blob: 5d49e663c1b785f938ca64644a6be444a2f48d4b [file] [log] [blame]
Raymond Hettinger96ef8112003-02-01 00:10:11 +00001\section{\module{itertools} ---
2 Functions creating iterators for efficient looping}
3
4\declaremodule{standard}{itertools}
5\modulesynopsis{Functions creating iterators for efficient looping.}
6\moduleauthor{Raymond Hettinger}{python@rcn.com}
7\sectionauthor{Raymond Hettinger}{python@rcn.com}
8\versionadded{2.3}
9
10
11This module implements a number of iterator building blocks inspired
12by constructs from the Haskell and SML programming languages. Each
13has been recast in a form suitable for Python.
14
15With the advent of iterators and generators in Python 2.3, each of
16these tools can be expressed easily and succinctly in pure python.
17Rather duplicating what can already be done, this module emphasizes
18providing value in other ways:
19
20\begin{itemize}
21
22 \item Instead of constructing an over-specialized toolset, this module
23 provides basic building blocks that can be readily combined.
24
25 For instance, SML provides a tabulation tool: \code{tabulate(\var{f})}
26 which produces a sequence \code{f(0), f(1), ...}. This toolbox
27 takes a different approach of providing \function{imap()} and
28 \function{count()} which can be combined to form
29 \code{imap(\var{f}, count())} and produce an equivalent result.
30
31 \item Some tools were dropped because they offer no advantage over their
32 pure python counterparts or because their behavior was too
33 surprising.
34
35 For instance, SML provides a tool: \code{cycle(\var{seq})} which
36 loops over the sequence elements and then starts again when the
37 sequence is exhausted. The surprising behavior is the need for
38 significant auxiliary storage (unusual for iterators). Also, it
39 is trivially implemented in python with almost no performance
40 penalty.
41
42 \item Another source of value comes from standardizing a core set of tools
43 to avoid the readability and reliability problems that arise when many
44 different individuals create their own slightly varying implementations
45 each with their own quirks and naming conventions.
46
47 \item Whether cast in pure python form or C code, tools that use iterators
48 are more memory efficient (and faster) than their list based counterparts.
49 Adopting the principles of just-in-time manufacturing, they create
50 data when and where needed instead of consuming memory with the
51 computer equivalent of ``inventory''.
52
53\end{itemize}
54
55\begin{seealso}
56 \seetext{The Standard ML Basis Library,
57 \citetitle[http://www.standardml.org/Basis/]
58 {The Standard ML Basis Library}.}
59
60 \seetext{Haskell, A Purely Functional Language,
61 \citetitle[http://www.haskell.org/definition/]
62 {Definition of Haskell and the Standard Libraries}.}
63\end{seealso}
64
65
66\subsection{Itertool functions \label{itertools-functions}}
67
68The following module functions all construct and return iterators.
69Some provide streams of infinite length, so they should only be accessed
70by functions or loops that truncate the stream.
71
72\begin{funcdesc}{count}{\optional{n}}
73 Make an iterator that returns consecutive integers starting with \var{n}.
74 Does not currently support python long integers. Often used as an
75 argument to \function{imap()} to generate consecutive data points.
76 Also, used in \function{izip()} to add sequence numbers. Equivalent to:
77
78 \begin{verbatim}
79 def count(n=0):
80 cnt = n
81 while True:
82 yield cnt
83 cnt += 1
84 \end{verbatim}
85\end{funcdesc}
86
87\begin{funcdesc}{dropwhile}{predicate, iterable}
88 Make an iterator that drops elements from the iterable as long as
89 the predicate is true; afterwards, returns every element. Note,
90 the iterator does not produce \emph{any} output until the predicate
91 is true, so it may have a lengthy start-up time. Equivalent to:
92
93 \begin{verbatim}
94 def dropwhile(predicate, iterable):
95 iterable = iter(iterable)
96 while True:
97 x = iterable.next()
98 if predicate(x): continue # drop when predicate is true
99 yield x
100 break
101 while True:
102 yield iterable.next()
103 \end{verbatim}
104\end{funcdesc}
105
106\begin{funcdesc}{ifilter}{predicate, iterable \optional{, invert}}
107 Make an iterator that filters elements from iterable returning only
108 those for which the predicate is \code{True}. If
109 \var{invert} is \code{True}, then reverse the process and pass through
110 only those elements for which the predicate is \code{False}.
111 If \var{predicate} is \code{None}, return the items that are true
112 (or false if \var{invert} has been set). Equivalent to:
113
114 \begin{verbatim}
115 def ifilter(predicate, iterable, invert=False):
116 iterable = iter(iterable)
117 while True:
118 x = iterable.next()
119 if predicate is None:
120 b = bool(x)
121 else:
122 b = bool(predicate(x))
123 if not invert and b or invert and not b:
124 yield x
125 \end{verbatim}
126\end{funcdesc}
127
128\begin{funcdesc}{imap}{function, *iterables}
129 Make an iterator that computes the function using arguments from
130 each of the iterables. If \var{function} is set to \code{None}, then
131 \function{imap()} returns the arguments as a tuple. Like
132 \function{map()} but stops when the shortest iterable is exhausted
133 instead of filling in \code{None} for shorter iterables. The reason
134 for the difference is that infinite iterator arguments are typically
135 an error for \function{map()} (because the output is fully evaluated)
136 but represent a common and useful way of supplying arguments to
137 \function{imap()}.
138 Equivalent to:
139
140 \begin{verbatim}
141 def imap(function, *iterables):
142 iterables = map(iter, iterables)
143 while True:
144 args = [i.next() for i in iterables]
145 if function is None:
146 yield tuple(args)
147 else:
148 yield function(*args)
149 \end{verbatim}
150\end{funcdesc}
151
152\begin{funcdesc}{islice}{iterable, \optional{start,} stop \optional{, step}}
153 Make an iterator that returns selected elements from the iterable.
154 If \var{start} is non-zero, then elements from the iterable are skipped
155 until start is reached. Afterward, elements are returned consecutively
156 unless \var{step} is set higher than one which results in items being
157 skipped. If \var{stop} is specified, then iteration stops at the
158 specified element position; otherwise, it continues indefinitely or
159 until the iterable is exhausted. Unlike regular slicing,
160 \function{islice()} does not support negative values for \var{start},
161 \var{stop}, or \var{step}. Can be used to extract related fields
162 from data where the internal structure has been flattened (for
163 example, a multi-line report may list a name field on every
164 third line). Equivalent to:
165
166 \begin{verbatim}
167 def islice(iterable, *args):
168 iterable = iter(iterable)
169 s = slice(*args)
170 next = s.start or 0
171 stop = s.stop
172 step = s.step or 1
173 cnt = 0
174 while True:
175 while cnt < next:
176 dummy = iterable.next()
177 cnt += 1
178 if cnt >= stop:
179 break
180 yield iterable.next()
181 cnt += 1
182 next += step
183 \end{verbatim}
184\end{funcdesc}
185
186\begin{funcdesc}{izip}{*iterables}
187 Make an iterator that aggregates elements from each of the iterables.
188 Like \function{zip()} except that it returns an iterator instead of
189 a list. Used for lock-step iteration over several iterables at a
190 time. Equivalent to:
191
192 \begin{verbatim}
193 def izip(*iterables):
194 iterables = map(iter, iterables)
195 while True:
196 result = [i.next() for i in iterables]
197 yield tuple(result)
198 \end{verbatim}
199\end{funcdesc}
200
201\begin{funcdesc}{repeat}{obj}
202 Make an iterator that returns \var{obj} over and over again.
203 Used as argument to \function{imap()} for invariant parameters
204 to the called function. Also used with function{izip()} to create
205 an invariant part of a tuple record. Equivalent to:
206
207 \begin{verbatim}
208 def repeat(x):
209 while True:
210 yield x
211 \end{verbatim}
212\end{funcdesc}
213
214\begin{funcdesc}{starmap}{function, iterable}
215 Make an iterator that computes the function using arguments tuples
216 obtained from the iterable. Used instead of \function{imap()} when
217 argument parameters are already grouped in tuples from a single iterable
218 (the data has been ``pre-zipped''). The difference between
219 \function{imap()} and \function{starmap} parallels the distinction
220 between \code{function(a,b)} and \code{function(*c)}.
221 Equivalent to:
222
223 \begin{verbatim}
224 def starmap(function, iterable):
225 iterable = iter(iterable)
226 while True:
227 yield function(*iterable.next())
228 \end{verbatim}
229\end{funcdesc}
230
231\begin{funcdesc}{takewhile}{predicate, iterable}
232 Make an iterator that returns elements from the iterable as long as
233 the predicate is true. Equivalent to:
234
235 \begin{verbatim}
236 def takewhile(predicate, iterable):
237 iterable = iter(iterable)
238 while True:
239 x = iterable.next()
240 if predicate(x):
241 yield x
242 else:
243 break
244 \end{verbatim}
245\end{funcdesc}
246
247\begin{funcdesc}{times}{n, \optional{object}}
248 Make an iterator that returns \var{object} \var{n} times.
249 \var{object} defaults to \code{None}. Used for looping a specific
250 number of times without creating a number object on each pass.
251 Equivalent to:
252
253 \begin{verbatim}
254 def times(n, object=None):
255 if n<0 : raise ValueError
256 for i in xrange(n):
257 yield object
258 \end{verbatim}
259\end{funcdesc}
260
261
262\subsection{Examples \label{itertools-example}}
263
264The following examples show common uses for each tool and
265demonstrate ways they can be combined.
266
267\begin{verbatim}
268>>> for i in times(3):
269... print "Hello"
270...
271Hello
272Hello
273Hello
274
275>>> amounts = [120.15, 764.05, 823.14]
276>>> for checknum, amount in izip(count(1200), amounts):
277... print 'Check %d is for $%.2f' % (checknum, amount)
278...
279Check 1200 is for $120.15
280Check 1201 is for $764.05
281Check 1202 is for $823.14
282
283>>> import operator
284>>> for cube in imap(operator.pow, xrange(1,4), repeat(3)):
285... print cube
286...
2871
2888
28927
290
291>>> reportlines = ['EuroPython', 'Roster', '', 'alex', '', 'laura',
292 '', 'martin', '', 'walter', '', 'samuele']
293>>> for name in islice(reportlines, 3, len(reportlines), 2):
294... print name.title()
295...
296Alex
297Laura
298Martin
299Walter
300Samuele
301
302\end{verbatim}
303
304This section has further examples of how itertools can be combined.
305Note that \function{enumerate()} and \method{iteritems()} already
306have highly efficient implementations in Python. They are only
307included here to illustrate how higher level tools can be created
308from building blocks.
309
310\begin{verbatim}
311>>> def enumerate(iterable):
312... return izip(count(), iterable)
313
314>>> def tabulate(function):
315... "Return function(0), function(1), ..."
316... return imap(function, count())
317
318>>> def iteritems(mapping):
319... return izip(mapping.iterkeys(), mapping.itervalues())
320
321>>> def nth(iterable, n):
322... "Returns the nth item"
323... return islice(iterable, n, n+1).next()
324
325\end{verbatim}