 00:31:39 +00001130FUNC1(cos, cos, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001131 "cos($module, x, /)\n--\n\n"
1132 "Return the cosine of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +00001133FUNC1(cosh, cosh, 1,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001134 "cosh($module, x, /)\n--\n\n"
1135 "Return the hyperbolic cosine of x.")
Mark Dickinson45f992a2009-12-19 11:20:49 +00001136FUNC1A(erf, m_erf,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001137 "erf($module, x, /)\n--\n\n"
1138 "Error function at x.")
Mark Dickinson45f992a2009-12-19 11:20:49 +00001139FUNC1A(erfc, m_erfc,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001140 "erfc($module, x, /)\n--\n\n"
1141 "Complementary error function at x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001142FUNC1(exp, exp, 1,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001143 "exp($module, x, /)\n--\n\n"
1144 "Return e raised to the power of x.")
Mark Dickinson664b5112009-12-16 20:23:42 +00001145FUNC1(expm1, m_expm1, 1,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001146 "expm1($module, x, /)\n--\n\n"
1147 "Return exp(x)-1.\n\n"
Mark Dickinson664b5112009-12-16 20:23:42 +00001148 "This function avoids the loss of precision involved in the direct "
1149 "evaluation of exp(x)-1 for small x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001150FUNC1(fabs, fabs, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001151 "fabs($module, x, /)\n--\n\n"
1152 "Return the absolute value of the float x.")
Guido van Rossum13e05de2007-08-23 22:56:55 +00001153
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001154/*[clinic input]
1155math.floor
1156
1157 x as number: object
1158 /
1159
1160Return the floor of x as an Integral.
1161
1162This is the largest integer <= x.
1163[clinic start generated code]*/
1164
1165static PyObject *
1166math_floor(PyObject *module, PyObject *number)
1167/*[clinic end generated code: output=c6a65c4884884b8a input=63af6b5d7ebcc3d6]*/
1168{
Benjamin Petersonce798522012-01-22 11:24:29 -05001169 _Py_IDENTIFIER(__floor__);
Benjamin Petersonb0125892010-07-02 13:35:17 +00001170 PyObject *method, *result;
Guido van Rossum13e05de2007-08-23 22:56:55 +00001171
Benjamin Petersonce798522012-01-22 11:24:29 -05001172 method = _PyObject_LookupSpecial(number, &PyId___floor__);
Benjamin Peterson8bb9cde2010-07-01 15:16:55 +00001173 if (method == NULL) {
1174 if (PyErr_Occurred())
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001175 return NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001176 return math_1_to_int(number, floor, 0);
Benjamin Peterson8bb9cde2010-07-01 15:16:55 +00001177 }
Victor Stinnerf17c3de2016-12-06 18:46:19 +01001178 result = _PyObject_CallNoArg(method);
Benjamin Petersonb0125892010-07-02 13:35:17 +00001179 Py_DECREF(method);
1180 return result;
Guido van Rossum13e05de2007-08-23 22:56:55 +00001181}
1182
Mark Dickinson12c4bdb2009-09-28 19:21:11 +00001183FUNC1A(gamma, m_tgamma,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001184 "gamma($module, x, /)\n--\n\n"
1185 "Gamma function at x.")
Mark Dickinson05d2e082009-12-11 20:17:17 +00001186FUNC1A(lgamma, m_lgamma,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001187 "lgamma($module, x, /)\n--\n\n"
1188 "Natural logarithm of absolute value of Gamma function at x.")
Mark Dickinsonbe64d952010-07-07 16:21:29 +00001189FUNC1(log1p, m_log1p, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001190 "log1p($module, x, /)\n--\n\n"
1191 "Return the natural logarithm of 1+x (base e).\n\n"
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001192 "The result is computed in a way which is accurate for x near zero.")
Mark Dickinsona0ce3752017-04-05 18:34:27 +01001193FUNC2(remainder, m_remainder,
1194 "remainder($module, x, y, /)\n--\n\n"
1195 "Difference between x and the closest integer multiple of y.\n\n"
1196 "Return x - n*y where n*y is the closest integer multiple of y.\n"
1197 "In the case where x is exactly halfway between two multiples of\n"
1198 "y, the nearest even value of n is used. The result is always exact.")
Christian Heimes53876d92008-04-19 00:31:39 +00001199FUNC1(sin, sin, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001200 "sin($module, x, /)\n--\n\n"
1201 "Return the sine of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +00001202FUNC1(sinh, sinh, 1,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001203 "sinh($module, x, /)\n--\n\n"
1204 "Return the hyperbolic sine of x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001205FUNC1(sqrt, sqrt, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001206 "sqrt($module, x, /)\n--\n\n"
1207 "Return the square root of x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001208FUNC1(tan, tan, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001209 "tan($module, x, /)\n--\n\n"
1210 "Return the tangent of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +00001211FUNC1(tanh, tanh, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001212 "tanh($module, x, /)\n--\n\n"
1213 "Return the hyperbolic tangent of x.")
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001214
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001215/* Precision summation function as msum() by Raymond Hettinger in
1216 <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
1217 enhanced with the exact partials sum and roundoff from Mark
1218 Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
1219 See those links for more details, proofs and other references.
1220
1221 Note 1: IEEE 754R floating point semantics are assumed,
1222 but the current implementation does not re-establish special
1223 value semantics across iterations (i.e. handling -Inf + Inf).
1224
1225 Note 2: No provision is made for intermediate overflow handling;
Georg Brandlf78e02b2008-06-10 17:40:04 +00001226 therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001227 sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
1228 overflow of the first partial sum.
1229
Benjamin Petersonfea6a942008-07-02 16:11:42 +00001230 Note 3: The intermediate values lo, yr, and hi are declared volatile so
1231 aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
Georg Brandlf78e02b2008-06-10 17:40:04 +00001232 Also, the volatile declaration forces the values to be stored in memory as
1233 regular doubles instead of extended long precision (80-bit) values. This
Benjamin Petersonfea6a942008-07-02 16:11:42 +00001234 prevents double rounding because any addition or subtraction of two doubles
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001235 can be resolved exactly into double-sized hi and lo values. As long as the
Georg Brandlf78e02b2008-06-10 17:40:04 +00001236 hi value gets forced into a double before yr and lo are computed, the extra
1237 bits in downstream extended precision operations (x87 for example) will be
1238 exactly zero and therefore can be losslessly stored back into a double,
1239 thereby preventing double rounding.
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001240
1241 Note 4: A similar implementation is in Modules/cmathmodule.c.
1242 Be sure to update both when making changes.
1243
Serhiy Storchakaa60c2fe2015-03-12 21:56:08 +02001244 Note 5: The signature of math.fsum() differs from builtins.sum()
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001245 because the start argument doesn't make sense in the context of
1246 accurate summation. Since the partials table is collapsed before
1247 returning a result, sum(seq2, start=sum(seq1)) may not equal the
1248 accurate result returned by sum(itertools.chain(seq1, seq2)).
1249*/
1250
1251#define NUM_PARTIALS 32 /* initial partials array size, on stack */
1252
1253/* Extend the partials array p[] by doubling its size. */
1254static int /* non-zero on error */
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001255_fsum_realloc(double **p_ptr, Py_ssize_t n,
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001256 double *ps, Py_ssize_t *m_ptr)
1257{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001258 void *v = NULL;
1259 Py_ssize_t m = *m_ptr;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001260
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001261 m += m; /* double */
Victor Stinner049e5092014-08-17 22:20:00 +02001262 if (n < m && (size_t)m < ((size_t)PY_SSIZE_T_MAX / sizeof(double))) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001263 double *p = *p_ptr;
1264 if (p == ps) {
1265 v = PyMem_Malloc(sizeof(double) * m);
1266 if (v != NULL)
1267 memcpy(v, ps, sizeof(double) * n);
1268 }
1269 else
1270 v = PyMem_Realloc(p, sizeof(double) * m);
1271 }
1272 if (v == NULL) { /* size overflow or no memory */
1273 PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
1274 return 1;
1275 }
1276 *p_ptr = (double*) v;
1277 *m_ptr = m;
1278 return 0;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001279}
1280
1281/* Full precision summation of a sequence of floats.
1282
1283 def msum(iterable):
1284 partials = [] # sorted, non-overlapping partial sums
1285 for x in iterable:
Mark Dickinsonfdb0acc2010-06-25 20:22:24 +00001286 i = 0
1287 for y in partials:
1288 if abs(x) < abs(y):
1289 x, y = y, x
1290 hi = x + y
1291 lo = y - (hi - x)
1292 if lo:
1293 partials[i] = lo
1294 i += 1
1295 x = hi
1296 partials[i:] = [x]
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001297 return sum_exact(partials)
1298
1299 Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
1300 are exactly equal to x+y. The inner loop applies hi/lo summation to each
1301 partial so that the list of partial sums remains exact.
1302
1303 Sum_exact() adds the partial sums exactly and correctly rounds the final
1304 result (using the round-half-to-even rule). The items in partials remain
1305 non-zero, non-special, non-overlapping and strictly increasing in
1306 magnitude, but possibly not all having the same sign.
1307
1308 Depends on IEEE 754 arithmetic guarantees and half-even rounding.
1309*/
1310
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001311/*[clinic input]
1312math.fsum
1313
1314 seq: object
1315 /
1316
1317Return an accurate floating point sum of values in the iterable seq.
1318
1319Assumes IEEE-754 floating point arithmetic.
1320[clinic start generated code]*/
1321
1322static PyObject *
1323math_fsum(PyObject *module, PyObject *seq)
1324/*[clinic end generated code: output=ba5c672b87fe34fc input=c51b7d8caf6f6e82]*/
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001325{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001326 PyObject *item, *iter, *sum = NULL;
1327 Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
1328 double x, y, t, ps[NUM_PARTIALS], *p = ps;
1329 double xsave, special_sum = 0.0, inf_sum = 0.0;
1330 volatile double hi, yr, lo;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001331
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001332 iter = PyObject_GetIter(seq);
1333 if (iter == NULL)
1334 return NULL;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001335
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001336 PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL)
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001337
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001338 for(;;) { /* for x in iterable */
1339 assert(0 <= n && n <= m);
1340 assert((m == NUM_PARTIALS && p == ps) ||
1341 (m > NUM_PARTIALS && p != NULL));
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001342
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001343 item = PyIter_Next(iter);
1344 if (item == NULL) {
1345 if (PyErr_Occurred())
1346 goto _fsum_error;
1347 break;
1348 }
Raymond Hettingercfd735e2019-01-29 20:39:53 -08001349 ASSIGN_DOUBLE(x, item, error_with_item);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001350 Py_DECREF(item);
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001351
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001352 xsave = x;
1353 for (i = j = 0; j < n; j++) { /* for y in partials */
1354 y = p[j];
1355 if (fabs(x) < fabs(y)) {
1356 t = x; x = y; y = t;
1357 }
1358 hi = x + y;
1359 yr = hi - x;
1360 lo = y - yr;
1361 if (lo != 0.0)
1362 p[i++] = lo;
1363 x = hi;
1364 }
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001365
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001366 n = i; /* ps[i:] = [x] */
1367 if (x != 0.0) {
1368 if (! Py_IS_FINITE(x)) {
1369 /* a nonfinite x could arise either as
1370 a result of intermediate overflow, or
1371 as a result of a nan or inf in the
1372 summands */
1373 if (Py_IS_FINITE(xsave)) {
1374 PyErr_SetString(PyExc_OverflowError,
1375 "intermediate overflow in fsum");
1376 goto _fsum_error;
1377 }
1378 if (Py_IS_INFINITY(xsave))
1379 inf_sum += xsave;
1380 special_sum += xsave;
1381 /* reset partials */
1382 n = 0;
1383 }
1384 else if (n >= m && _fsum_realloc(&p, n, ps, &m))
1385 goto _fsum_error;
1386 else
1387 p[n++] = x;
1388 }
1389 }
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001390
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001391 if (special_sum != 0.0) {
1392 if (Py_IS_NAN(inf_sum))
1393 PyErr_SetString(PyExc_ValueError,
1394 "-inf + inf in fsum");
1395 else
1396 sum = PyFloat_FromDouble(special_sum);
1397 goto _fsum_error;
1398 }
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001399
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001400 hi = 0.0;
1401 if (n > 0) {
1402 hi = p[--n];
1403 /* sum_exact(ps, hi) from the top, stop when the sum becomes
1404 inexact. */
1405 while (n > 0) {
1406 x = hi;
1407 y = p[--n];
1408 assert(fabs(y) < fabs(x));
1409 hi = x + y;
1410 yr = hi - x;
1411 lo = y - yr;
1412 if (lo != 0.0)
1413 break;
1414 }
1415 /* Make half-even rounding work across multiple partials.
1416 Needed so that sum([1e-16, 1, 1e16]) will round-up the last
1417 digit to two instead of down to zero (the 1e-16 makes the 1
1418 slightly closer to two). With a potential 1 ULP rounding
1419 error fixed-up, math.fsum() can guarantee commutativity. */
1420 if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
1421 (lo > 0.0 && p[n-1] > 0.0))) {
1422 y = lo * 2.0;
1423 x = hi + y;
1424 yr = x - hi;
1425 if (y == yr)
1426 hi = x;
1427 }
1428 }
1429 sum = PyFloat_FromDouble(hi);
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001430
Raymond Hettingercfd735e2019-01-29 20:39:53 -08001431 _fsum_error:
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001432 PyFPE_END_PROTECT(hi)
1433 Py_DECREF(iter);
1434 if (p != ps)
1435 PyMem_Free(p);
1436 return sum;
Raymond Hettingercfd735e2019-01-29 20:39:53 -08001437
1438 error_with_item:
1439 Py_DECREF(item);
1440 goto _fsum_error;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001441}
1442
1443#undef NUM_PARTIALS
1444
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001445
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001446/* Return the smallest integer k such that n < 2**k, or 0 if n == 0.
1447 * Equivalent to floor(lg(x))+1. Also equivalent to: bitwidth_of_type -
1448 * count_leading_zero_bits(x)
1449 */
1450
1451/* XXX: This routine does more or less the same thing as
1452 * bits_in_digit() in Objects/longobject.c. Someday it would be nice to
1453 * consolidate them. On BSD, there's a library function called fls()
1454 * that we could use, and GCC provides __builtin_clz().
1455 */
1456
1457static unsigned long
1458bit_length(unsigned long n)
1459{
1460 unsigned long len = 0;
1461 while (n != 0) {
1462 ++len;
1463 n >>= 1;
1464 }
1465 return len;
1466}
1467
1468static unsigned long
1469count_set_bits(unsigned long n)
1470{
1471 unsigned long count = 0;
1472 while (n != 0) {
1473 ++count;
1474 n &= n - 1; /* clear least significant bit */
1475 }
1476 return count;
1477}
1478
Mark Dickinson73934b92019-05-18 12:29:50 +01001479/* Integer square root
1480
1481Given a nonnegative integer `n`, we want to compute the largest integer
1482`a` for which `a * a <= n`, or equivalently the integer part of the exact
1483square root of `n`.
1484
1485We use an adaptive-precision pure-integer version of Newton's iteration. Given
1486a positive integer `n`, the algorithm produces at each iteration an integer
1487approximation `a` to the square root of `n >> s` for some even integer `s`,
1488with `s` decreasing as the iterations progress. On the final iteration, `s` is
1489zero and we have an approximation to the square root of `n` itself.
1490
1491At every step, the approximation `a` is strictly within 1.0 of the true square
1492root, so we have
1493
1494 (a - 1)**2 < (n >> s) < (a + 1)**2
1495
1496After the final iteration, a check-and-correct step is needed to determine
1497whether `a` or `a - 1` gives the desired integer square root of `n`.
1498
1499The algorithm is remarkable in its simplicity. There's no need for a
1500per-iteration check-and-correct step, and termination is straightforward: the
1501number of iterations is known in advance (it's exactly `floor(log2(log2(n)))`
1502for `n > 1`). The only tricky part of the correctness proof is in establishing
1503that the bound `(a - 1)**2 < (n >> s) < (a + 1)**2` is maintained from one
1504iteration to the next. A sketch of the proof of this is given below.
1505
1506In addition to the proof sketch, a formal, computer-verified proof
1507of correctness (using Lean) of an equivalent recursive algorithm can be found
1508here:
1509
1510 https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean
1511
1512
1513Here's Python code equivalent to the C implementation below:
1514
1515 def isqrt(n):
1516 """
1517 Return the integer part of the square root of the input.
1518 """
1519 n = operator.index(n)
1520
1521 if n < 0:
1522 raise ValueError("isqrt() argument must be nonnegative")
1523 if n == 0:
1524 return 0
1525
1526 c = (n.bit_length() - 1) // 2
1527 a = 1
1528 d = 0
1529 for s in reversed(range(c.bit_length())):
1530 e = d
1531 d = c >> s
1532 a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
1533 assert (a-1)**2 < n >> 2*(c - d) < (a+1)**2
1534
1535 return a - (a*a > n)
1536
1537
1538Sketch of proof of correctness
1539------------------------------
1540
1541The delicate part of the correctness proof is showing that the loop invariant
1542is preserved from one iteration to the next. That is, just before the line
1543
1544 a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
1545
1546is executed in the above code, we know that
1547
1548 (1) (a - 1)**2 < (n >> 2*(c - e)) < (a + 1)**2.
1549
1550(since `e` is always the value of `d` from the previous iteration). We must
1551prove that after that line is executed, we have
1552
1553 (a - 1)**2 < (n >> 2*(c - d)) < (a + 1)**2
1554
1555To faciliate the proof, we make some changes of notation. Write `m` for
1556`n >> 2*(c-d)`, and write `b` for the new value of `a`, so
1557
1558 b = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
1559
1560or equivalently:
1561
1562 (2) b = (a << d - e - 1) + (m >> d - e + 1) // a
1563
1564Then we can rewrite (1) as:
1565
1566 (3) (a - 1)**2 < (m >> 2*(d - e)) < (a + 1)**2
1567
1568and we must show that (b - 1)**2 < m < (b + 1)**2.
1569
1570From this point on, we switch to mathematical notation, so `/` means exact
1571division rather than integer division and `^` is used for exponentiation. We
1572use the `√` symbol for the exact square root. In (3), we can remove the
1573implicit floor operation to give:
1574
1575 (4) (a - 1)^2 < m / 4^(d - e) < (a + 1)^2
1576
1577Taking square roots throughout (4), scaling by `2^(d-e)`, and rearranging gives
1578
1579 (5) 0 <= | 2^(d-e)a - √m | < 2^(d-e)
1580
1581Squaring and dividing through by `2^(d-e+1) a` gives
1582
1583 (6) 0 <= 2^(d-e-1) a + m / (2^(d-e+1) a) - √m < 2^(d-e-1) / a
1584
1585We'll show below that `2^(d-e-1) <= a`. Given that, we can replace the
1586right-hand side of (6) with `1`, and now replacing the central
1587term `m / (2^(d-e+1) a)` with its floor in (6) gives
1588
1589 (7) -1 < 2^(d-e-1) a + m // 2^(d-e+1) a - √m < 1
1590
1591Or equivalently, from (2):
1592
1593 (7) -1 < b - √m < 1
1594
1595and rearranging gives that `(b-1)^2 < m < (b+1)^2`, which is what we needed
1596to prove.
1597
1598We're not quite done: we still have to prove the inequality `2^(d - e - 1) <=
1599a` that was used to get line (7) above. From the definition of `c`, we have
1600`4^c <= n`, which implies
1601
1602 (8) 4^d <= m
1603
1604also, since `e == d >> 1`, `d` is at most `2e + 1`, from which it follows
1605that `2d - 2e - 1 <= d` and hence that
1606
1607 (9) 4^(2d - 2e - 1) <= m
1608
1609Dividing both sides by `4^(d - e)` gives
1610
1611 (10) 4^(d - e - 1) <= m / 4^(d - e)
1612
1613But we know from (4) that `m / 4^(d-e) < (a + 1)^2`, hence
1614
1615 (11) 4^(d - e - 1) < (a + 1)^2
1616
1617Now taking square roots of both sides and observing that both `2^(d-e-1)` and
1618`a` are integers gives `2^(d - e - 1) <= a`, which is what we needed. This
1619completes the proof sketch.
1620
1621*/
1622
1623/*[clinic input]
1624math.isqrt
1625
1626 n: object
1627 /
1628
1629Return the integer part of the square root of the input.
1630[clinic start generated code]*/
1631
1632static PyObject *
1633math_isqrt(PyObject *module, PyObject *n)
1634/*[clinic end generated code: output=35a6f7f980beab26 input=5b6e7ae4fa6c43d6]*/
1635{
1636 int a_too_large, s;
1637 size_t c, d;
1638 PyObject *a = NULL, *b;
1639
1640 n = PyNumber_Index(n);
1641 if (n == NULL) {
1642 return NULL;
1643 }
1644
1645 if (_PyLong_Sign(n) < 0) {
1646 PyErr_SetString(
1647 PyExc_ValueError,
1648 "isqrt() argument must be nonnegative");
1649 goto error;
1650 }
1651 if (_PyLong_Sign(n) == 0) {
1652 Py_DECREF(n);
1653 return PyLong_FromLong(0);
1654 }
1655
1656 c = _PyLong_NumBits(n);
1657 if (c == (size_t)(-1)) {
1658 goto error;
1659 }
1660 c = (c - 1U) / 2U;
1661
1662 /* s = c.bit_length() */
1663 s = 0;
1664 while ((c >> s) > 0) {
1665 ++s;
1666 }
1667
1668 a = PyLong_FromLong(1);
1669 if (a == NULL) {
1670 goto error;
1671 }
1672 d = 0;
1673 while (--s >= 0) {
1674 PyObject *q, *shift;
1675 size_t e = d;
1676
1677 d = c >> s;
1678
1679 /* q = (n >> 2*c - e - d + 1) // a */
1680 shift = PyLong_FromSize_t(2U*c - d - e + 1U);
1681 if (shift == NULL) {
1682 goto error;
1683 }
1684 q = PyNumber_Rshift(n, shift);
1685 Py_DECREF(shift);
1686 if (q == NULL) {
1687 goto error;
1688 }
1689 Py_SETREF(q, PyNumber_FloorDivide(q, a));
1690 if (q == NULL) {
1691 goto error;
1692 }
1693
1694 /* a = (a << d - 1 - e) + q */
1695 shift = PyLong_FromSize_t(d - 1U - e);
1696 if (shift == NULL) {
1697 Py_DECREF(q);
1698 goto error;
1699 }
1700 Py_SETREF(a, PyNumber_Lshift(a, shift));
1701 Py_DECREF(shift);
1702 if (a == NULL) {
1703 Py_DECREF(q);
1704 goto error;
1705 }
1706 Py_SETREF(a, PyNumber_Add(a, q));
1707 Py_DECREF(q);
1708 if (a == NULL) {
1709 goto error;
1710 }
1711 }
1712
1713 /* The correct result is either a or a - 1. Figure out which, and
1714 decrement a if necessary. */
1715
1716 /* a_too_large = n < a * a */
1717 b = PyNumber_Multiply(a, a);
1718 if (b == NULL) {
1719 goto error;
1720 }
1721 a_too_large = PyObject_RichCompareBool(n, b, Py_LT);
1722 Py_DECREF(b);
1723 if (a_too_large == -1) {
1724 goto error;
1725 }
1726
1727 if (a_too_large) {
1728 Py_SETREF(a, PyNumber_Subtract(a, _PyLong_One));
1729 }
1730 Py_DECREF(n);
1731 return a;
1732
1733 error:
1734 Py_XDECREF(a);
1735 Py_DECREF(n);
1736 return NULL;
1737}
1738
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001739/* Divide-and-conquer factorial algorithm
1740 *
Raymond Hettinger15f44ab2016-08-30 10:47:49 -07001741 * Based on the formula and pseudo-code provided at:
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001742 * http://www.luschny.de/math/factorial/binarysplitfact.html
1743 *
1744 * Faster algorithms exist, but they're more complicated and depend on
Ezio Melotti9527afd2010-07-08 15:03:02 +00001745 * a fast prime factorization algorithm.
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001746 *
1747 * Notes on the algorithm
1748 * ----------------------
1749 *
1750 * factorial(n) is written in the form 2**k * m, with m odd. k and m are
1751 * computed separately, and then combined using a left shift.
1752 *
1753 * The function factorial_odd_part computes the odd part m (i.e., the greatest
1754 * odd divisor) of factorial(n), using the formula:
1755 *
1756 * factorial_odd_part(n) =
1757 *
1758 * product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j
1759 *
1760 * Example: factorial_odd_part(20) =
1761 *
1762 * (1) *
1763 * (1) *
1764 * (1 * 3 * 5) *
1765 * (1 * 3 * 5 * 7 * 9)
1766 * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
1767 *
1768 * Here i goes from large to small: the first term corresponds to i=4 (any
1769 * larger i gives an empty product), and the last term corresponds to i=0.
1770 * Each term can be computed from the last by multiplying by the extra odd
1771 * numbers required: e.g., to get from the penultimate term to the last one,
1772 * we multiply by (11 * 13 * 15 * 17 * 19).
1773 *
1774 * To see a hint of why this formula works, here are the same numbers as above
1775 * but with the even parts (i.e., the appropriate powers of 2) included. For
1776 * each subterm in the product for i, we multiply that subterm by 2**i:
1777 *
1778 * factorial(20) =
1779 *
1780 * (16) *
1781 * (8) *
1782 * (4 * 12 * 20) *
1783 * (2 * 6 * 10 * 14 * 18) *
1784 * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
1785 *
1786 * The factorial_partial_product function computes the product of all odd j in
1787 * range(start, stop) for given start and stop. It's used to compute the
1788 * partial products like (11 * 13 * 15 * 17 * 19) in the example above. It
1789 * operates recursively, repeatedly splitting the range into two roughly equal
1790 * pieces until the subranges are small enough to be computed using only C
1791 * integer arithmetic.
1792 *
1793 * The two-valuation k (i.e., the exponent of the largest power of 2 dividing
1794 * the factorial) is computed independently in the main math_factorial
1795 * function. By standard results, its value is:
1796 *
1797 * two_valuation = n//2 + n//4 + n//8 + ....
1798 *
1799 * It can be shown (e.g., by complete induction on n) that two_valuation is
1800 * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of
1801 * '1'-bits in the binary expansion of n.
1802 */
1803
1804/* factorial_partial_product: Compute product(range(start, stop, 2)) using
1805 * divide and conquer. Assumes start and stop are odd and stop > start.
1806 * max_bits must be >= bit_length(stop - 2). */
1807
1808static PyObject *
1809factorial_partial_product(unsigned long start, unsigned long stop,
1810 unsigned long max_bits)
1811{
1812 unsigned long midpoint, num_operands;
1813 PyObject *left = NULL, *right = NULL, *result = NULL;
1814
1815 /* If the return value will fit an unsigned long, then we can
1816 * multiply in a tight, fast loop where each multiply is O(1).
1817 * Compute an upper bound on the number of bits required to store
1818 * the answer.
1819 *
1820 * Storing some integer z requires floor(lg(z))+1 bits, which is
1821 * conveniently the value returned by bit_length(z). The
1822 * product x*y will require at most
1823 * bit_length(x) + bit_length(y) bits to store, based
1824 * on the idea that lg product = lg x + lg y.
1825 *
1826 * We know that stop - 2 is the largest number to be multiplied. From
1827 * there, we have: bit_length(answer) <= num_operands *
1828 * bit_length(stop - 2)
1829 */
1830
1831 num_operands = (stop - start) / 2;
1832 /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the
1833 * unlikely case of an overflow in num_operands * max_bits. */
1834 if (num_operands <= 8 * SIZEOF_LONG &&
1835 num_operands * max_bits <= 8 * SIZEOF_LONG) {
1836 unsigned long j, total;
1837 for (total = start, j = start + 2; j < stop; j += 2)
1838 total *= j;
1839 return PyLong_FromUnsignedLong(total);
1840 }
1841
1842 /* find midpoint of range(start, stop), rounded up to next odd number. */
1843 midpoint = (start + num_operands) | 1;
1844 left = factorial_partial_product(start, midpoint,
1845 bit_length(midpoint - 2));
1846 if (left == NULL)
1847 goto error;
1848 right = factorial_partial_product(midpoint, stop, max_bits);
1849 if (right == NULL)
1850 goto error;
1851 result = PyNumber_Multiply(left, right);
1852
1853 error:
1854 Py_XDECREF(left);
1855 Py_XDECREF(right);
1856 return result;
1857}
1858
1859/* factorial_odd_part: compute the odd part of factorial(n). */
1860
1861static PyObject *
1862factorial_odd_part(unsigned long n)
1863{
1864 long i;
1865 unsigned long v, lower, upper;
1866 PyObject *partial, *tmp, *inner, *outer;
1867
1868 inner = PyLong_FromLong(1);
1869 if (inner == NULL)
1870 return NULL;
1871 outer = inner;
1872 Py_INCREF(outer);
1873
1874 upper = 3;
1875 for (i = bit_length(n) - 2; i >= 0; i--) {
1876 v = n >> i;
1877 if (v <= 2)
1878 continue;
1879 lower = upper;
1880 /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */
1881 upper = (v + 1) | 1;
1882 /* Here inner is the product of all odd integers j in the range (0,
1883 n/2**(i+1)]. The factorial_partial_product call below gives the
1884 product of all odd integers j in the range (n/2**(i+1), n/2**i]. */
1885 partial = factorial_partial_product(lower, upper, bit_length(upper-2));
1886 /* inner *= partial */
1887 if (partial == NULL)
1888 goto error;
1889 tmp = PyNumber_Multiply(inner, partial);
1890 Py_DECREF(partial);
1891 if (tmp == NULL)
1892 goto error;
1893 Py_DECREF(inner);
1894 inner = tmp;
1895 /* Now inner is the product of all odd integers j in the range (0,
1896 n/2**i], giving the inner product in the formula above. */
1897
1898 /* outer *= inner; */
1899 tmp = PyNumber_Multiply(outer, inner);
1900 if (tmp == NULL)
1901 goto error;
1902 Py_DECREF(outer);
1903 outer = tmp;
1904 }
Mark Dickinson76464492012-10-25 10:46:28 +01001905 Py_DECREF(inner);
1906 return outer;
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001907
1908 error:
1909 Py_DECREF(outer);
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001910 Py_DECREF(inner);
Mark Dickinson76464492012-10-25 10:46:28 +01001911 return NULL;
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001912}
1913
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001914
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001915/* Lookup table for small factorial values */
1916
1917static const unsigned long SmallFactorials[] = {
1918 1, 1, 2, 6, 24, 120, 720, 5040, 40320,
1919 362880, 3628800, 39916800, 479001600,
1920#if SIZEOF_LONG >= 8
1921 6227020800, 87178291200, 1307674368000,
1922 20922789888000, 355687428096000, 6402373705728000,
1923 121645100408832000, 2432902008176640000
1924#endif
1925};
1926
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001927/*[clinic input]
1928math.factorial
1929
1930 x as arg: object
1931 /
1932
1933Find x!.
1934
1935Raise a ValueError if x is negative or non-integral.
1936[clinic start generated code]*/
1937
Barry Warsaw8b43b191996-12-09 22:32:36 +00001938static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001939math_factorial(PyObject *module, PyObject *arg)
1940/*[clinic end generated code: output=6686f26fae00e9ca input=6d1c8105c0d91fb4]*/
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001941{
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001942 long x;
Mark Dickinson5990d282014-04-10 09:29:39 -04001943 int overflow;
Pablo Galindoe9ba3702018-09-03 22:20:06 +01001944 PyObject *result, *odd_part, *two_valuation, *pyint_form;
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001945
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001946 if (PyFloat_Check(arg)) {
1947 PyObject *lx;
1948 double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
1949 if (!(Py_IS_FINITE(dx) && dx == floor(dx))) {
1950 PyErr_SetString(PyExc_ValueError,
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001951 "factorial() only accepts integral values");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001952 return NULL;
1953 }
1954 lx = PyLong_FromDouble(dx);
1955 if (lx == NULL)
1956 return NULL;
Mark Dickinson5990d282014-04-10 09:29:39 -04001957 x = PyLong_AsLongAndOverflow(lx, &overflow);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001958 Py_DECREF(lx);
1959 }
Pablo Galindoe9ba3702018-09-03 22:20:06 +01001960 else {
1961 pyint_form = PyNumber_Index(arg);
1962 if (pyint_form == NULL) {
1963 return NULL;
1964 }
1965 x = PyLong_AsLongAndOverflow(pyint_form, &overflow);
1966 Py_DECREF(pyint_form);
1967 }
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001968
Mark Dickinson5990d282014-04-10 09:29:39 -04001969 if (x == -1 && PyErr_Occurred()) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001970 return NULL;
Mark Dickinson5990d282014-04-10 09:29:39 -04001971 }
1972 else if (overflow == 1) {
1973 PyErr_Format(PyExc_OverflowError,
1974 "factorial() argument should not exceed %ld",
1975 LONG_MAX);
1976 return NULL;
1977 }
1978 else if (overflow == -1 || x < 0) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001979 PyErr_SetString(PyExc_ValueError,
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001980 "factorial() not defined for negative values");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001981 return NULL;
1982 }
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001983
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001984 /* use lookup table if x is small */
Victor Stinner63941882011-09-29 00:42:28 +02001985 if (x < (long)Py_ARRAY_LENGTH(SmallFactorials))
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001986 return PyLong_FromUnsignedLong(SmallFactorials[x]);
1987
1988 /* else express in the form odd_part * 2**two_valuation, and compute as
1989 odd_part << two_valuation. */
1990 odd_part = factorial_odd_part(x);
1991 if (odd_part == NULL)
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001992 return NULL;
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001993 two_valuation = PyLong_FromLong(x - count_set_bits(x));
1994 if (two_valuation == NULL) {
1995 Py_DECREF(odd_part);
1996 return NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001997 }
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001998 result = PyNumber_Lshift(odd_part, two_valuation);
1999 Py_DECREF(two_valuation);
2000 Py_DECREF(odd_part);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002001 return result;
Georg Brandlc28e1fa2008-06-10 19:20:26 +00002002}
2003
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002004
2005/*[clinic input]
2006math.trunc
2007
2008 x: object
2009 /
2010
2011Truncates the Real x to the nearest Integral toward 0.
2012
2013Uses the __trunc__ magic method.
2014[clinic start generated code]*/
Georg Brandlc28e1fa2008-06-10 19:20:26 +00002015
2016static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002017math_trunc(PyObject *module, PyObject *x)
2018/*[clinic end generated code: output=34b9697b707e1031 input=2168b34e0a09134d]*/
Christian Heimes400adb02008-02-01 08:12:03 +00002019{
Benjamin Petersonce798522012-01-22 11:24:29 -05002020 _Py_IDENTIFIER(__trunc__);
Benjamin Petersonb0125892010-07-02 13:35:17 +00002021 PyObject *trunc, *result;
Christian Heimes400adb02008-02-01 08:12:03 +00002022
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002023 if (Py_TYPE(x)->tp_dict == NULL) {
2024 if (PyType_Ready(Py_TYPE(x)) < 0)
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002025 return NULL;
2026 }
Christian Heimes400adb02008-02-01 08:12:03 +00002027
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002028 trunc = _PyObject_LookupSpecial(x, &PyId___trunc__);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002029 if (trunc == NULL) {
Benjamin Peterson8bb9cde2010-07-01 15:16:55 +00002030 if (!PyErr_Occurred())
2031 PyErr_Format(PyExc_TypeError,
2032 "type %.100s doesn't define __trunc__ method",
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002033 Py_TYPE(x)->tp_name);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002034 return NULL;
2035 }
Victor Stinnerf17c3de2016-12-06 18:46:19 +01002036 result = _PyObject_CallNoArg(trunc);
Benjamin Petersonb0125892010-07-02 13:35:17 +00002037 Py_DECREF(trunc);
2038 return result;
Christian Heimes400adb02008-02-01 08:12:03 +00002039}
2040
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002041
2042/*[clinic input]
2043math.frexp
2044
2045 x: double
2046 /
2047
2048Return the mantissa and exponent of x, as pair (m, e).
2049
2050m is a float and e is an int, such that x = m * 2.**e.
2051If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.
2052[clinic start generated code]*/
Christian Heimes400adb02008-02-01 08:12:03 +00002053
2054static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002055math_frexp_impl(PyObject *module, double x)
2056/*[clinic end generated code: output=03e30d252a15ad4a input=96251c9e208bc6e9]*/
Guido van Rossumd18ad581991-10-24 14:57:21 +00002057{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002058 int i;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002059 /* deal with special cases directly, to sidestep platform
2060 differences */
2061 if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
2062 i = 0;
2063 }
2064 else {
2065 PyFPE_START_PROTECT("in math_frexp", return 0);
2066 x = frexp(x, &i);
2067 PyFPE_END_PROTECT(x);
2068 }
2069 return Py_BuildValue("(di)", x, i);
Guido van Rossumd18ad581991-10-24 14:57:21 +00002070}
2071
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002072
2073/*[clinic input]
2074math.ldexp
2075
2076 x: double
2077 i: object
2078 /
2079
2080Return x * (2**i).
2081
2082This is essentially the inverse of frexp().
2083[clinic start generated code]*/
Guido van Rossumc6e22901998-12-04 19:26:43 +00002084
Barry Warsaw8b43b191996-12-09 22:32:36 +00002085static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002086math_ldexp_impl(PyObject *module, double x, PyObject *i)
2087/*[clinic end generated code: output=b6892f3c2df9cc6a input=17d5970c1a40a8c1]*/
Guido van Rossumd18ad581991-10-24 14:57:21 +00002088{
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002089 double r;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002090 long exp;
2091 int overflow;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00002092
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002093 if (PyLong_Check(i)) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002094 /* on overflow, replace exponent with either LONG_MAX
2095 or LONG_MIN, depending on the sign. */
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002096 exp = PyLong_AsLongAndOverflow(i, &overflow);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002097 if (exp == -1 && PyErr_Occurred())
2098 return NULL;
2099 if (overflow)
2100 exp = overflow < 0 ? LONG_MIN : LONG_MAX;
2101 }
2102 else {
2103 PyErr_SetString(PyExc_TypeError,
Serhiy Storchaka95949422013-08-27 19:40:23 +03002104 "Expected an int as second argument to ldexp.");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002105 return NULL;
2106 }
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00002107
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002108 if (x == 0. || !Py_IS_FINITE(x)) {
2109 /* NaNs, zeros and infinities are returned unchanged */
2110 r = x;
2111 errno = 0;
2112 } else if (exp > INT_MAX) {
2113 /* overflow */
2114 r = copysign(Py_HUGE_VAL, x);
2115 errno = ERANGE;
2116 } else if (exp < INT_MIN) {
2117 /* underflow to +-0 */
2118 r = copysign(0., x);
2119 errno = 0;
2120 } else {
2121 errno = 0;
2122 PyFPE_START_PROTECT("in math_ldexp", return 0);
2123 r = ldexp(x, (int)exp);
2124 PyFPE_END_PROTECT(r);
2125 if (Py_IS_INFINITY(r))
2126 errno = ERANGE;
2127 }
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00002128
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002129 if (errno && is_error(r))
2130 return NULL;
2131 return PyFloat_FromDouble(r);
Guido van Rossumd18ad581991-10-24 14:57:21 +00002132}
2133
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002134
2135/*[clinic input]
2136math.modf
2137
2138 x: double
2139 /
2140
2141Return the fractional and integer parts of x.
2142
2143Both results carry the sign of x and are floats.
2144[clinic start generated code]*/
Guido van Rossumc6e22901998-12-04 19:26:43 +00002145
Barry Warsaw8b43b191996-12-09 22:32:36 +00002146static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002147math_modf_impl(PyObject *module, double x)
2148/*[clinic end generated code: output=90cee0260014c3c0 input=b4cfb6786afd9035]*/
Guido van Rossumd18ad581991-10-24 14:57:21 +00002149{
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002150 double y;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002151 /* some platforms don't do the right thing for NaNs and
2152 infinities, so we take care of special cases directly. */
2153 if (!Py_IS_FINITE(x)) {
2154 if (Py_IS_INFINITY(x))
2155 return Py_BuildValue("(dd)", copysign(0., x), x);
2156 else if (Py_IS_NAN(x))
2157 return Py_BuildValue("(dd)", x, x);
2158 }
Christian Heimesa342c012008-04-20 21:01:16 +00002159
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002160 errno = 0;
2161 PyFPE_START_PROTECT("in math_modf", return 0);
2162 x = modf(x, &y);
2163 PyFPE_END_PROTECT(x);
2164 return Py_BuildValue("(dd)", x, y);
Guido van Rossumd18ad581991-10-24 14:57:21 +00002165}
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00002166
Guido van Rossumc6e22901998-12-04 19:26:43 +00002167
Serhiy Storchaka95949422013-08-27 19:40:23 +03002168/* A decent logarithm is easy to compute even for huge ints, but libm can't
Tim Peters78526162001-09-05 00:53:45 +00002169 do that by itself -- loghelper can. func is log or log10, and name is
Serhiy Storchaka95949422013-08-27 19:40:23 +03002170 "log" or "log10". Note that overflow of the result isn't possible: an int
Mark Dickinson6ecd9e52010-01-02 15:33:56 +00002171 can contain no more than INT_MAX * SHIFT bits, so has value certainly less
2172 than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
Tim Peters78526162001-09-05 00:53:45 +00002173 small enough to fit in an IEEE single. log and log10 are even smaller.
Serhiy Storchaka95949422013-08-27 19:40:23 +03002174 However, intermediate overflow is possible for an int if the number of bits
2175 in that int is larger than PY_SSIZE_T_MAX. */
Tim Peters78526162001-09-05 00:53:45 +00002176
2177static PyObject*
Serhiy Storchakaef1585e2015-12-25 20:01:53 +02002178loghelper(PyObject* arg, double (*func)(double), const char *funcname)
Tim Peters78526162001-09-05 00:53:45 +00002179{
Serhiy Storchaka95949422013-08-27 19:40:23 +03002180 /* If it is int, do it ourselves. */
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002181 if (PyLong_Check(arg)) {
Mark Dickinsonc6037172010-09-29 19:06:36 +00002182 double x, result;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002183 Py_ssize_t e;
Mark Dickinsonc6037172010-09-29 19:06:36 +00002184
2185 /* Negative or zero inputs give a ValueError. */
2186 if (Py_SIZE(arg) <= 0) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002187 PyErr_SetString(PyExc_ValueError,
2188 "math domain error");
2189 return NULL;
2190 }
Mark Dickinsonfa41e602010-09-28 07:22:27 +00002191
Mark Dickinsonc6037172010-09-29 19:06:36 +00002192 x = PyLong_AsDouble(arg);
2193 if (x == -1.0 && PyErr_Occurred()) {
2194 if (!PyErr_ExceptionMatches(PyExc_OverflowError))
2195 return NULL;
2196 /* Here the conversion to double overflowed, but it's possible
2197 to compute the log anyway. Clear the exception and continue. */
2198 PyErr_Clear();
2199 x = _PyLong_Frexp((PyLongObject *)arg, &e);
2200 if (x == -1.0 && PyErr_Occurred())
2201 return NULL;
2202 /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
2203 result = func(x) + func(2.0) * e;
2204 }
2205 else
2206 /* Successfully converted x to a double. */
2207 result = func(x);
2208 return PyFloat_FromDouble(result);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002209 }
Tim Peters78526162001-09-05 00:53:45 +00002210
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002211 /* Else let libm handle it by itself. */
2212 return math_1(arg, func, 0);
Tim Peters78526162001-09-05 00:53:45 +00002213}
2214
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002215
2216/*[clinic input]
2217math.log
2218
2219 x: object
2220 [
2221 base: object(c_default="NULL") = math.e
2222 ]
2223 /
2224
2225Return the logarithm of x to the given base.
2226
2227If the base not specified, returns the natural logarithm (base e) of x.
2228[clinic start generated code]*/
2229
Tim Peters78526162001-09-05 00:53:45 +00002230static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002231math_log_impl(PyObject *module, PyObject *x, int group_right_1,
2232 PyObject *base)
2233/*[clinic end generated code: output=7b5a39e526b73fc9 input=0f62d5726cbfebbd]*/
Tim Peters78526162001-09-05 00:53:45 +00002234{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002235 PyObject *num, *den;
2236 PyObject *ans;
Raymond Hettinger866964c2002-12-14 19:51:34 +00002237
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002238 num = loghelper(x, m_log, "log");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002239 if (num == NULL || base == NULL)
2240 return num;
Raymond Hettinger866964c2002-12-14 19:51:34 +00002241
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002242 den = loghelper(base, m_log, "log");
2243 if (den == NULL) {
2244 Py_DECREF(num);
2245 return NULL;
2246 }
Raymond Hettinger866964c2002-12-14 19:51:34 +00002247
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002248 ans = PyNumber_TrueDivide(num, den);
2249 Py_DECREF(num);
2250 Py_DECREF(den);
2251 return ans;
Tim Peters78526162001-09-05 00:53:45 +00002252}
2253
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002254
2255/*[clinic input]
2256math.log2
2257
2258 x: object
2259 /
2260
2261Return the base 2 logarithm of x.
2262[clinic start generated code]*/
Tim Peters78526162001-09-05 00:53:45 +00002263
2264static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002265math_log2(PyObject *module, PyObject *x)
2266/*[clinic end generated code: output=5425899a4d5d6acb input=08321262bae4f39b]*/
Victor Stinnerfa0e3d52011-05-09 01:01:09 +02002267{
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002268 return loghelper(x, m_log2, "log2");
Victor Stinnerfa0e3d52011-05-09 01:01:09 +02002269}
2270
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002271
2272/*[clinic input]
2273math.log10
2274
2275 x: object
2276 /
2277
2278Return the base 10 logarithm of x.
2279[clinic start generated code]*/
Victor Stinnerfa0e3d52011-05-09 01:01:09 +02002280
2281static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002282math_log10(PyObject *module, PyObject *x)
2283/*[clinic end generated code: output=be72a64617df9c6f input=b2469d02c6469e53]*/
Tim Peters78526162001-09-05 00:53:45 +00002284{
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002285 return loghelper(x, m_log10, "log10");
Tim Peters78526162001-09-05 00:53:45 +00002286}
2287
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002288
2289/*[clinic input]
2290math.fmod
2291
2292 x: double
2293 y: double
2294 /
2295
2296Return fmod(x, y), according to platform C.
2297
2298x % y may differ.
2299[clinic start generated code]*/
Tim Peters78526162001-09-05 00:53:45 +00002300
Christian Heimes53876d92008-04-19 00:31:39 +00002301static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002302math_fmod_impl(PyObject *module, double x, double y)
2303/*[clinic end generated code: output=7559d794343a27b5 input=4f84caa8cfc26a03]*/
Christian Heimes53876d92008-04-19 00:31:39 +00002304{
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002305 double r;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002306 /* fmod(x, +/-Inf) returns x for finite x. */
2307 if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
2308 return PyFloat_FromDouble(x);
2309 errno = 0;
2310 PyFPE_START_PROTECT("in math_fmod", return 0);
2311 r = fmod(x, y);
2312 PyFPE_END_PROTECT(r);
2313 if (Py_IS_NAN(r)) {
2314 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
2315 errno = EDOM;
2316 else
2317 errno = 0;
2318 }
2319 if (errno && is_error(r))
2320 return NULL;
2321 else
2322 return PyFloat_FromDouble(r);
Christian Heimes53876d92008-04-19 00:31:39 +00002323}
2324
Raymond Hettinger13990742018-08-11 11:26:36 -07002325/*
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002326Given an *n* length *vec* of values and a value *max*, compute:
Raymond Hettinger13990742018-08-11 11:26:36 -07002327
Raymond Hettingerc630e102018-08-11 18:39:05 -07002328 max * sqrt(sum((x / max) ** 2 for x in vec))
Raymond Hettinger13990742018-08-11 11:26:36 -07002329
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002330The value of the *max* variable must be non-negative and
Raymond Hettinger216aaaa2018-11-09 01:06:02 -08002331equal to the absolute value of the largest magnitude
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002332entry in the vector. If n==0, then *max* should be 0.0.
2333If an infinity is present in the vec, *max* should be INF.
Raymond Hettingerc630e102018-08-11 18:39:05 -07002334
2335The *found_nan* variable indicates whether some member of
2336the *vec* is a NaN.
Raymond Hettinger21786f52018-08-28 22:47:24 -07002337
2338To improve accuracy and to increase the number of cases where
2339vector_norm() is commutative, we use a variant of Neumaier
2340summation specialized to exploit that we always know that
2341|csum| >= |x|.
2342
2343The *csum* variable tracks the cumulative sum and *frac* tracks
2344the cumulative fractional errors at each step. Since this
2345variant assumes that |csum| >= |x| at each step, we establish
2346the precondition by starting the accumulation from 1.0 which
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002347represents the largest possible value of (x/max)**2.
2348
2349After the loop is finished, the initial 1.0 is subtracted out
2350for a net zero effect on the final sum. Since *csum* will be
2351greater than 1.0, the subtraction of 1.0 will not cause
2352fractional digits to be dropped from *csum*.
Raymond Hettinger21786f52018-08-28 22:47:24 -07002353
Raymond Hettinger13990742018-08-11 11:26:36 -07002354*/
2355
2356static inline double
Raymond Hettingerc630e102018-08-11 18:39:05 -07002357vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
Raymond Hettinger13990742018-08-11 11:26:36 -07002358{
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002359 double x, csum = 1.0, oldcsum, frac = 0.0;
Raymond Hettinger13990742018-08-11 11:26:36 -07002360 Py_ssize_t i;
2361
Raymond Hettingerc630e102018-08-11 18:39:05 -07002362 if (Py_IS_INFINITY(max)) {
2363 return max;
2364 }
2365 if (found_nan) {
2366 return Py_NAN;
2367 }
Raymond Hettingerf3267142018-09-02 13:34:21 -07002368 if (max == 0.0 || n <= 1) {
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002369 return max;
Raymond Hettinger13990742018-08-11 11:26:36 -07002370 }
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002371 for (i=0 ; i < n ; i++) {
Raymond Hettinger13990742018-08-11 11:26:36 -07002372 x = vec[i];
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002373 assert(Py_IS_FINITE(x) && fabs(x) <= max);
Raymond Hettinger13990742018-08-11 11:26:36 -07002374 x /= max;
Raymond Hettinger21786f52018-08-28 22:47:24 -07002375 x = x*x;
Raymond Hettinger13990742018-08-11 11:26:36 -07002376 oldcsum = csum;
2377 csum += x;
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002378 assert(csum >= x);
Raymond Hettinger21786f52018-08-28 22:47:24 -07002379 frac += (oldcsum - csum) + x;
Raymond Hettinger13990742018-08-11 11:26:36 -07002380 }
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002381 return max * sqrt(csum - 1.0 + frac);
Raymond Hettinger13990742018-08-11 11:26:36 -07002382}
2383
Raymond Hettingerc630e102018-08-11 18:39:05 -07002384#define NUM_STACK_ELEMS 16
2385
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002386/*[clinic input]
2387math.dist
2388
Ammar Askarcb08a712019-01-12 01:23:41 -05002389 p: object(subclass_of='&PyTuple_Type')
2390 q: object(subclass_of='&PyTuple_Type')
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002391 /
2392
2393Return the Euclidean distance between two points p and q.
2394
2395The points should be specified as tuples of coordinates.
2396Both tuples must be the same size.
2397
2398Roughly equivalent to:
2399 sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
2400[clinic start generated code]*/
2401
2402static PyObject *
2403math_dist_impl(PyObject *module, PyObject *p, PyObject *q)
Ammar Askarcb08a712019-01-12 01:23:41 -05002404/*[clinic end generated code: output=56bd9538d06bbcfe input=937122eaa5f19272]*/
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002405{
2406 PyObject *item;
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002407 double max = 0.0;
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002408 double x, px, qx, result;
2409 Py_ssize_t i, m, n;
2410 int found_nan = 0;
Raymond Hettingerc630e102018-08-11 18:39:05 -07002411 double diffs_on_stack[NUM_STACK_ELEMS];
2412 double *diffs = diffs_on_stack;
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002413
2414 m = PyTuple_GET_SIZE(p);
2415 n = PyTuple_GET_SIZE(q);
2416 if (m != n) {
2417 PyErr_SetString(PyExc_ValueError,
2418 "both points must have the same number of dimensions");
2419 return NULL;
2420
2421 }
Raymond Hettingerc630e102018-08-11 18:39:05 -07002422 if (n > NUM_STACK_ELEMS) {
2423 diffs = (double *) PyObject_Malloc(n * sizeof(double));
2424 if (diffs == NULL) {
Zackery Spytz4c49da02018-12-07 03:11:30 -07002425 return PyErr_NoMemory();
Raymond Hettingerc630e102018-08-11 18:39:05 -07002426 }
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002427 }
2428 for (i=0 ; i<n ; i++) {
2429 item = PyTuple_GET_ITEM(p, i);
Raymond Hettingercfd735e2019-01-29 20:39:53 -08002430 ASSIGN_DOUBLE(px, item, error_exit);
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002431 item = PyTuple_GET_ITEM(q, i);
Raymond Hettingercfd735e2019-01-29 20:39:53 -08002432 ASSIGN_DOUBLE(qx, item, error_exit);
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002433 x = fabs(px - qx);
2434 diffs[i] = x;
2435 found_nan |= Py_IS_NAN(x);
2436 if (x > max) {
2437 max = x;
2438 }
2439 }
Raymond Hettingerc630e102018-08-11 18:39:05 -07002440 result = vector_norm(n, diffs, max, found_nan);
2441 if (diffs != diffs_on_stack) {
2442 PyObject_Free(diffs);
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002443 }
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002444 return PyFloat_FromDouble(result);
Raymond Hettingerc630e102018-08-11 18:39:05 -07002445
2446 error_exit:
2447 if (diffs != diffs_on_stack) {
2448 PyObject_Free(diffs);
2449 }
2450 return NULL;
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002451}
2452
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002453/* AC: cannot convert yet, waiting for *args support */
Christian Heimes53876d92008-04-19 00:31:39 +00002454static PyObject *
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002455math_hypot(PyObject *self, PyObject *const *args, Py_ssize_t nargs)
Christian Heimes53876d92008-04-19 00:31:39 +00002456{
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002457 Py_ssize_t i;
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002458 PyObject *item;
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002459 double max = 0.0;
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002460 double x, result;
2461 int found_nan = 0;
Raymond Hettingerc630e102018-08-11 18:39:05 -07002462 double coord_on_stack[NUM_STACK_ELEMS];
2463 double *coordinates = coord_on_stack;
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002464
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002465 if (nargs > NUM_STACK_ELEMS) {
2466 coordinates = (double *) PyObject_Malloc(nargs * sizeof(double));
Zackery Spytz4c49da02018-12-07 03:11:30 -07002467 if (coordinates == NULL) {
2468 return PyErr_NoMemory();
2469 }
Raymond Hettingerc630e102018-08-11 18:39:05 -07002470 }
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002471 for (i = 0; i < nargs; i++) {
2472 item = args[i];
Raymond Hettingercfd735e2019-01-29 20:39:53 -08002473 ASSIGN_DOUBLE(x, item, error_exit);
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002474 x = fabs(x);
2475 coordinates[i] = x;
2476 found_nan |= Py_IS_NAN(x);
2477 if (x > max) {
2478 max = x;
2479 }
2480 }
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002481 result = vector_norm(nargs, coordinates, max, found_nan);
Raymond Hettingerc630e102018-08-11 18:39:05 -07002482 if (coordinates != coord_on_stack) {
2483 PyObject_Free(coordinates);
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002484 }
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002485 return PyFloat_FromDouble(result);
Raymond Hettingerc630e102018-08-11 18:39:05 -07002486
2487 error_exit:
2488 if (coordinates != coord_on_stack) {
2489 PyObject_Free(coordinates);
2490 }
2491 return NULL;
Christian Heimes53876d92008-04-19 00:31:39 +00002492}
2493
Raymond Hettingerc630e102018-08-11 18:39:05 -07002494#undef NUM_STACK_ELEMS
2495
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002496PyDoc_STRVAR(math_hypot_doc,
2497 "hypot(*coordinates) -> value\n\n\
2498Multidimensional Euclidean distance from the origin to a point.\n\
2499\n\
2500Roughly equivalent to:\n\
2501 sqrt(sum(x**2 for x in coordinates))\n\
2502\n\
2503For a two dimensional point (x, y), gives the hypotenuse\n\
2504using the Pythagorean theorem: sqrt(x*x + y*y).\n\
2505\n\
2506For example, the hypotenuse of a 3/4/5 right triangle is:\n\
2507\n\
2508 >>> hypot(3.0, 4.0)\n\
2509 5.0\n\
2510");
Christian Heimes53876d92008-04-19 00:31:39 +00002511
2512/* pow can't use math_2, but needs its own wrapper: the problem is
2513 that an infinite result can arise either as a result of overflow
2514 (in which case OverflowError should be raised) or as a result of
2515 e.g. 0.**-5. (for which ValueError needs to be raised.)
2516*/
2517
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002518/*[clinic input]
2519math.pow
Christian Heimes53876d92008-04-19 00:31:39 +00002520
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002521 x: double
2522 y: double
2523 /
2524
2525Return x**y (x to the power of y).
2526[clinic start generated code]*/
2527
2528static PyObject *
2529math_pow_impl(PyObject *module, double x, double y)
2530/*[clinic end generated code: output=fff93e65abccd6b0 input=c26f1f6075088bfd]*/
2531{
2532 double r;
2533 int odd_y;
Christian Heimesa342c012008-04-20 21:01:16 +00002534
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002535 /* deal directly with IEEE specials, to cope with problems on various
2536 platforms whose semantics don't exactly match C99 */
2537 r = 0.; /* silence compiler warning */
2538 if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
2539 errno = 0;
2540 if (Py_IS_NAN(x))
2541 r = y == 0. ? 1. : x; /* NaN**0 = 1 */
2542 else if (Py_IS_NAN(y))
2543 r = x == 1. ? 1. : y; /* 1**NaN = 1 */
2544 else if (Py_IS_INFINITY(x)) {
2545 odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
2546 if (y > 0.)
2547 r = odd_y ? x : fabs(x);
2548 else if (y == 0.)
2549 r = 1.;
2550 else /* y < 0. */
2551 r = odd_y ? copysign(0., x) : 0.;
2552 }
2553 else if (Py_IS_INFINITY(y)) {
2554 if (fabs(x) == 1.0)
2555 r = 1.;
2556 else if (y > 0. && fabs(x) > 1.0)
2557 r = y;
2558 else if (y < 0. && fabs(x) < 1.0) {
2559 r = -y; /* result is +inf */
2560 if (x == 0.) /* 0**-inf: divide-by-zero */
2561 errno = EDOM;
2562 }
2563 else
2564 r = 0.;
2565 }
2566 }
2567 else {
2568 /* let libm handle finite**finite */
2569 errno = 0;
2570 PyFPE_START_PROTECT("in math_pow", return 0);
2571 r = pow(x, y);
2572 PyFPE_END_PROTECT(r);
2573 /* a NaN result should arise only from (-ve)**(finite
2574 non-integer); in this case we want to raise ValueError. */
2575 if (!Py_IS_FINITE(r)) {
2576 if (Py_IS_NAN(r)) {
2577 errno = EDOM;
2578 }
2579 /*
2580 an infinite result here arises either from:
2581 (A) (+/-0.)**negative (-> divide-by-zero)
2582 (B) overflow of x**y with x and y finite
2583 */
2584 else if (Py_IS_INFINITY(r)) {
2585 if (x == 0.)
2586 errno = EDOM;
2587 else
2588 errno = ERANGE;
2589 }
2590 }
2591 }
Christian Heimes53876d92008-04-19 00:31:39 +00002592
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002593 if (errno && is_error(r))
2594 return NULL;
2595 else
2596 return PyFloat_FromDouble(r);
Christian Heimes53876d92008-04-19 00:31:39 +00002597}
2598
Christian Heimes53876d92008-04-19 00:31:39 +00002599
Christian Heimes072c0f12008-01-03 23:01:04 +00002600static const double degToRad = Py_MATH_PI / 180.0;
2601static const double radToDeg = 180.0 / Py_MATH_PI;
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002602
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002603/*[clinic input]
2604math.degrees
2605
2606 x: double
2607 /
2608
2609Convert angle x from radians to degrees.
2610[clinic start generated code]*/
2611
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002612static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002613math_degrees_impl(PyObject *module, double x)
2614/*[clinic end generated code: output=7fea78b294acd12f input=81e016555d6e3660]*/
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002615{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002616 return PyFloat_FromDouble(x * radToDeg);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002617}
2618
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002619
2620/*[clinic input]
2621math.radians
2622
2623 x: double
2624 /
2625
2626Convert angle x from degrees to radians.
2627[clinic start generated code]*/
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002628
2629static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002630math_radians_impl(PyObject *module, double x)
2631/*[clinic end generated code: output=34daa47caf9b1590 input=91626fc489fe3d63]*/
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002632{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002633 return PyFloat_FromDouble(x * degToRad);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002634}
2635
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002636
2637/*[clinic input]
2638math.isfinite
2639
2640 x: double
2641 /
2642
2643Return True if x is neither an infinity nor a NaN, and False otherwise.
2644[clinic start generated code]*/
Tim Peters78526162001-09-05 00:53:45 +00002645
Christian Heimes072c0f12008-01-03 23:01:04 +00002646static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002647math_isfinite_impl(PyObject *module, double x)
2648/*[clinic end generated code: output=8ba1f396440c9901 input=46967d254812e54a]*/
Mark Dickinson8e0c9962010-07-11 17:38:24 +00002649{
Mark Dickinson8e0c9962010-07-11 17:38:24 +00002650 return PyBool_FromLong((long)Py_IS_FINITE(x));
2651}
2652
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002653
2654/*[clinic input]
2655math.isnan
2656
2657 x: double
2658 /
2659
2660Return True if x is a NaN (not a number), and False otherwise.
2661[clinic start generated code]*/
Mark Dickinson8e0c9962010-07-11 17:38:24 +00002662
2663static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002664math_isnan_impl(PyObject *module, double x)
2665/*[clinic end generated code: output=f537b4d6df878c3e input=935891e66083f46a]*/
Christian Heimes072c0f12008-01-03 23:01:04 +00002666{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002667 return PyBool_FromLong((long)Py_IS_NAN(x));
Christian Heimes072c0f12008-01-03 23:01:04 +00002668}
2669
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002670
2671/*[clinic input]
2672math.isinf
2673
2674 x: double
2675 /
2676
2677Return True if x is a positive or negative infinity, and False otherwise.
2678[clinic start generated code]*/
Christian Heimes072c0f12008-01-03 23:01:04 +00002679
2680static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002681math_isinf_impl(PyObject *module, double x)
2682/*[clinic end generated code: output=9f00cbec4de7b06b input=32630e4212cf961f]*/
Christian Heimes072c0f12008-01-03 23:01:04 +00002683{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002684 return PyBool_FromLong((long)Py_IS_INFINITY(x));
Christian Heimes072c0f12008-01-03 23:01:04 +00002685}
2686
Christian Heimes072c0f12008-01-03 23:01:04 +00002687
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002688/*[clinic input]
2689math.isclose -> bool
2690
2691 a: double
2692 b: double
2693 *
2694 rel_tol: double = 1e-09
2695 maximum difference for being considered "close", relative to the
2696 magnitude of the input values
2697 abs_tol: double = 0.0
2698 maximum difference for being considered "close", regardless of the
2699 magnitude of the input values
2700
2701Determine whether two floating point numbers are close in value.
2702
2703Return True if a is close in value to b, and False otherwise.
2704
2705For the values to be considered close, the difference between them
2706must be smaller than at least one of the tolerances.
2707
2708-inf, inf and NaN behave similarly to the IEEE 754 Standard. That
2709is, NaN is not close to anything, even itself. inf and -inf are
2710only close to themselves.
2711[clinic start generated code]*/
2712
2713static int
2714math_isclose_impl(PyObject *module, double a, double b, double rel_tol,
2715 double abs_tol)
2716/*[clinic end generated code: output=b73070207511952d input=f28671871ea5bfba]*/
Tal Einatd5519ed2015-05-31 22:05:00 +03002717{
Tal Einatd5519ed2015-05-31 22:05:00 +03002718 double diff = 0.0;
Tal Einatd5519ed2015-05-31 22:05:00 +03002719
2720 /* sanity check on the inputs */
2721 if (rel_tol < 0.0 || abs_tol < 0.0 ) {
2722 PyErr_SetString(PyExc_ValueError,
2723 "tolerances must be non-negative");
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002724 return -1;
Tal Einatd5519ed2015-05-31 22:05:00 +03002725 }
2726
2727 if ( a == b ) {
2728 /* short circuit exact equality -- needed to catch two infinities of
2729 the same sign. And perhaps speeds things up a bit sometimes.
2730 */
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002731 return 1;
Tal Einatd5519ed2015-05-31 22:05:00 +03002732 }
2733
2734 /* This catches the case of two infinities of opposite sign, or
2735 one infinity and one finite number. Two infinities of opposite
2736 sign would otherwise have an infinite relative tolerance.
2737 Two infinities of the same sign are caught by the equality check
2738 above.
2739 */
2740
2741 if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) {
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002742 return 0;
Tal Einatd5519ed2015-05-31 22:05:00 +03002743 }
2744
2745 /* now do the regular computation
2746 this is essentially the "weak" test from the Boost library
2747 */
2748
2749 diff = fabs(b - a);
2750
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002751 return (((diff <= fabs(rel_tol * b)) ||
2752 (diff <= fabs(rel_tol * a))) ||
2753 (diff <= abs_tol));
Tal Einatd5519ed2015-05-31 22:05:00 +03002754}
2755
Pablo Galindo04114112019-03-09 19:18:08 +00002756static inline int
2757_check_long_mult_overflow(long a, long b) {
2758
2759 /* From Python2's int_mul code:
2760
2761 Integer overflow checking for * is painful: Python tried a couple ways, but
2762 they didn't work on all platforms, or failed in endcases (a product of
2763 -sys.maxint-1 has been a particular pain).
2764
2765 Here's another way:
2766
2767 The native long product x*y is either exactly right or *way* off, being
2768 just the last n bits of the true product, where n is the number of bits
2769 in a long (the delivered product is the true product plus i*2**n for
2770 some integer i).
2771
2772 The native double product (double)x * (double)y is subject to three
2773 rounding errors: on a sizeof(long)==8 box, each cast to double can lose
2774 info, and even on a sizeof(long)==4 box, the multiplication can lose info.
2775 But, unlike the native long product, it's not in *range* trouble: even
2776 if sizeof(long)==32 (256-bit longs), the product easily fits in the
2777 dynamic range of a double. So the leading 50 (or so) bits of the double
2778 product are correct.
2779
2780 We check these two ways against each other, and declare victory if they're
2781 approximately the same. Else, because the native long product is the only
2782 one that can lose catastrophic amounts of information, it's the native long
2783 product that must have overflowed.
2784
2785 */
2786
2787 long longprod = (long)((unsigned long)a * b);
2788 double doubleprod = (double)a * (double)b;
2789 double doubled_longprod = (double)longprod;
2790
2791 if (doubled_longprod == doubleprod) {
2792 return 0;
2793 }
2794
2795 const double diff = doubled_longprod - doubleprod;
2796 const double absdiff = diff >= 0.0 ? diff : -diff;
2797 const double absprod = doubleprod >= 0.0 ? doubleprod : -doubleprod;
2798
2799 if (32.0 * absdiff <= absprod) {
2800 return 0;
2801 }
2802
2803 return 1;
2804}
Tal Einatd5519ed2015-05-31 22:05:00 +03002805
Pablo Galindobc098512019-02-07 07:04:02 +00002806/*[clinic input]
2807math.prod
2808
2809 iterable: object
2810 /
2811 *
2812 start: object(c_default="NULL") = 1
2813
2814Calculate the product of all the elements in the input iterable.
2815
2816The default start value for the product is 1.
2817
2818When the iterable is empty, return the start value. This function is
2819intended specifically for use with numeric values and may reject
2820non-numeric types.
2821[clinic start generated code]*/
2822
2823static PyObject *
2824math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start)
2825/*[clinic end generated code: output=36153bedac74a198 input=4c5ab0682782ed54]*/
2826{
2827 PyObject *result = start;
2828 PyObject *temp, *item, *iter;
2829
2830 iter = PyObject_GetIter(iterable);
2831 if (iter == NULL) {
2832 return NULL;
2833 }
2834
2835 if (result == NULL) {
2836 result = PyLong_FromLong(1);
2837 if (result == NULL) {
2838 Py_DECREF(iter);
2839 return NULL;
2840 }
2841 } else {
2842 Py_INCREF(result);
2843 }
2844#ifndef SLOW_PROD
2845 /* Fast paths for integers keeping temporary products in C.
2846 * Assumes all inputs are the same type.
2847 * If the assumption fails, default to use PyObjects instead.
2848 */
2849 if (PyLong_CheckExact(result)) {
2850 int overflow;
2851 long i_result = PyLong_AsLongAndOverflow(result, &overflow);
2852 /* If this already overflowed, don't even enter the loop. */
2853 if (overflow == 0) {
2854 Py_DECREF(result);
2855 result = NULL;
2856 }
2857 /* Loop over all the items in the iterable until we finish, we overflow
2858 * or we found a non integer element */
2859 while(result == NULL) {
2860 item = PyIter_Next(iter);
2861 if (item == NULL) {
2862 Py_DECREF(iter);
2863 if (PyErr_Occurred()) {
2864 return NULL;
2865 }
2866 return PyLong_FromLong(i_result);
2867 }
2868 if (PyLong_CheckExact(item)) {
2869 long b = PyLong_AsLongAndOverflow(item, &overflow);
Pablo Galindo04114112019-03-09 19:18:08 +00002870 if (overflow == 0 && !_check_long_mult_overflow(i_result, b)) {
2871 long x = i_result * b;
Pablo Galindobc098512019-02-07 07:04:02 +00002872 i_result = x;
2873 Py_DECREF(item);
2874 continue;
2875 }
2876 }
2877 /* Either overflowed or is not an int.
2878 * Restore real objects and process normally */
2879 result = PyLong_FromLong(i_result);
2880 if (result == NULL) {
2881 Py_DECREF(item);
2882 Py_DECREF(iter);
2883 return NULL;
2884 }
2885 temp = PyNumber_Multiply(result, item);
2886 Py_DECREF(result);
2887 Py_DECREF(item);
2888 result = temp;
2889 if (result == NULL) {
2890 Py_DECREF(iter);
2891 return NULL;
2892 }
2893 }
2894 }
2895
2896 /* Fast paths for floats keeping temporary products in C.
2897 * Assumes all inputs are the same type.
2898 * If the assumption fails, default to use PyObjects instead.
2899 */
2900 if (PyFloat_CheckExact(result)) {
2901 double f_result = PyFloat_AS_DOUBLE(result);
2902 Py_DECREF(result);
2903 result = NULL;
2904 while(result == NULL) {
2905 item = PyIter_Next(iter);
2906 if (item == NULL) {
2907 Py_DECREF(iter);
2908 if (PyErr_Occurred()) {
2909 return NULL;
2910 }
2911 return PyFloat_FromDouble(f_result);
2912 }
2913 if (PyFloat_CheckExact(item)) {
2914 f_result *= PyFloat_AS_DOUBLE(item);
2915 Py_DECREF(item);
2916 continue;
2917 }
2918 if (PyLong_CheckExact(item)) {
2919 long value;
2920 int overflow;
2921 value = PyLong_AsLongAndOverflow(item, &overflow);
2922 if (!overflow) {
2923 f_result *= (double)value;
2924 Py_DECREF(item);
2925 continue;
2926 }
2927 }
2928 result = PyFloat_FromDouble(f_result);
2929 if (result == NULL) {
2930 Py_DECREF(item);
2931 Py_DECREF(iter);
2932 return NULL;
2933 }
2934 temp = PyNumber_Multiply(result, item);
2935 Py_DECREF(result);
2936 Py_DECREF(item);
2937 result = temp;
2938 if (result == NULL) {
2939 Py_DECREF(iter);
2940 return NULL;
2941 }
2942 }
2943 }
2944#endif
2945 /* Consume rest of the iterable (if any) that could not be handled
2946 * by specialized functions above.*/
2947 for(;;) {
2948 item = PyIter_Next(iter);
2949 if (item == NULL) {
2950 /* error, or end-of-sequence */
2951 if (PyErr_Occurred()) {
2952 Py_DECREF(result);
2953 result = NULL;
2954 }
2955 break;
2956 }
2957 temp = PyNumber_Multiply(result, item);
2958 Py_DECREF(result);
2959 Py_DECREF(item);
2960 result = temp;
2961 if (result == NULL)
2962 break;
2963 }
2964 Py_DECREF(iter);
2965 return result;
2966}
2967
2968
Barry Warsaw8b43b191996-12-09 22:32:36 +00002969static PyMethodDef math_methods[] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002970 {"acos", math_acos, METH_O, math_acos_doc},
2971 {"acosh", math_acosh, METH_O, math_acosh_doc},
2972 {"asin", math_asin, METH_O, math_asin_doc},
2973 {"asinh", math_asinh, METH_O, math_asinh_doc},
2974 {"atan", math_atan, METH_O, math_atan_doc},
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002975 {"atan2", (PyCFunction)(void(*)(void))math_atan2, METH_FASTCALL, math_atan2_doc},
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002976 {"atanh", math_atanh, METH_O, math_atanh_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002977 MATH_CEIL_METHODDEF
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002978 {"copysign", (PyCFunction)(void(*)(void))math_copysign, METH_FASTCALL, math_copysign_doc},
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002979 {"cos", math_cos, METH_O, math_cos_doc},
2980 {"cosh", math_cosh, METH_O, math_cosh_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002981 MATH_DEGREES_METHODDEF
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002982 MATH_DIST_METHODDEF
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002983 {"erf", math_erf, METH_O, math_erf_doc},
2984 {"erfc", math_erfc, METH_O, math_erfc_doc},
2985 {"exp", math_exp, METH_O, math_exp_doc},
2986 {"expm1", math_expm1, METH_O, math_expm1_doc},
2987 {"fabs", math_fabs, METH_O, math_fabs_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002988 MATH_FACTORIAL_METHODDEF
2989 MATH_FLOOR_METHODDEF
2990 MATH_FMOD_METHODDEF
2991 MATH_FREXP_METHODDEF
2992 MATH_FSUM_METHODDEF
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002993 {"gamma", math_gamma, METH_O, math_gamma_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002994 MATH_GCD_METHODDEF
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002995 {"hypot", (PyCFunction)(void(*)(void))math_hypot, METH_FASTCALL, math_hypot_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002996 MATH_ISCLOSE_METHODDEF
2997 MATH_ISFINITE_METHODDEF
2998 MATH_ISINF_METHODDEF
2999 MATH_ISNAN_METHODDEF
Mark Dickinson73934b92019-05-18 12:29:50 +01003000 MATH_ISQRT_METHODDEF
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003001 MATH_LDEXP_METHODDEF
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003002 {"lgamma", math_lgamma, METH_O, math_lgamma_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003003 MATH_LOG_METHODDEF
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003004 {"log1p", math_log1p, METH_O, math_log1p_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003005 MATH_LOG10_METHODDEF
3006 MATH_LOG2_METHODDEF
3007 MATH_MODF_METHODDEF
3008 MATH_POW_METHODDEF
3009 MATH_RADIANS_METHODDEF
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02003010 {"remainder", (PyCFunction)(void(*)(void))math_remainder, METH_FASTCALL, math_remainder_doc},
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003011 {"sin", math_sin, METH_O, math_sin_doc},
3012 {"sinh", math_sinh, METH_O, math_sinh_doc},
3013 {"sqrt", math_sqrt, METH_O, math_sqrt_doc},
3014 {"tan", math_tan, METH_O, math_tan_doc},
3015 {"tanh", math_tanh, METH_O, math_tanh_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003016 MATH_TRUNC_METHODDEF
Pablo Galindobc098512019-02-07 07:04:02 +00003017 MATH_PROD_METHODDEF
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003018 {NULL, NULL} /* sentinel */
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00003019};
3020
Guido van Rossumc6e22901998-12-04 19:26:43 +00003021
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00003022PyDoc_STRVAR(module_doc,
Ned Batchelder6faad352019-05-17 05:59:14 -04003023"This module provides access to the mathematical functions\n"
3024"defined by the C standard.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00003025
Martin v. Löwis1a214512008-06-11 05:26:20 +00003026
3027static struct PyModuleDef mathmodule = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003028 PyModuleDef_HEAD_INIT,
3029 "math",
3030 module_doc,
3031 -1,
3032 math_methods,
3033 NULL,
3034 NULL,
3035 NULL,
3036 NULL
Martin v. Löwis1a214512008-06-11 05:26:20 +00003037};
3038
Mark Hammondfe51c6d2002-08-02 02:27:13 +00003039PyMODINIT_FUNC
Martin v. Löwis1a214512008-06-11 05:26:20 +00003040PyInit_math(void)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00003041{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003042 PyObject *m;
Tim Petersfe71f812001-08-07 22:10:00 +00003043
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003044 m = PyModule_Create(&mathmodule);
3045 if (m == NULL)
3046 goto finally;
Barry Warsawfc93f751996-12-17 00:47:03 +00003047
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003048 PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
3049 PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
Guido van Rossum0a891d72016-08-15 09:12:52 -07003050 PyModule_AddObject(m, "tau", PyFloat_FromDouble(Py_MATH_TAU)); /* 2pi */
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +00003051 PyModule_AddObject(m, "inf", PyFloat_FromDouble(m_inf()));
3052#if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
3053 PyModule_AddObject(m, "nan", PyFloat_FromDouble(m_nan()));
3054#endif
Barry Warsawfc93f751996-12-17 00:47:03 +00003055
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +00003056 finally:
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003057 return m;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00003058}