blob: 31cb945bd36603403adb5ac0e2404d731e201a46 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`random` --- Generate pseudo-random numbers
2================================================
3
4.. module:: random
5 :synopsis: Generate pseudo-random numbers with various common distributions.
6
Raymond Hettinger10480942011-01-10 03:26:08 +00007**Source code:** :source:`Lib/random.py`
Georg Brandl116aa622007-08-15 14:28:22 +00008
Raymond Hettinger4f707fd2011-01-10 19:54:11 +00009--------------
10
Georg Brandl116aa622007-08-15 14:28:22 +000011This module implements pseudo-random number generators for various
12distributions.
13
Raymond Hettingerb21dac12010-09-07 05:32:49 +000014For integers, there is uniform selection from a range. For sequences, there is
15uniform selection of a random element, a function to generate a random
16permutation of a list in-place, and a function for random sampling without
17replacement.
Georg Brandl116aa622007-08-15 14:28:22 +000018
19On the real line, there are functions to compute uniform, normal (Gaussian),
20lognormal, negative exponential, gamma, and beta distributions. For generating
21distributions of angles, the von Mises distribution is available.
22
23Almost all module functions depend on the basic function :func:`random`, which
24generates a random float uniformly in the semi-open range [0.0, 1.0). Python
25uses the Mersenne Twister as the core generator. It produces 53-bit precision
26floats and has a period of 2\*\*19937-1. The underlying implementation in C is
27both fast and threadsafe. The Mersenne Twister is one of the most extensively
28tested random number generators in existence. However, being completely
29deterministic, it is not suitable for all purposes, and is completely unsuitable
30for cryptographic purposes.
31
32The functions supplied by this module are actually bound methods of a hidden
33instance of the :class:`random.Random` class. You can instantiate your own
Raymond Hettinger28de64f2008-01-13 23:40:30 +000034instances of :class:`Random` to get generators that don't share state.
Georg Brandl116aa622007-08-15 14:28:22 +000035
36Class :class:`Random` can also be subclassed if you want to use a different
37basic generator of your own devising: in that case, override the :meth:`random`,
Raymond Hettingerafd30452009-02-24 10:57:02 +000038:meth:`seed`, :meth:`getstate`, and :meth:`setstate` methods.
Benjamin Petersond18de0e2008-07-31 20:21:46 +000039Optionally, a new generator can supply a :meth:`getrandbits` method --- this
Georg Brandl116aa622007-08-15 14:28:22 +000040allows :meth:`randrange` to produce selections over an arbitrarily large range.
41
Benjamin Peterson21896a32010-03-21 22:03:03 +000042The :mod:`random` module also provides the :class:`SystemRandom` class which
43uses the system function :func:`os.urandom` to generate random numbers
44from sources provided by the operating system.
Georg Brandl116aa622007-08-15 14:28:22 +000045
Georg Brandl116aa622007-08-15 14:28:22 +000046
Raymond Hettinger10480942011-01-10 03:26:08 +000047Bookkeeping functions:
Georg Brandl116aa622007-08-15 14:28:22 +000048
Raymond Hettingerf763a722010-09-07 00:38:15 +000049.. function:: seed([x], version=2)
Georg Brandl116aa622007-08-15 14:28:22 +000050
Raymond Hettingerf763a722010-09-07 00:38:15 +000051 Initialize the random number generator.
Georg Brandl116aa622007-08-15 14:28:22 +000052
Raymond Hettingerf763a722010-09-07 00:38:15 +000053 If *x* is omitted or ``None``, the current system time is used. If
54 randomness sources are provided by the operating system, they are used
55 instead of the system time (see the :func:`os.urandom` function for details
56 on availability).
Georg Brandl116aa622007-08-15 14:28:22 +000057
Raymond Hettingerf763a722010-09-07 00:38:15 +000058 If *x* is an int, it is used directly.
59
60 With version 2 (the default), a :class:`str`, :class:`bytes`, or :class:`bytearray`
Raymond Hettinger3149f9c2010-09-07 05:35:10 +000061 object gets converted to an :class:`int` and all of its bits are used. With version 1,
Raymond Hettingerf763a722010-09-07 00:38:15 +000062 the :func:`hash` of *x* is used instead.
63
64 .. versionchanged:: 3.2
65 Moved to the version 2 scheme which uses all of the bits in a string seed.
Georg Brandl116aa622007-08-15 14:28:22 +000066
67.. function:: getstate()
68
69 Return an object capturing the current internal state of the generator. This
70 object can be passed to :func:`setstate` to restore the state.
71
Georg Brandl116aa622007-08-15 14:28:22 +000072
73.. function:: setstate(state)
74
75 *state* should have been obtained from a previous call to :func:`getstate`, and
76 :func:`setstate` restores the internal state of the generator to what it was at
77 the time :func:`setstate` was called.
78
Georg Brandl116aa622007-08-15 14:28:22 +000079
Georg Brandl116aa622007-08-15 14:28:22 +000080.. function:: getrandbits(k)
81
Ezio Melotti0639d5a2009-12-19 23:26:38 +000082 Returns a Python integer with *k* random bits. This method is supplied with
Georg Brandl5c106642007-11-29 17:41:05 +000083 the MersenneTwister generator and some other generators may also provide it
Georg Brandl116aa622007-08-15 14:28:22 +000084 as an optional part of the API. When available, :meth:`getrandbits` enables
85 :meth:`randrange` to handle arbitrarily large ranges.
86
Georg Brandl116aa622007-08-15 14:28:22 +000087
88Functions for integers:
89
Georg Brandl116aa622007-08-15 14:28:22 +000090.. function:: randrange([start,] stop[, step])
91
92 Return a randomly selected element from ``range(start, stop, step)``. This is
93 equivalent to ``choice(range(start, stop, step))``, but doesn't actually build a
94 range object.
95
Raymond Hettinger05156612010-09-07 04:44:52 +000096 The positional argument pattern matches that of :func:`range`. Keyword arguments
97 should not be used because the function may use them in unexpected ways.
98
99 .. versionchanged:: 3.2
100 :meth:`randrange` is more sophisticated about producing equally distributed
101 values. Formerly it used a style like ``int(random()*n)`` which could produce
102 slightly uneven distributions.
Georg Brandl116aa622007-08-15 14:28:22 +0000103
104.. function:: randint(a, b)
105
Raymond Hettingerafd30452009-02-24 10:57:02 +0000106 Return a random integer *N* such that ``a <= N <= b``. Alias for
107 ``randrange(a, b+1)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000108
Georg Brandl116aa622007-08-15 14:28:22 +0000109
Georg Brandl55ac8f02007-09-01 13:51:09 +0000110Functions for sequences:
Georg Brandl116aa622007-08-15 14:28:22 +0000111
112.. function:: choice(seq)
113
114 Return a random element from the non-empty sequence *seq*. If *seq* is empty,
115 raises :exc:`IndexError`.
116
117
118.. function:: shuffle(x[, random])
119
120 Shuffle the sequence *x* in place. The optional argument *random* is a
121 0-argument function returning a random float in [0.0, 1.0); by default, this is
122 the function :func:`random`.
123
124 Note that for even rather small ``len(x)``, the total number of permutations of
125 *x* is larger than the period of most random number generators; this implies
126 that most permutations of a long sequence can never be generated.
127
128
129.. function:: sample(population, k)
130
Raymond Hettinger1acde192008-01-14 01:00:53 +0000131 Return a *k* length list of unique elements chosen from the population sequence
132 or set. Used for random sampling without replacement.
Georg Brandl116aa622007-08-15 14:28:22 +0000133
Georg Brandl116aa622007-08-15 14:28:22 +0000134 Returns a new list containing elements from the population while leaving the
135 original population unchanged. The resulting list is in selection order so that
136 all sub-slices will also be valid random samples. This allows raffle winners
137 (the sample) to be partitioned into grand prize and second place winners (the
138 subslices).
139
Guido van Rossum2cc30da2007-11-02 23:46:40 +0000140 Members of the population need not be :term:`hashable` or unique. If the population
Georg Brandl116aa622007-08-15 14:28:22 +0000141 contains repeats, then each occurrence is a possible selection in the sample.
142
143 To choose a sample from a range of integers, use an :func:`range` object as an
144 argument. This is especially fast and space efficient for sampling from a large
145 population: ``sample(range(10000000), 60)``.
146
147The following functions generate specific real-valued distributions. Function
148parameters are named after the corresponding variables in the distribution's
149equation, as used in common mathematical practice; most of these equations can
150be found in any statistics text.
151
152
153.. function:: random()
154
155 Return the next random floating point number in the range [0.0, 1.0).
156
157
158.. function:: uniform(a, b)
159
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000160 Return a random floating point number *N* such that ``a <= N <= b`` for
161 ``a <= b`` and ``b <= N <= a`` for ``b < a``.
Georg Brandl116aa622007-08-15 14:28:22 +0000162
Raymond Hettingerbe40db02009-06-11 23:12:14 +0000163 The end-point value ``b`` may or may not be included in the range
164 depending on floating-point rounding in the equation ``a + (b-a) * random()``.
Benjamin Peterson35e8c462008-04-24 02:34:53 +0000165
Georg Brandl73dd7c72011-09-17 20:36:28 +0200166
Christian Heimesfe337bf2008-03-23 21:54:12 +0000167.. function:: triangular(low, high, mode)
168
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000169 Return a random floating point number *N* such that ``low <= N <= high`` and
Christian Heimescc47b052008-03-25 14:56:36 +0000170 with the specified *mode* between those bounds. The *low* and *high* bounds
171 default to zero and one. The *mode* argument defaults to the midpoint
172 between the bounds, giving a symmetric distribution.
Christian Heimesfe337bf2008-03-23 21:54:12 +0000173
Georg Brandl116aa622007-08-15 14:28:22 +0000174
175.. function:: betavariate(alpha, beta)
176
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000177 Beta distribution. Conditions on the parameters are ``alpha > 0`` and
178 ``beta > 0``. Returned values range between 0 and 1.
Georg Brandl116aa622007-08-15 14:28:22 +0000179
180
181.. function:: expovariate(lambd)
182
Mark Dickinson2f947362009-01-07 17:54:07 +0000183 Exponential distribution. *lambd* is 1.0 divided by the desired
184 mean. It should be nonzero. (The parameter would be called
185 "lambda", but that is a reserved word in Python.) Returned values
186 range from 0 to positive infinity if *lambd* is positive, and from
187 negative infinity to 0 if *lambd* is negative.
Georg Brandl116aa622007-08-15 14:28:22 +0000188
189
190.. function:: gammavariate(alpha, beta)
191
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000192 Gamma distribution. (*Not* the gamma function!) Conditions on the
193 parameters are ``alpha > 0`` and ``beta > 0``.
Georg Brandl116aa622007-08-15 14:28:22 +0000194
Georg Brandl73dd7c72011-09-17 20:36:28 +0200195 The probability distribution function is::
196
197 x ** (alpha - 1) * math.exp(-x / beta)
198 pdf(x) = --------------------------------------
199 math.gamma(alpha) * beta ** alpha
200
Georg Brandl116aa622007-08-15 14:28:22 +0000201
202.. function:: gauss(mu, sigma)
203
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000204 Gaussian distribution. *mu* is the mean, and *sigma* is the standard
205 deviation. This is slightly faster than the :func:`normalvariate` function
206 defined below.
Georg Brandl116aa622007-08-15 14:28:22 +0000207
208
209.. function:: lognormvariate(mu, sigma)
210
211 Log normal distribution. If you take the natural logarithm of this
212 distribution, you'll get a normal distribution with mean *mu* and standard
213 deviation *sigma*. *mu* can have any value, and *sigma* must be greater than
214 zero.
215
216
217.. function:: normalvariate(mu, sigma)
218
219 Normal distribution. *mu* is the mean, and *sigma* is the standard deviation.
220
221
222.. function:: vonmisesvariate(mu, kappa)
223
224 *mu* is the mean angle, expressed in radians between 0 and 2\*\ *pi*, and *kappa*
225 is the concentration parameter, which must be greater than or equal to zero. If
226 *kappa* is equal to zero, this distribution reduces to a uniform random angle
227 over the range 0 to 2\*\ *pi*.
228
229
230.. function:: paretovariate(alpha)
231
232 Pareto distribution. *alpha* is the shape parameter.
233
234
235.. function:: weibullvariate(alpha, beta)
236
237 Weibull distribution. *alpha* is the scale parameter and *beta* is the shape
238 parameter.
239
240
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000241Alternative Generator:
Georg Brandl116aa622007-08-15 14:28:22 +0000242
Georg Brandl116aa622007-08-15 14:28:22 +0000243.. class:: SystemRandom([seed])
244
245 Class that uses the :func:`os.urandom` function for generating random numbers
246 from sources provided by the operating system. Not available on all systems.
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000247 Does not rely on software state, and sequences are not reproducible. Accordingly,
Raymond Hettingerafd30452009-02-24 10:57:02 +0000248 the :meth:`seed` method has no effect and is ignored.
Georg Brandl116aa622007-08-15 14:28:22 +0000249 The :meth:`getstate` and :meth:`setstate` methods raise
250 :exc:`NotImplementedError` if called.
251
Georg Brandl116aa622007-08-15 14:28:22 +0000252
Georg Brandl116aa622007-08-15 14:28:22 +0000253.. seealso::
254
255 M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally
256 equidistributed uniform pseudorandom number generator", ACM Transactions on
257 Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.
258
Georg Brandl116aa622007-08-15 14:28:22 +0000259
Raymond Hettinger1fd32a62009-04-01 20:52:13 +0000260 `Complementary-Multiply-with-Carry recipe
Raymond Hettinger9743fd02009-04-03 05:47:33 +0000261 <http://code.activestate.com/recipes/576707/>`_ for a compatible alternative
262 random number generator with a long period and comparatively simple update
Raymond Hettinger1fd32a62009-04-01 20:52:13 +0000263 operations.
Raymond Hettinger435cb0f2010-09-06 23:36:31 +0000264
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000265
Raymond Hettinger435cb0f2010-09-06 23:36:31 +0000266Notes on Reproducibility
Antoine Pitroue72b5862010-12-12 20:13:31 +0000267------------------------
Raymond Hettinger435cb0f2010-09-06 23:36:31 +0000268
269Sometimes it is useful to be able to reproduce the sequences given by a pseudo
270random number generator. By re-using a seed value, the same sequence should be
271reproducible from run to run as long as multiple threads are not running.
272
273Most of the random module's algorithms and seeding functions are subject to
274change across Python versions, but two aspects are guaranteed not to change:
275
276* If a new seeding method is added, then a backward compatible seeder will be
277 offered.
278
279* The generator's :meth:`random` method will continue to produce the same
280 sequence when the compatible seeder is given the same seed.
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000281
Raymond Hettinger6e353942010-12-04 23:42:12 +0000282.. _random-examples:
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000283
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000284Examples and Recipes
Antoine Pitroue72b5862010-12-12 20:13:31 +0000285--------------------
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000286
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000287Basic usage::
288
289 >>> random.random() # Random float x, 0.0 <= x < 1.0
290 0.37444887175646646
291
292 >>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
293 1.1800146073117523
294
295 >>> random.randrange(10) # Integer from 0 to 9
296 7
297
298 >>> random.randrange(0, 101, 2) # Even integer from 0 to 100
299 26
300
301 >>> random.choice('abcdefghij') # Single random element
302 'c'
303
304 >>> items = [1, 2, 3, 4, 5, 6, 7]
305 >>> random.shuffle(items)
306 >>> items
307 [7, 3, 2, 5, 6, 4, 1]
308
309 >>> random.sample([1, 2, 3, 4, 5], 3) # Three samples without replacement
310 [4, 1, 5]
311
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000312A common task is to make a :func:`random.choice` with weighted probababilites.
313
314If the weights are small integer ratios, a simple technique is to build a sample
315population with repeats::
316
317 >>> weighted_choices = [('Red', 3), ('Blue', 2), ('Yellow', 1), ('Green', 4)]
318 >>> population = [val for val, cnt in weighted_choices for i in range(cnt)]
319 >>> random.choice(population)
320 'Green'
321
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000322A more general approach is to arrange the weights in a cumulative distribution
323with :func:`itertools.accumulate`, and then locate the random value with
324:func:`bisect.bisect`::
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000325
326 >>> choices, weights = zip(*weighted_choices)
327 >>> cumdist = list(itertools.accumulate(weights))
328 >>> x = random.random() * cumdist[-1]
329 >>> choices[bisect.bisect(cumdist, x)]
330 'Blue'