blob: 7e0de4f6dbc1f266667b2a9dfe454cf8a55c9b06 [file] [log] [blame]
Guido van Rossume7b146f2000-02-04 15:28:42 +00001"""Random variable generators.
Guido van Rossumff03b1a1994-03-09 12:55:02 +00002
Tim Petersd7b5e882001-01-25 03:36:26 +00003 integers
4 --------
5 uniform within range
6
7 sequences
8 ---------
9 pick random element
Raymond Hettingerf24eb352002-11-12 17:41:57 +000010 pick random sample
Tim Petersd7b5e882001-01-25 03:36:26 +000011 generate random permutation
12
Guido van Rossume7b146f2000-02-04 15:28:42 +000013 distributions on the real line:
14 ------------------------------
Tim Petersd7b5e882001-01-25 03:36:26 +000015 uniform
Christian Heimesfe337bf2008-03-23 21:54:12 +000016 triangular
Guido van Rossume7b146f2000-02-04 15:28:42 +000017 normal (Gaussian)
18 lognormal
19 negative exponential
20 gamma
21 beta
Raymond Hettinger40f62172002-12-29 23:03:38 +000022 pareto
23 Weibull
Guido van Rossumff03b1a1994-03-09 12:55:02 +000024
Guido van Rossume7b146f2000-02-04 15:28:42 +000025 distributions on the circle (angles 0 to 2pi)
26 ---------------------------------------------
27 circular uniform
28 von Mises
29
Raymond Hettinger40f62172002-12-29 23:03:38 +000030General notes on the underlying Mersenne Twister core generator:
Guido van Rossume7b146f2000-02-04 15:28:42 +000031
Raymond Hettinger40f62172002-12-29 23:03:38 +000032* The period is 2**19937-1.
Thomas Wouters0e3f5912006-08-11 14:57:12 +000033* It is one of the most extensively tested generators in existence.
Thomas Wouters0e3f5912006-08-11 14:57:12 +000034* The random() method is implemented in C, executes in a single Python step,
35 and is, therefore, threadsafe.
Tim Peterse360d952001-01-26 10:00:39 +000036
Guido van Rossume7b146f2000-02-04 15:28:42 +000037"""
Guido van Rossumd03e1191998-05-29 17:51:31 +000038
Christian Heimesfe337bf2008-03-23 21:54:12 +000039from __future__ import division
Raymond Hettinger2f726e92003-10-05 09:09:15 +000040from warnings import warn as _warn
41from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
Raymond Hettinger91e27c22005-08-19 01:36:35 +000042from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
Tim Petersd7b5e882001-01-25 03:36:26 +000043from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
Raymond Hettingerc1c43ca2004-09-05 00:00:42 +000044from os import urandom as _urandom
Raymond Hettinger886687d2009-02-24 11:27:15 +000045import collections as _collections
Raymond Hettinger3fcf0022010-12-08 01:13:53 +000046from hashlib import sha512 as _sha512
Guido van Rossumff03b1a1994-03-09 12:55:02 +000047
Raymond Hettingerf24eb352002-11-12 17:41:57 +000048__all__ = ["Random","seed","random","uniform","randint","choice","sample",
Skip Montanaro0de65802001-02-15 22:15:14 +000049 "randrange","shuffle","normalvariate","lognormvariate",
Christian Heimesfe337bf2008-03-23 21:54:12 +000050 "expovariate","vonmisesvariate","gammavariate","triangular",
Raymond Hettingerf8a52d32003-08-05 12:23:19 +000051 "gauss","betavariate","paretovariate","weibullvariate",
Raymond Hettinger28de64f2008-01-13 23:40:30 +000052 "getstate","setstate", "getrandbits",
Raymond Hettinger23f12412004-09-13 22:23:21 +000053 "SystemRandom"]
Tim Petersd7b5e882001-01-25 03:36:26 +000054
55NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
Tim Petersd7b5e882001-01-25 03:36:26 +000056TWOPI = 2.0*_pi
Tim Petersd7b5e882001-01-25 03:36:26 +000057LOG4 = _log(4.0)
Tim Petersd7b5e882001-01-25 03:36:26 +000058SG_MAGICCONST = 1.0 + _log(4.5)
Raymond Hettinger2f726e92003-10-05 09:09:15 +000059BPF = 53 # Number of bits in a float
Tim Peters7c2a85b2004-08-31 02:19:55 +000060RECIP_BPF = 2**-BPF
Tim Petersd7b5e882001-01-25 03:36:26 +000061
Raymond Hettinger356a4592004-08-30 06:14:31 +000062
Tim Petersd7b5e882001-01-25 03:36:26 +000063# Translated by Guido van Rossum from C source provided by
Raymond Hettinger40f62172002-12-29 23:03:38 +000064# Adrian Baddeley. Adapted by Raymond Hettinger for use with
Raymond Hettinger3fa19d72004-08-31 01:05:15 +000065# the Mersenne Twister and os.urandom() core generators.
Tim Petersd7b5e882001-01-25 03:36:26 +000066
Raymond Hettinger145a4a02003-01-07 10:25:55 +000067import _random
Raymond Hettinger40f62172002-12-29 23:03:38 +000068
Raymond Hettinger145a4a02003-01-07 10:25:55 +000069class Random(_random.Random):
Raymond Hettingerc32f0332002-05-23 19:44:49 +000070 """Random number generator base class used by bound module functions.
71
72 Used to instantiate instances of Random to get generators that don't
Raymond Hettinger28de64f2008-01-13 23:40:30 +000073 share state.
Raymond Hettingerc32f0332002-05-23 19:44:49 +000074
75 Class Random can also be subclassed if you want to use a different basic
76 generator of your own devising: in that case, override the following
Raymond Hettinger28de64f2008-01-13 23:40:30 +000077 methods: random(), seed(), getstate(), and setstate().
Benjamin Petersond18de0e2008-07-31 20:21:46 +000078 Optionally, implement a getrandbits() method so that randrange()
Raymond Hettinger2f726e92003-10-05 09:09:15 +000079 can cover arbitrarily large ranges.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +000080
Raymond Hettingerc32f0332002-05-23 19:44:49 +000081 """
Tim Petersd7b5e882001-01-25 03:36:26 +000082
Christian Heimescbf3b5c2007-12-03 21:02:03 +000083 VERSION = 3 # used by getstate/setstate
Tim Petersd7b5e882001-01-25 03:36:26 +000084
85 def __init__(self, x=None):
86 """Initialize an instance.
87
88 Optional argument x controls seeding, as for Random.seed().
89 """
90
91 self.seed(x)
Raymond Hettinger40f62172002-12-29 23:03:38 +000092 self.gauss_next = None
Tim Petersd7b5e882001-01-25 03:36:26 +000093
Raymond Hettingerf763a722010-09-07 00:38:15 +000094 def seed(self, a=None, version=2):
Tim Peters0de88fc2001-02-01 04:59:18 +000095 """Initialize internal state from hashable object.
Tim Petersd7b5e882001-01-25 03:36:26 +000096
Raymond Hettinger23f12412004-09-13 22:23:21 +000097 None or no argument seeds from current time or from an operating
98 system specific randomness source if available.
Tim Peters0de88fc2001-02-01 04:59:18 +000099
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000100 For version 2 (the default), all of the bits are used if *a *is a str,
101 bytes, or bytearray. For version 1, the hash() of *a* is used instead.
Raymond Hettingerf763a722010-09-07 00:38:15 +0000102
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000103 If *a* is an int, all bits are used.
Raymond Hettingerf763a722010-09-07 00:38:15 +0000104
Tim Petersd7b5e882001-01-25 03:36:26 +0000105 """
106
Raymond Hettinger3081d592003-08-09 18:30:57 +0000107 if a is None:
Raymond Hettingerc1c43ca2004-09-05 00:00:42 +0000108 try:
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000109 a = int.from_bytes(_urandom(32), 'big')
Raymond Hettingerc1c43ca2004-09-05 00:00:42 +0000110 except NotImplementedError:
Raymond Hettinger356a4592004-08-30 06:14:31 +0000111 import time
Guido van Rossume2a383d2007-01-15 16:59:06 +0000112 a = int(time.time() * 256) # use fractional seconds
Raymond Hettinger356a4592004-08-30 06:14:31 +0000113
Raymond Hettinger3fcf0022010-12-08 01:13:53 +0000114 if version == 2:
115 if isinstance(a, (str, bytes, bytearray)):
116 if isinstance(a, str):
117 a = a.encode("utf8")
118 a += _sha512(a).digest()
119 a = int.from_bytes(a, 'big')
Raymond Hettingerf763a722010-09-07 00:38:15 +0000120
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000121 super().seed(a)
Tim Peters46c04e12002-05-05 20:40:00 +0000122 self.gauss_next = None
123
Tim Peterscd804102001-01-25 20:25:57 +0000124 def getstate(self):
125 """Return internal state; can be passed to setstate() later."""
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000126 return self.VERSION, super().getstate(), self.gauss_next
Tim Peterscd804102001-01-25 20:25:57 +0000127
128 def setstate(self, state):
129 """Restore internal state from object returned by getstate()."""
130 version = state[0]
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000131 if version == 3:
Raymond Hettinger40f62172002-12-29 23:03:38 +0000132 version, internalstate, self.gauss_next = state
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000133 super().setstate(internalstate)
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000134 elif version == 2:
135 version, internalstate, self.gauss_next = state
136 # In version 2, the state was saved as signed ints, which causes
137 # inconsistencies between 32/64-bit systems. The state is
138 # really unsigned 32-bit ints, so we convert negative ints from
139 # version 2 to positive longs for version 3.
140 try:
Raymond Hettingerc585eec2010-09-07 15:00:15 +0000141 internalstate = tuple(x % (2**32) for x in internalstate)
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000142 except ValueError as e:
143 raise TypeError from e
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000144 super().setstate(internalstate)
Tim Peterscd804102001-01-25 20:25:57 +0000145 else:
146 raise ValueError("state with version %s passed to "
147 "Random.setstate() of version %s" %
148 (version, self.VERSION))
149
Tim Peterscd804102001-01-25 20:25:57 +0000150## ---- Methods below this point do not need to be overridden when
151## ---- subclassing for the purpose of using a different core generator.
152
153## -------------------- pickle support -------------------
154
155 def __getstate__(self): # for pickle
156 return self.getstate()
157
158 def __setstate__(self, state): # for pickle
159 self.setstate(state)
160
Raymond Hettinger5f078ff2003-06-24 20:29:04 +0000161 def __reduce__(self):
162 return self.__class__, (), self.getstate()
163
Tim Peterscd804102001-01-25 20:25:57 +0000164## -------------------- integer methods -------------------
165
Raymond Hettinger05156612010-09-07 04:44:52 +0000166 def randrange(self, start, stop=None, step=1, int=int):
Tim Petersd7b5e882001-01-25 03:36:26 +0000167 """Choose a random item from range(start, stop[, step]).
168
169 This fixes the problem with randint() which includes the
170 endpoint; in Python this is usually not what you want.
Raymond Hettinger3051cc32010-09-07 00:48:40 +0000171
Raymond Hettingerc3246972010-09-07 09:32:57 +0000172 Do not supply the 'int' argument.
Tim Petersd7b5e882001-01-25 03:36:26 +0000173 """
174
175 # This code is a bit messy to make it fast for the
Tim Peters9146f272002-08-16 03:41:39 +0000176 # common case while still doing adequate error checking.
Tim Petersd7b5e882001-01-25 03:36:26 +0000177 istart = int(start)
178 if istart != start:
Collin Winterce36ad82007-08-30 01:19:48 +0000179 raise ValueError("non-integer arg 1 for randrange()")
Raymond Hettinger3051cc32010-09-07 00:48:40 +0000180 if stop is None:
Tim Petersd7b5e882001-01-25 03:36:26 +0000181 if istart > 0:
Raymond Hettinger05156612010-09-07 04:44:52 +0000182 return self._randbelow(istart)
Collin Winterce36ad82007-08-30 01:19:48 +0000183 raise ValueError("empty range for randrange()")
Tim Peters9146f272002-08-16 03:41:39 +0000184
185 # stop argument supplied.
Tim Petersd7b5e882001-01-25 03:36:26 +0000186 istop = int(stop)
187 if istop != stop:
Collin Winterce36ad82007-08-30 01:19:48 +0000188 raise ValueError("non-integer stop for randrange()")
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000189 width = istop - istart
190 if step == 1 and width > 0:
Raymond Hettingerc3246972010-09-07 09:32:57 +0000191 return istart + self._randbelow(width)
Tim Petersd7b5e882001-01-25 03:36:26 +0000192 if step == 1:
Collin Winterce36ad82007-08-30 01:19:48 +0000193 raise ValueError("empty range for randrange() (%d,%d, %d)" % (istart, istop, width))
Tim Peters9146f272002-08-16 03:41:39 +0000194
195 # Non-unit step argument supplied.
Tim Petersd7b5e882001-01-25 03:36:26 +0000196 istep = int(step)
197 if istep != step:
Collin Winterce36ad82007-08-30 01:19:48 +0000198 raise ValueError("non-integer step for randrange()")
Tim Petersd7b5e882001-01-25 03:36:26 +0000199 if istep > 0:
Raymond Hettingerffdb8bb2004-09-27 15:29:05 +0000200 n = (width + istep - 1) // istep
Tim Petersd7b5e882001-01-25 03:36:26 +0000201 elif istep < 0:
Raymond Hettingerffdb8bb2004-09-27 15:29:05 +0000202 n = (width + istep + 1) // istep
Tim Petersd7b5e882001-01-25 03:36:26 +0000203 else:
Collin Winterce36ad82007-08-30 01:19:48 +0000204 raise ValueError("zero step for randrange()")
Tim Petersd7b5e882001-01-25 03:36:26 +0000205
206 if n <= 0:
Collin Winterce36ad82007-08-30 01:19:48 +0000207 raise ValueError("empty range for randrange()")
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000208
Raymond Hettinger05156612010-09-07 04:44:52 +0000209 return istart + istep*self._randbelow(n)
Tim Petersd7b5e882001-01-25 03:36:26 +0000210
211 def randint(self, a, b):
Tim Peterscd804102001-01-25 20:25:57 +0000212 """Return random integer in range [a, b], including both end points.
Tim Petersd7b5e882001-01-25 03:36:26 +0000213 """
214
215 return self.randrange(a, b+1)
216
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000217 def _randbelow(self, n, int=int, maxsize=1<<BPF, type=type,
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000218 Method=_MethodType, BuiltinMethod=_BuiltinMethodType):
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000219 "Return a random int in the range [0,n). Raises ValueError if n==0."
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000220
Raymond Hettingerc3246972010-09-07 09:32:57 +0000221 getrandbits = self.getrandbits
222 # Only call self.getrandbits if the original random() builtin method
223 # has not been overridden or if a new getrandbits() was supplied.
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000224 if type(self.random) is BuiltinMethod or type(getrandbits) is Method:
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000225 k = n.bit_length() # don't use (n-1) here because n can be 1
Raymond Hettingerf015b3f2010-09-07 20:04:42 +0000226 r = getrandbits(k) # 0 <= r < 2**k
Raymond Hettingerc3246972010-09-07 09:32:57 +0000227 while r >= n:
228 r = getrandbits(k)
229 return r
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000230 # There's an overriden random() method but no new getrandbits() method,
231 # so we can only use random() from here.
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000232 random = self.random
233 if n >= maxsize:
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000234 _warn("Underlying random() generator does not supply \n"
Raymond Hettingerf015b3f2010-09-07 20:04:42 +0000235 "enough bits to choose from a population range this large.\n"
236 "To remove the range limitation, add a getrandbits() method.")
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000237 return int(random() * n)
238 rem = maxsize % n
239 limit = (maxsize - rem) / maxsize # int(limit * maxsize) % n == 0
240 r = random()
241 while r >= limit:
242 r = random()
243 return int(r*maxsize) % n
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000244
Tim Peterscd804102001-01-25 20:25:57 +0000245## -------------------- sequence methods -------------------
246
Tim Petersd7b5e882001-01-25 03:36:26 +0000247 def choice(self, seq):
248 """Choose a random element from a non-empty sequence."""
Raymond Hettingerdc4872e2010-09-07 10:06:56 +0000249 try:
250 i = self._randbelow(len(seq))
251 except ValueError:
252 raise IndexError('Cannot choose from an empty sequence')
253 return seq[i]
Tim Petersd7b5e882001-01-25 03:36:26 +0000254
255 def shuffle(self, x, random=None, int=int):
256 """x, random=random.random -> shuffle list x in place; return None.
257
258 Optional arg random is a 0-argument function returning a random
259 float in [0.0, 1.0); by default, the standard random.random.
Tim Petersd7b5e882001-01-25 03:36:26 +0000260 """
261
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000262 randbelow = self._randbelow
263 for i in reversed(range(1, len(x))):
264 # pick an element in x[:i+1] with which to exchange x[i]
265 j = randbelow(i+1) if random is None else int(random() * (i+1))
266 x[i], x[j] = x[j], x[i]
Tim Petersd7b5e882001-01-25 03:36:26 +0000267
Raymond Hettingerfdbe5222003-06-13 07:01:51 +0000268 def sample(self, population, k):
Raymond Hettinger1acde192008-01-14 01:00:53 +0000269 """Chooses k unique random elements from a population sequence or set.
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000270
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000271 Returns a new list containing elements from the population while
272 leaving the original population unchanged. The resulting list is
273 in selection order so that all sub-slices will also be valid random
274 samples. This allows raffle winners (the sample) to be partitioned
275 into grand prize and second place winners (the subslices).
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000276
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000277 Members of the population need not be hashable or unique. If the
278 population contains repeats, then each occurrence is a possible
279 selection in the sample.
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000280
Guido van Rossum805365e2007-05-07 22:24:25 +0000281 To choose a sample in a range of integers, use range as an argument.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000282 This is especially fast and space efficient for sampling from a
Guido van Rossum805365e2007-05-07 22:24:25 +0000283 large population: sample(range(10000000), 60)
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000284 """
285
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000286 # Sampling without replacement entails tracking either potential
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000287 # selections (the pool) in a list or previous selections in a set.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000288
Jeremy Hylton2b55d352004-02-23 17:27:57 +0000289 # When the number of selections is small compared to the
290 # population, then tracking selections is efficient, requiring
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000291 # only a small set and an occasional reselection. For
Jeremy Hylton2b55d352004-02-23 17:27:57 +0000292 # a larger number of selections, the pool tracking method is
293 # preferred since the list takes less space than the
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000294 # set and it doesn't suffer from frequent reselections.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000295
Raymond Hettinger886687d2009-02-24 11:27:15 +0000296 if isinstance(population, _collections.Set):
Raymond Hettinger1acde192008-01-14 01:00:53 +0000297 population = tuple(population)
Raymond Hettinger886687d2009-02-24 11:27:15 +0000298 if not isinstance(population, _collections.Sequence):
299 raise TypeError("Population must be a sequence or Set. For dicts, use list(d).")
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000300 randbelow = self._randbelow
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000301 n = len(population)
302 if not 0 <= k <= n:
Raymond Hettinger1acde192008-01-14 01:00:53 +0000303 raise ValueError("Sample larger than population")
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000304 result = [None] * k
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000305 setsize = 21 # size of a small set minus size of an empty list
306 if k > 5:
Tim Peters9e34c042005-08-26 15:20:46 +0000307 setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
Raymond Hettinger1acde192008-01-14 01:00:53 +0000308 if n <= setsize:
309 # An n-length list is smaller than a k-length set
Raymond Hettinger311f4192002-11-18 09:01:24 +0000310 pool = list(population)
Guido van Rossum805365e2007-05-07 22:24:25 +0000311 for i in range(k): # invariant: non-selected at [0,n-i)
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000312 j = randbelow(n-i)
Raymond Hettinger311f4192002-11-18 09:01:24 +0000313 result[i] = pool[j]
Raymond Hettinger8b9aa8d2003-01-04 05:20:33 +0000314 pool[j] = pool[n-i-1] # move non-selected item into vacancy
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000315 else:
Raymond Hettinger1acde192008-01-14 01:00:53 +0000316 selected = set()
317 selected_add = selected.add
318 for i in range(k):
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000319 j = randbelow(n)
Raymond Hettinger1acde192008-01-14 01:00:53 +0000320 while j in selected:
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000321 j = randbelow(n)
Raymond Hettinger1acde192008-01-14 01:00:53 +0000322 selected_add(j)
323 result[i] = population[j]
Raymond Hettinger311f4192002-11-18 09:01:24 +0000324 return result
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000325
Tim Peterscd804102001-01-25 20:25:57 +0000326## -------------------- real-valued distributions -------------------
327
328## -------------------- uniform distribution -------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000329
330 def uniform(self, a, b):
Raymond Hettingerbe40db02009-06-11 23:12:14 +0000331 "Get a random number in the range [a, b) or [a, b] depending on rounding."
Tim Petersd7b5e882001-01-25 03:36:26 +0000332 return a + (b-a) * self.random()
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000333
Christian Heimesfe337bf2008-03-23 21:54:12 +0000334## -------------------- triangular --------------------
335
336 def triangular(self, low=0.0, high=1.0, mode=None):
337 """Triangular distribution.
338
339 Continuous distribution bounded by given lower and upper limits,
340 and having a given mode value in-between.
341
342 http://en.wikipedia.org/wiki/Triangular_distribution
343
344 """
345 u = self.random()
346 c = 0.5 if mode is None else (mode - low) / (high - low)
347 if u > c:
348 u = 1.0 - u
349 c = 1.0 - c
350 low, high = high, low
351 return low + (high - low) * (u * c) ** 0.5
352
Tim Peterscd804102001-01-25 20:25:57 +0000353## -------------------- normal distribution --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000354
Tim Petersd7b5e882001-01-25 03:36:26 +0000355 def normalvariate(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000356 """Normal distribution.
357
358 mu is the mean, and sigma is the standard deviation.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000359
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000360 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000361 # mu = mean, sigma = standard deviation
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000362
Tim Petersd7b5e882001-01-25 03:36:26 +0000363 # Uses Kinderman and Monahan method. Reference: Kinderman,
364 # A.J. and Monahan, J.F., "Computer generation of random
365 # variables using the ratio of uniform deviates", ACM Trans
366 # Math Software, 3, (1977), pp257-260.
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000367
Tim Petersd7b5e882001-01-25 03:36:26 +0000368 random = self.random
Raymond Hettinger42406e62005-04-30 09:02:51 +0000369 while 1:
Tim Peters0c9886d2001-01-15 01:18:21 +0000370 u1 = random()
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000371 u2 = 1.0 - random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000372 z = NV_MAGICCONST*(u1-0.5)/u2
373 zz = z*z/4.0
374 if zz <= -_log(u2):
375 break
376 return mu + z*sigma
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000377
Tim Peterscd804102001-01-25 20:25:57 +0000378## -------------------- lognormal distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000379
380 def lognormvariate(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000381 """Log normal distribution.
382
383 If you take the natural logarithm of this distribution, you'll get a
384 normal distribution with mean mu and standard deviation sigma.
385 mu can have any value, and sigma must be greater than zero.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000386
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000387 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000388 return _exp(self.normalvariate(mu, sigma))
389
Tim Peterscd804102001-01-25 20:25:57 +0000390## -------------------- exponential distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000391
392 def expovariate(self, lambd):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000393 """Exponential distribution.
394
Mark Dickinson2f947362009-01-07 17:54:07 +0000395 lambd is 1.0 divided by the desired mean. It should be
396 nonzero. (The parameter would be called "lambda", but that is
397 a reserved word in Python.) Returned values range from 0 to
398 positive infinity if lambd is positive, and from negative
399 infinity to 0 if lambd is negative.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000400
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000401 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000402 # lambd: rate lambd = 1/mean
403 # ('lambda' is a Python reserved word)
404
405 random = self.random
Tim Peters0c9886d2001-01-15 01:18:21 +0000406 u = random()
407 while u <= 1e-7:
408 u = random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000409 return -_log(u)/lambd
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000410
Tim Peterscd804102001-01-25 20:25:57 +0000411## -------------------- von Mises distribution --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000412
Tim Petersd7b5e882001-01-25 03:36:26 +0000413 def vonmisesvariate(self, mu, kappa):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000414 """Circular data distribution.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000415
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000416 mu is the mean angle, expressed in radians between 0 and 2*pi, and
417 kappa is the concentration parameter, which must be greater than or
418 equal to zero. If kappa is equal to zero, this distribution reduces
419 to a uniform random angle over the range 0 to 2*pi.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000420
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000421 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000422 # mu: mean angle (in radians between 0 and 2*pi)
423 # kappa: concentration parameter kappa (>= 0)
424 # if kappa = 0 generate uniform random angle
425
426 # Based upon an algorithm published in: Fisher, N.I.,
427 # "Statistical Analysis of Circular Data", Cambridge
428 # University Press, 1993.
429
430 # Thanks to Magnus Kessler for a correction to the
431 # implementation of step 4.
432
433 random = self.random
434 if kappa <= 1e-6:
435 return TWOPI * random()
436
437 a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
438 b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
439 r = (1.0 + b * b)/(2.0 * b)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000440
Raymond Hettinger42406e62005-04-30 09:02:51 +0000441 while 1:
Tim Peters0c9886d2001-01-15 01:18:21 +0000442 u1 = random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000443
444 z = _cos(_pi * u1)
445 f = (1.0 + r * z)/(r + z)
446 c = kappa * (r - f)
447
448 u2 = random()
449
Raymond Hettinger42406e62005-04-30 09:02:51 +0000450 if u2 < c * (2.0 - c) or u2 <= c * _exp(1.0 - c):
Tim Peters0c9886d2001-01-15 01:18:21 +0000451 break
Tim Petersd7b5e882001-01-25 03:36:26 +0000452
453 u3 = random()
454 if u3 > 0.5:
455 theta = (mu % TWOPI) + _acos(f)
456 else:
457 theta = (mu % TWOPI) - _acos(f)
458
459 return theta
460
Tim Peterscd804102001-01-25 20:25:57 +0000461## -------------------- gamma distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000462
463 def gammavariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000464 """Gamma distribution. Not the gamma function!
465
466 Conditions on the parameters are alpha > 0 and beta > 0.
467
Raymond Hettingera8e4d6e2011-03-22 15:55:51 -0700468 The probability distribution function is:
469
470 x ** (alpha - 1) * math.exp(-x / beta)
471 pdf(x) = --------------------------------------
472 math.gamma(alpha) * beta ** alpha
473
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000474 """
Tim Peters8ac14952002-05-23 15:15:30 +0000475
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000476 # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
Tim Peters8ac14952002-05-23 15:15:30 +0000477
Guido van Rossum570764d2002-05-14 14:08:12 +0000478 # Warning: a few older sources define the gamma distribution in terms
479 # of alpha > -1.0
480 if alpha <= 0.0 or beta <= 0.0:
Collin Winterce36ad82007-08-30 01:19:48 +0000481 raise ValueError('gammavariate: alpha and beta must be > 0.0')
Tim Peters8ac14952002-05-23 15:15:30 +0000482
Tim Petersd7b5e882001-01-25 03:36:26 +0000483 random = self.random
Tim Petersd7b5e882001-01-25 03:36:26 +0000484 if alpha > 1.0:
485
486 # Uses R.C.H. Cheng, "The generation of Gamma
487 # variables with non-integral shape parameters",
488 # Applied Statistics, (1977), 26, No. 1, p71-74
489
Raymond Hettingerca6cdc22002-05-13 23:40:14 +0000490 ainv = _sqrt(2.0 * alpha - 1.0)
491 bbb = alpha - LOG4
492 ccc = alpha + ainv
Tim Peters8ac14952002-05-23 15:15:30 +0000493
Raymond Hettinger42406e62005-04-30 09:02:51 +0000494 while 1:
Tim Petersd7b5e882001-01-25 03:36:26 +0000495 u1 = random()
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000496 if not 1e-7 < u1 < .9999999:
497 continue
498 u2 = 1.0 - random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000499 v = _log(u1/(1.0-u1))/ainv
500 x = alpha*_exp(v)
501 z = u1*u1*u2
502 r = bbb+ccc*v-x
503 if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000504 return x * beta
Tim Petersd7b5e882001-01-25 03:36:26 +0000505
506 elif alpha == 1.0:
507 # expovariate(1)
508 u = random()
509 while u <= 1e-7:
510 u = random()
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000511 return -_log(u) * beta
Tim Petersd7b5e882001-01-25 03:36:26 +0000512
513 else: # alpha is between 0 and 1 (exclusive)
514
515 # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
516
Raymond Hettinger42406e62005-04-30 09:02:51 +0000517 while 1:
Tim Petersd7b5e882001-01-25 03:36:26 +0000518 u = random()
519 b = (_e + alpha)/_e
520 p = b*u
521 if p <= 1.0:
Raymond Hettinger42406e62005-04-30 09:02:51 +0000522 x = p ** (1.0/alpha)
Tim Petersd7b5e882001-01-25 03:36:26 +0000523 else:
Tim Petersd7b5e882001-01-25 03:36:26 +0000524 x = -_log((b-p)/alpha)
525 u1 = random()
Raymond Hettinger42406e62005-04-30 09:02:51 +0000526 if p > 1.0:
527 if u1 <= x ** (alpha - 1.0):
528 break
529 elif u1 <= _exp(-x):
Tim Petersd7b5e882001-01-25 03:36:26 +0000530 break
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000531 return x * beta
532
Tim Peterscd804102001-01-25 20:25:57 +0000533## -------------------- Gauss (faster alternative) --------------------
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000534
Tim Petersd7b5e882001-01-25 03:36:26 +0000535 def gauss(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000536 """Gaussian distribution.
537
538 mu is the mean, and sigma is the standard deviation. This is
539 slightly faster than the normalvariate() function.
540
541 Not thread-safe without a lock around calls.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000542
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000543 """
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000544
Tim Petersd7b5e882001-01-25 03:36:26 +0000545 # When x and y are two variables from [0, 1), uniformly
546 # distributed, then
547 #
548 # cos(2*pi*x)*sqrt(-2*log(1-y))
549 # sin(2*pi*x)*sqrt(-2*log(1-y))
550 #
551 # are two *independent* variables with normal distribution
552 # (mu = 0, sigma = 1).
553 # (Lambert Meertens)
554 # (corrected version; bug discovered by Mike Miller, fixed by LM)
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000555
Tim Petersd7b5e882001-01-25 03:36:26 +0000556 # Multithreading note: When two threads call this function
557 # simultaneously, it is possible that they will receive the
558 # same return value. The window is very small though. To
559 # avoid this, you have to use a lock around all calls. (I
560 # didn't want to slow this down in the serial case by using a
561 # lock here.)
Guido van Rossumd03e1191998-05-29 17:51:31 +0000562
Tim Petersd7b5e882001-01-25 03:36:26 +0000563 random = self.random
564 z = self.gauss_next
565 self.gauss_next = None
566 if z is None:
567 x2pi = random() * TWOPI
568 g2rad = _sqrt(-2.0 * _log(1.0 - random()))
569 z = _cos(x2pi) * g2rad
570 self.gauss_next = _sin(x2pi) * g2rad
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000571
Tim Petersd7b5e882001-01-25 03:36:26 +0000572 return mu + z*sigma
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000573
Tim Peterscd804102001-01-25 20:25:57 +0000574## -------------------- beta --------------------
Tim Peters85e2e472001-01-26 06:49:56 +0000575## See
576## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470
577## for Ivan Frohne's insightful analysis of why the original implementation:
578##
579## def betavariate(self, alpha, beta):
580## # Discrete Event Simulation in C, pp 87-88.
581##
582## y = self.expovariate(alpha)
583## z = self.expovariate(1.0/beta)
584## return z/(y+z)
585##
586## was dead wrong, and how it probably got that way.
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000587
Tim Petersd7b5e882001-01-25 03:36:26 +0000588 def betavariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000589 """Beta distribution.
590
Thomas Woutersb2137042007-02-01 18:02:27 +0000591 Conditions on the parameters are alpha > 0 and beta > 0.
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000592 Returned values range between 0 and 1.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000593
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000594 """
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000595
Tim Peters85e2e472001-01-26 06:49:56 +0000596 # This version due to Janne Sinkkonen, and matches all the std
597 # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
598 y = self.gammavariate(alpha, 1.)
599 if y == 0:
600 return 0.0
601 else:
602 return y / (y + self.gammavariate(beta, 1.))
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000603
Tim Peterscd804102001-01-25 20:25:57 +0000604## -------------------- Pareto --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000605
Tim Petersd7b5e882001-01-25 03:36:26 +0000606 def paretovariate(self, alpha):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000607 """Pareto distribution. alpha is the shape parameter."""
Tim Petersd7b5e882001-01-25 03:36:26 +0000608 # Jain, pg. 495
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000609
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000610 u = 1.0 - self.random()
Raymond Hettinger8ff10992010-09-08 18:58:33 +0000611 return 1.0 / u ** (1.0/alpha)
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000612
Tim Peterscd804102001-01-25 20:25:57 +0000613## -------------------- Weibull --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000614
Tim Petersd7b5e882001-01-25 03:36:26 +0000615 def weibullvariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000616 """Weibull distribution.
617
618 alpha is the scale parameter and beta is the shape parameter.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000619
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000620 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000621 # Jain, pg. 499; bug fix courtesy Bill Arms
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000622
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000623 u = 1.0 - self.random()
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000624 return alpha * (-_log(u)) ** (1.0/beta)
Guido van Rossum6c395ba1999-08-18 13:53:28 +0000625
Raymond Hettinger23f12412004-09-13 22:23:21 +0000626## --------------- Operating System Random Source ------------------
Raymond Hettinger356a4592004-08-30 06:14:31 +0000627
Raymond Hettinger23f12412004-09-13 22:23:21 +0000628class SystemRandom(Random):
629 """Alternate random number generator using sources provided
630 by the operating system (such as /dev/urandom on Unix or
631 CryptGenRandom on Windows).
Raymond Hettinger356a4592004-08-30 06:14:31 +0000632
633 Not available on all systems (see os.urandom() for details).
634 """
635
636 def random(self):
637 """Get the next random number in the range [0.0, 1.0)."""
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000638 return (int.from_bytes(_urandom(7), 'big') >> 3) * RECIP_BPF
Raymond Hettinger356a4592004-08-30 06:14:31 +0000639
640 def getrandbits(self, k):
641 """getrandbits(k) -> x. Generates a long int with k random bits."""
Raymond Hettinger356a4592004-08-30 06:14:31 +0000642 if k <= 0:
643 raise ValueError('number of bits must be greater than zero')
644 if k != int(k):
645 raise TypeError('number of bits should be an integer')
Raymond Hettinger63b17672010-09-08 19:27:59 +0000646 numbytes = (k + 7) // 8 # bits / 8 and rounded up
647 x = int.from_bytes(_urandom(numbytes), 'big')
648 return x >> (numbytes * 8 - k) # trim excess bits
Raymond Hettinger356a4592004-08-30 06:14:31 +0000649
Raymond Hettinger28de64f2008-01-13 23:40:30 +0000650 def seed(self, *args, **kwds):
Raymond Hettinger23f12412004-09-13 22:23:21 +0000651 "Stub method. Not used for a system random number generator."
Raymond Hettinger356a4592004-08-30 06:14:31 +0000652 return None
Raymond Hettinger356a4592004-08-30 06:14:31 +0000653
654 def _notimplemented(self, *args, **kwds):
Raymond Hettinger23f12412004-09-13 22:23:21 +0000655 "Method should not be called for a system random number generator."
656 raise NotImplementedError('System entropy source does not have state.')
Raymond Hettinger356a4592004-08-30 06:14:31 +0000657 getstate = setstate = _notimplemented
658
Tim Peterscd804102001-01-25 20:25:57 +0000659## -------------------- test program --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000660
Raymond Hettinger62297132003-08-30 01:24:19 +0000661def _test_generator(n, func, args):
Tim Peters0c9886d2001-01-15 01:18:21 +0000662 import time
Guido van Rossumbe19ed72007-02-09 05:37:30 +0000663 print(n, 'times', func.__name__)
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000664 total = 0.0
Tim Peters0c9886d2001-01-15 01:18:21 +0000665 sqsum = 0.0
666 smallest = 1e10
667 largest = -1e10
668 t0 = time.time()
669 for i in range(n):
Raymond Hettinger62297132003-08-30 01:24:19 +0000670 x = func(*args)
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000671 total += x
Tim Peters0c9886d2001-01-15 01:18:21 +0000672 sqsum = sqsum + x*x
673 smallest = min(x, smallest)
674 largest = max(x, largest)
675 t1 = time.time()
Guido van Rossumbe19ed72007-02-09 05:37:30 +0000676 print(round(t1-t0, 3), 'sec,', end=' ')
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000677 avg = total/n
Tim Petersd7b5e882001-01-25 03:36:26 +0000678 stddev = _sqrt(sqsum/n - avg*avg)
Guido van Rossumbe19ed72007-02-09 05:37:30 +0000679 print('avg %g, stddev %g, min %g, max %g' % \
680 (avg, stddev, smallest, largest))
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000681
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000682
683def _test(N=2000):
Raymond Hettinger62297132003-08-30 01:24:19 +0000684 _test_generator(N, random, ())
685 _test_generator(N, normalvariate, (0.0, 1.0))
686 _test_generator(N, lognormvariate, (0.0, 1.0))
687 _test_generator(N, vonmisesvariate, (0.0, 1.0))
688 _test_generator(N, gammavariate, (0.01, 1.0))
689 _test_generator(N, gammavariate, (0.1, 1.0))
690 _test_generator(N, gammavariate, (0.1, 2.0))
691 _test_generator(N, gammavariate, (0.5, 1.0))
692 _test_generator(N, gammavariate, (0.9, 1.0))
693 _test_generator(N, gammavariate, (1.0, 1.0))
694 _test_generator(N, gammavariate, (2.0, 1.0))
695 _test_generator(N, gammavariate, (20.0, 1.0))
696 _test_generator(N, gammavariate, (200.0, 1.0))
697 _test_generator(N, gauss, (0.0, 1.0))
698 _test_generator(N, betavariate, (3.0, 3.0))
Christian Heimesfe337bf2008-03-23 21:54:12 +0000699 _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))
Tim Peterscd804102001-01-25 20:25:57 +0000700
Tim Peters715c4c42001-01-26 22:56:56 +0000701# Create one instance, seeded from current time, and export its methods
Raymond Hettinger40f62172002-12-29 23:03:38 +0000702# as module-level functions. The functions share state across all uses
703#(both in the user's code and in the Python libraries), but that's fine
704# for most programs and is easier for the casual user than making them
705# instantiate their own Random() instance.
706
Tim Petersd7b5e882001-01-25 03:36:26 +0000707_inst = Random()
708seed = _inst.seed
709random = _inst.random
710uniform = _inst.uniform
Christian Heimesfe337bf2008-03-23 21:54:12 +0000711triangular = _inst.triangular
Tim Petersd7b5e882001-01-25 03:36:26 +0000712randint = _inst.randint
713choice = _inst.choice
714randrange = _inst.randrange
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000715sample = _inst.sample
Tim Petersd7b5e882001-01-25 03:36:26 +0000716shuffle = _inst.shuffle
717normalvariate = _inst.normalvariate
718lognormvariate = _inst.lognormvariate
Tim Petersd7b5e882001-01-25 03:36:26 +0000719expovariate = _inst.expovariate
720vonmisesvariate = _inst.vonmisesvariate
721gammavariate = _inst.gammavariate
Tim Petersd7b5e882001-01-25 03:36:26 +0000722gauss = _inst.gauss
723betavariate = _inst.betavariate
724paretovariate = _inst.paretovariate
725weibullvariate = _inst.weibullvariate
726getstate = _inst.getstate
727setstate = _inst.setstate
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000728getrandbits = _inst.getrandbits
Tim Petersd7b5e882001-01-25 03:36:26 +0000729
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000730if __name__ == '__main__':
Tim Petersd7b5e882001-01-25 03:36:26 +0000731 _test()