blob: 1310a2d9d0e07104ee8b67a0efc2e004bfe62277 [file] [log] [blame]
Guido van Rossume7b146f2000-02-04 15:28:42 +00001"""Random variable generators.
Guido van Rossumff03b1a1994-03-09 12:55:02 +00002
Raymond Hettingeref19bad2020-06-25 17:03:50 -07003 bytes
4 -----
5 uniform bytes (values between 0 and 255)
6
Tim Petersd7b5e882001-01-25 03:36:26 +00007 integers
8 --------
9 uniform within range
10
11 sequences
12 ---------
13 pick random element
Raymond Hettingerf24eb352002-11-12 17:41:57 +000014 pick random sample
Raymond Hettingere8f1e002016-09-06 17:15:29 -070015 pick weighted random sample
Tim Petersd7b5e882001-01-25 03:36:26 +000016 generate random permutation
17
Guido van Rossume7b146f2000-02-04 15:28:42 +000018 distributions on the real line:
19 ------------------------------
Tim Petersd7b5e882001-01-25 03:36:26 +000020 uniform
Christian Heimesfe337bf2008-03-23 21:54:12 +000021 triangular
Guido van Rossume7b146f2000-02-04 15:28:42 +000022 normal (Gaussian)
23 lognormal
24 negative exponential
25 gamma
26 beta
Raymond Hettinger40f62172002-12-29 23:03:38 +000027 pareto
28 Weibull
Guido van Rossumff03b1a1994-03-09 12:55:02 +000029
Guido van Rossume7b146f2000-02-04 15:28:42 +000030 distributions on the circle (angles 0 to 2pi)
31 ---------------------------------------------
32 circular uniform
33 von Mises
34
Raymond Hettinger40f62172002-12-29 23:03:38 +000035General notes on the underlying Mersenne Twister core generator:
Guido van Rossume7b146f2000-02-04 15:28:42 +000036
Raymond Hettinger40f62172002-12-29 23:03:38 +000037* The period is 2**19937-1.
Thomas Wouters0e3f5912006-08-11 14:57:12 +000038* It is one of the most extensively tested generators in existence.
Thomas Wouters0e3f5912006-08-11 14:57:12 +000039* The random() method is implemented in C, executes in a single Python step,
40 and is, therefore, threadsafe.
Tim Peterse360d952001-01-26 10:00:39 +000041
Guido van Rossume7b146f2000-02-04 15:28:42 +000042"""
Guido van Rossumd03e1191998-05-29 17:51:31 +000043
Raymond Hettingeref19bad2020-06-25 17:03:50 -070044# Translated by Guido van Rossum from C source provided by
45# Adrian Baddeley. Adapted by Raymond Hettinger for use with
46# the Mersenne Twister and os.urandom() core generators.
47
Raymond Hettinger2f726e92003-10-05 09:09:15 +000048from warnings import warn as _warn
Raymond Hettinger91e27c22005-08-19 01:36:35 +000049from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
Raymond Hettinger26a1ad12020-06-22 19:38:59 -070050from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
Ram Rachumb0dfc752020-09-29 04:32:10 +030051from math import tau as TWOPI, floor as _floor, isfinite as _isfinite
Raymond Hettingerc1c43ca2004-09-05 00:00:42 +000052from os import urandom as _urandom
Christian Heimesf1dc3ee2013-10-13 02:04:20 +020053from _collections_abc import Set as _Set, Sequence as _Sequence
Raymond Hettingera9621bb2020-12-28 11:10:34 -080054from operator import index as _index
Raymond Hettinger53822032019-02-16 13:30:51 -080055from itertools import accumulate as _accumulate, repeat as _repeat
Raymond Hettingercfd31f02019-02-13 02:04:17 -080056from bisect import bisect as _bisect
Antoine Pitrou346cbd32017-05-27 17:50:54 +020057import os as _os
Raymond Hettingeref19bad2020-06-25 17:03:50 -070058import _random
Guido van Rossumff03b1a1994-03-09 12:55:02 +000059
Christian Heimesd9145962019-04-10 22:18:02 +020060try:
61 # hashlib is pretty heavy to load, try lean internal module first
62 from _sha512 import sha512 as _sha512
63except ImportError:
64 # fallback to official implementation
65 from hashlib import sha512 as _sha512
66
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -070067__all__ = [
68 "Random",
69 "SystemRandom",
70 "betavariate",
71 "choice",
72 "choices",
73 "expovariate",
74 "gammavariate",
75 "gauss",
76 "getrandbits",
77 "getstate",
78 "lognormvariate",
79 "normalvariate",
80 "paretovariate",
Setrak Balian998ae1f2021-01-15 17:50:42 +000081 "randbytes",
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -070082 "randint",
83 "random",
84 "randrange",
85 "sample",
86 "seed",
87 "setstate",
88 "shuffle",
89 "triangular",
90 "uniform",
91 "vonmisesvariate",
92 "weibullvariate",
93]
Tim Petersd7b5e882001-01-25 03:36:26 +000094
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -070095NV_MAGICCONST = 4 * _exp(-0.5) / _sqrt(2.0)
Tim Petersd7b5e882001-01-25 03:36:26 +000096LOG4 = _log(4.0)
Tim Petersd7b5e882001-01-25 03:36:26 +000097SG_MAGICCONST = 1.0 + _log(4.5)
Raymond Hettinger2f726e92003-10-05 09:09:15 +000098BPF = 53 # Number of bits in a float
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -070099RECIP_BPF = 2 ** -BPF
Raymond Hettinger768fa142021-01-02 10:24:51 -0800100_ONE = 1
Tim Petersd7b5e882001-01-25 03:36:26 +0000101
Raymond Hettinger356a4592004-08-30 06:14:31 +0000102
Raymond Hettinger145a4a02003-01-07 10:25:55 +0000103class Random(_random.Random):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000104 """Random number generator base class used by bound module functions.
105
106 Used to instantiate instances of Random to get generators that don't
Raymond Hettinger28de64f2008-01-13 23:40:30 +0000107 share state.
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000108
109 Class Random can also be subclassed if you want to use a different basic
110 generator of your own devising: in that case, override the following
Raymond Hettinger28de64f2008-01-13 23:40:30 +0000111 methods: random(), seed(), getstate(), and setstate().
Benjamin Petersond18de0e2008-07-31 20:21:46 +0000112 Optionally, implement a getrandbits() method so that randrange()
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000113 can cover arbitrarily large ranges.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000114
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000115 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000116
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000117 VERSION = 3 # used by getstate/setstate
Tim Petersd7b5e882001-01-25 03:36:26 +0000118
119 def __init__(self, x=None):
120 """Initialize an instance.
121
122 Optional argument x controls seeding, as for Random.seed().
123 """
124
125 self.seed(x)
Raymond Hettinger40f62172002-12-29 23:03:38 +0000126 self.gauss_next = None
Tim Petersd7b5e882001-01-25 03:36:26 +0000127
Raymond Hettingerf763a722010-09-07 00:38:15 +0000128 def seed(self, a=None, version=2):
Raymond Hettingerd0cdeaa2019-08-22 09:19:36 -0700129 """Initialize internal state from a seed.
130
131 The only supported seed types are None, int, float,
132 str, bytes, and bytearray.
Tim Petersd7b5e882001-01-25 03:36:26 +0000133
Raymond Hettinger23f12412004-09-13 22:23:21 +0000134 None or no argument seeds from current time or from an operating
135 system specific randomness source if available.
Tim Peters0de88fc2001-02-01 04:59:18 +0000136
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000137 If *a* is an int, all bits are used.
Raymond Hettingerf763a722010-09-07 00:38:15 +0000138
Raymond Hettinger16eb8272016-09-04 11:17:28 -0700139 For version 2 (the default), all of the bits are used if *a* is a str,
140 bytes, or bytearray. For version 1 (provided for reproducing random
141 sequences from older versions of Python), the algorithm for str and
142 bytes generates a narrower range of seeds.
143
Tim Petersd7b5e882001-01-25 03:36:26 +0000144 """
145
Raymond Hettingerc7bab7c2016-08-31 15:01:08 -0700146 if version == 1 and isinstance(a, (str, bytes)):
Raymond Hettinger132a7d72017-09-17 09:04:30 -0700147 a = a.decode('latin-1') if isinstance(a, bytes) else a
Raymond Hettingerc7bab7c2016-08-31 15:01:08 -0700148 x = ord(a[0]) << 7 if a else 0
Raymond Hettinger132a7d72017-09-17 09:04:30 -0700149 for c in map(ord, a):
150 x = ((1000003 * x) ^ c) & 0xFFFFFFFFFFFFFFFF
Raymond Hettingerc7bab7c2016-08-31 15:01:08 -0700151 x ^= len(a)
152 a = -2 if x == -1 else x
153
Raymond Hettingerd0cdeaa2019-08-22 09:19:36 -0700154 elif version == 2 and isinstance(a, (str, bytes, bytearray)):
Raymond Hettinger2f9cc7a2016-08-31 23:00:32 -0700155 if isinstance(a, str):
156 a = a.encode()
Miss Islington (bot)2995bff2021-05-03 19:45:30 -0700157 a = int.from_bytes(a + _sha512(a).digest(), 'big')
Raymond Hettingerf763a722010-09-07 00:38:15 +0000158
Raymond Hettingerd0cdeaa2019-08-22 09:19:36 -0700159 elif not isinstance(a, (type(None), int, float, str, bytes, bytearray)):
160 _warn('Seeding based on hashing is deprecated\n'
161 'since Python 3.9 and will be removed in a subsequent '
162 'version. The only \n'
163 'supported seed types are: None, '
164 'int, float, str, bytes, and bytearray.',
165 DeprecationWarning, 2)
166
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000167 super().seed(a)
Tim Peters46c04e12002-05-05 20:40:00 +0000168 self.gauss_next = None
169
Tim Peterscd804102001-01-25 20:25:57 +0000170 def getstate(self):
171 """Return internal state; can be passed to setstate() later."""
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000172 return self.VERSION, super().getstate(), self.gauss_next
Tim Peterscd804102001-01-25 20:25:57 +0000173
174 def setstate(self, state):
175 """Restore internal state from object returned by getstate()."""
176 version = state[0]
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000177 if version == 3:
Raymond Hettinger40f62172002-12-29 23:03:38 +0000178 version, internalstate, self.gauss_next = state
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000179 super().setstate(internalstate)
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000180 elif version == 2:
181 version, internalstate, self.gauss_next = state
182 # In version 2, the state was saved as signed ints, which causes
183 # inconsistencies between 32/64-bit systems. The state is
184 # really unsigned 32-bit ints, so we convert negative ints from
185 # version 2 to positive longs for version 3.
186 try:
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700187 internalstate = tuple(x % (2 ** 32) for x in internalstate)
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000188 except ValueError as e:
189 raise TypeError from e
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000190 super().setstate(internalstate)
Tim Peterscd804102001-01-25 20:25:57 +0000191 else:
192 raise ValueError("state with version %s passed to "
193 "Random.setstate() of version %s" %
194 (version, self.VERSION))
195
Tim Peterscd804102001-01-25 20:25:57 +0000196
Raymond Hettingeref19bad2020-06-25 17:03:50 -0700197 ## -------------------------------------------------------
198 ## ---- Methods below this point do not need to be overridden or extended
199 ## ---- when subclassing for the purpose of using a different core generator.
Victor Stinner2d875772020-04-29 18:49:00 +0200200
Victor Stinner2d875772020-04-29 18:49:00 +0200201
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700202 ## -------------------- pickle support -------------------
Tim Peterscd804102001-01-25 20:25:57 +0000203
R David Murrayd9ebf4d2013-04-02 13:10:52 -0400204 # Issue 17489: Since __reduce__ was defined to fix #759889 this is no
205 # longer called; we leave it here because it has been here since random was
206 # rewritten back in 2001 and why risk breaking something.
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700207 def __getstate__(self): # for pickle
Tim Peterscd804102001-01-25 20:25:57 +0000208 return self.getstate()
209
210 def __setstate__(self, state): # for pickle
211 self.setstate(state)
212
Raymond Hettinger5f078ff2003-06-24 20:29:04 +0000213 def __reduce__(self):
214 return self.__class__, (), self.getstate()
215
Raymond Hettingeref19bad2020-06-25 17:03:50 -0700216
217 ## ---- internal support method for evenly distributed integers ----
218
219 def __init_subclass__(cls, /, **kwargs):
220 """Control how subclasses generate random integers.
221
222 The algorithm a subclass can use depends on the random() and/or
223 getrandbits() implementation available to it and determines
224 whether it can generate random integers from arbitrarily large
225 ranges.
226 """
227
228 for c in cls.__mro__:
229 if '_randbelow' in c.__dict__:
230 # just inherit it
231 break
232 if 'getrandbits' in c.__dict__:
233 cls._randbelow = cls._randbelow_with_getrandbits
234 break
235 if 'random' in c.__dict__:
236 cls._randbelow = cls._randbelow_without_getrandbits
237 break
238
239 def _randbelow_with_getrandbits(self, n):
240 "Return a random int in the range [0,n). Returns 0 if n==0."
241
242 if not n:
243 return 0
244 getrandbits = self.getrandbits
245 k = n.bit_length() # don't use (n-1) here because n can be 1
246 r = getrandbits(k) # 0 <= r < 2**k
247 while r >= n:
248 r = getrandbits(k)
249 return r
250
251 def _randbelow_without_getrandbits(self, n, maxsize=1<<BPF):
252 """Return a random int in the range [0,n). Returns 0 if n==0.
253
254 The implementation does not use getrandbits, but only random.
255 """
256
257 random = self.random
258 if n >= maxsize:
259 _warn("Underlying random() generator does not supply \n"
260 "enough bits to choose from a population range this large.\n"
261 "To remove the range limitation, add a getrandbits() method.")
262 return _floor(random() * n)
263 if n == 0:
264 return 0
265 rem = maxsize % n
266 limit = (maxsize - rem) / maxsize # int(limit * maxsize) % n == 0
267 r = random()
268 while r >= limit:
269 r = random()
270 return _floor(r * maxsize) % n
271
272 _randbelow = _randbelow_with_getrandbits
273
274
275 ## --------------------------------------------------------
276 ## ---- Methods below this point generate custom distributions
277 ## ---- based on the methods defined above. They do not
278 ## ---- directly touch the underlying generator and only
279 ## ---- access randomness through the methods: random(),
280 ## ---- getrandbits(), or _randbelow().
281
282
283 ## -------------------- bytes methods ---------------------
284
285 def randbytes(self, n):
286 """Generate n random bytes."""
287 return self.getrandbits(n * 8).to_bytes(n, 'little')
288
289
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700290 ## -------------------- integer methods -------------------
Tim Peterscd804102001-01-25 20:25:57 +0000291
Raymond Hettinger768fa142021-01-02 10:24:51 -0800292 def randrange(self, start, stop=None, step=_ONE):
Tim Petersd7b5e882001-01-25 03:36:26 +0000293 """Choose a random item from range(start, stop[, step]).
294
295 This fixes the problem with randint() which includes the
296 endpoint; in Python this is usually not what you want.
Raymond Hettinger3051cc32010-09-07 00:48:40 +0000297
Tim Petersd7b5e882001-01-25 03:36:26 +0000298 """
299
300 # This code is a bit messy to make it fast for the
Tim Peters9146f272002-08-16 03:41:39 +0000301 # common case while still doing adequate error checking.
Raymond Hettingera9621bb2020-12-28 11:10:34 -0800302 try:
303 istart = _index(start)
304 except TypeError:
Serhiy Storchakaf066bd92021-01-25 23:02:04 +0200305 istart = int(start)
306 if istart != start:
Raymond Hettingera9621bb2020-12-28 11:10:34 -0800307 _warn('randrange() will raise TypeError in the future',
308 DeprecationWarning, 2)
309 raise ValueError("non-integer arg 1 for randrange()")
Serhiy Storchakaf066bd92021-01-25 23:02:04 +0200310 _warn('non-integer arguments to randrange() have been deprecated '
311 'since Python 3.10 and will be removed in a subsequent '
312 'version',
313 DeprecationWarning, 2)
Raymond Hettinger3051cc32010-09-07 00:48:40 +0000314 if stop is None:
Raymond Hettinger768fa142021-01-02 10:24:51 -0800315 # We don't check for "step != 1" because it hasn't been
316 # type checked and converted to an integer yet.
317 if step is not _ONE:
318 raise TypeError('Missing a non-None stop argument')
Tim Petersd7b5e882001-01-25 03:36:26 +0000319 if istart > 0:
Raymond Hettinger05156612010-09-07 04:44:52 +0000320 return self._randbelow(istart)
Collin Winterce36ad82007-08-30 01:19:48 +0000321 raise ValueError("empty range for randrange()")
Tim Peters9146f272002-08-16 03:41:39 +0000322
323 # stop argument supplied.
Raymond Hettingera9621bb2020-12-28 11:10:34 -0800324 try:
325 istop = _index(stop)
326 except TypeError:
Serhiy Storchakaf066bd92021-01-25 23:02:04 +0200327 istop = int(stop)
328 if istop != stop:
Raymond Hettingera9621bb2020-12-28 11:10:34 -0800329 _warn('randrange() will raise TypeError in the future',
330 DeprecationWarning, 2)
331 raise ValueError("non-integer stop for randrange()")
Serhiy Storchakaf066bd92021-01-25 23:02:04 +0200332 _warn('non-integer arguments to randrange() have been deprecated '
333 'since Python 3.10 and will be removed in a subsequent '
334 'version',
335 DeprecationWarning, 2)
336 width = istop - istart
Raymond Hettingera9621bb2020-12-28 11:10:34 -0800337 try:
338 istep = _index(step)
339 except TypeError:
Serhiy Storchakaf066bd92021-01-25 23:02:04 +0200340 istep = int(step)
341 if istep != step:
Raymond Hettingera9621bb2020-12-28 11:10:34 -0800342 _warn('randrange() will raise TypeError in the future',
343 DeprecationWarning, 2)
344 raise ValueError("non-integer step for randrange()")
Serhiy Storchakaf066bd92021-01-25 23:02:04 +0200345 _warn('non-integer arguments to randrange() have been deprecated '
346 'since Python 3.10 and will be removed in a subsequent '
347 'version',
348 DeprecationWarning, 2)
349 # Fast path.
Raymond Hettingera9621bb2020-12-28 11:10:34 -0800350 if istep == 1:
Raymond Hettinger8f8de732021-01-02 12:09:56 -0800351 if width > 0:
352 return istart + self._randbelow(width)
Kumar Akshay2433a2a2019-01-22 00:49:59 +0530353 raise ValueError("empty range for randrange() (%d, %d, %d)" % (istart, istop, width))
Tim Peters9146f272002-08-16 03:41:39 +0000354
355 # Non-unit step argument supplied.
Tim Petersd7b5e882001-01-25 03:36:26 +0000356 if istep > 0:
Raymond Hettingerffdb8bb2004-09-27 15:29:05 +0000357 n = (width + istep - 1) // istep
Tim Petersd7b5e882001-01-25 03:36:26 +0000358 elif istep < 0:
Raymond Hettingerffdb8bb2004-09-27 15:29:05 +0000359 n = (width + istep + 1) // istep
Tim Petersd7b5e882001-01-25 03:36:26 +0000360 else:
Collin Winterce36ad82007-08-30 01:19:48 +0000361 raise ValueError("zero step for randrange()")
Tim Petersd7b5e882001-01-25 03:36:26 +0000362 if n <= 0:
Collin Winterce36ad82007-08-30 01:19:48 +0000363 raise ValueError("empty range for randrange()")
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700364 return istart + istep * self._randbelow(n)
Tim Petersd7b5e882001-01-25 03:36:26 +0000365
366 def randint(self, a, b):
Tim Peterscd804102001-01-25 20:25:57 +0000367 """Return random integer in range [a, b], including both end points.
Tim Petersd7b5e882001-01-25 03:36:26 +0000368 """
369
370 return self.randrange(a, b+1)
371
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200372
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700373 ## -------------------- sequence methods -------------------
Tim Peterscd804102001-01-25 20:25:57 +0000374
Tim Petersd7b5e882001-01-25 03:36:26 +0000375 def choice(self, seq):
376 """Choose a random element from a non-empty sequence."""
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700377 # raises IndexError if seq is empty
378 return seq[self._randbelow(len(seq))]
Tim Petersd7b5e882001-01-25 03:36:26 +0000379
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700380 def shuffle(self, x, random=None):
Antoine Pitrou5e394332012-11-04 02:10:33 +0100381 """Shuffle list x in place, and return None.
Tim Petersd7b5e882001-01-25 03:36:26 +0000382
Antoine Pitrou5e394332012-11-04 02:10:33 +0100383 Optional argument random is a 0-argument function returning a
384 random float in [0.0, 1.0); if it is the default None, the
385 standard random.random will be used.
Senthil Kumaranf8ce51a2013-09-11 22:54:31 -0700386
Tim Petersd7b5e882001-01-25 03:36:26 +0000387 """
388
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700389 if random is None:
390 randbelow = self._randbelow
391 for i in reversed(range(1, len(x))):
392 # pick an element in x[:i+1] with which to exchange x[i]
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700393 j = randbelow(i + 1)
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700394 x[i], x[j] = x[j], x[i]
395 else:
Raymond Hettinger190fac92020-05-02 16:45:32 -0700396 _warn('The *random* parameter to shuffle() has been deprecated\n'
397 'since Python 3.9 and will be removed in a subsequent '
398 'version.',
399 DeprecationWarning, 2)
Raymond Hettinger26a1ad12020-06-22 19:38:59 -0700400 floor = _floor
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700401 for i in reversed(range(1, len(x))):
402 # pick an element in x[:i+1] with which to exchange x[i]
Raymond Hettinger26a1ad12020-06-22 19:38:59 -0700403 j = floor(random() * (i + 1))
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700404 x[i], x[j] = x[j], x[i]
Tim Petersd7b5e882001-01-25 03:36:26 +0000405
Raymond Hettinger81a5fc32020-05-08 07:53:15 -0700406 def sample(self, population, k, *, counts=None):
Raymond Hettinger1acde192008-01-14 01:00:53 +0000407 """Chooses k unique random elements from a population sequence or set.
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000408
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000409 Returns a new list containing elements from the population while
410 leaving the original population unchanged. The resulting list is
411 in selection order so that all sub-slices will also be valid random
412 samples. This allows raffle winners (the sample) to be partitioned
413 into grand prize and second place winners (the subslices).
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000414
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000415 Members of the population need not be hashable or unique. If the
416 population contains repeats, then each occurrence is a possible
417 selection in the sample.
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000418
Raymond Hettinger81a5fc32020-05-08 07:53:15 -0700419 Repeated elements can be specified one at a time or with the optional
420 counts parameter. For example:
421
422 sample(['red', 'blue'], counts=[4, 2], k=5)
423
424 is equivalent to:
425
426 sample(['red', 'red', 'red', 'red', 'blue', 'blue'], k=5)
427
428 To choose a sample from a range of integers, use range() for the
429 population argument. This is especially fast and space efficient
430 for sampling from a large population:
431
432 sample(range(10000000), 60)
433
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000434 """
435
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000436 # Sampling without replacement entails tracking either potential
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000437 # selections (the pool) in a list or previous selections in a set.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000438
Jeremy Hylton2b55d352004-02-23 17:27:57 +0000439 # When the number of selections is small compared to the
440 # population, then tracking selections is efficient, requiring
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000441 # only a small set and an occasional reselection. For
Jeremy Hylton2b55d352004-02-23 17:27:57 +0000442 # a larger number of selections, the pool tracking method is
443 # preferred since the list takes less space than the
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000444 # set and it doesn't suffer from frequent reselections.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000445
Raymond Hettinger7fc633f2018-12-04 00:13:38 -0800446 # The number of calls to _randbelow() is kept at or near k, the
447 # theoretical minimum. This is important because running time
448 # is dominated by _randbelow() and because it extracts the
449 # least entropy from the underlying random number generators.
450
451 # Memory requirements are kept to the smaller of a k-length
452 # set or an n-length list.
453
454 # There are other sampling algorithms that do not require
455 # auxiliary memory, but they were rejected because they made
456 # too many calls to _randbelow(), making them slower and
457 # causing them to eat more entropy than necessary.
458
Raymond Hettinger57d1a882011-02-23 00:46:28 +0000459 if not isinstance(population, _Sequence):
masklinn1e27b572020-12-19 05:33:36 +0100460 if isinstance(population, _Set):
461 _warn('Sampling from a set deprecated\n'
462 'since Python 3.9 and will be removed in a subsequent version.',
463 DeprecationWarning, 2)
464 population = tuple(population)
465 else:
466 raise TypeError("Population must be a sequence. For dicts or sets, use sorted(d).")
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000467 n = len(population)
Raymond Hettinger81a5fc32020-05-08 07:53:15 -0700468 if counts is not None:
469 cum_counts = list(_accumulate(counts))
470 if len(cum_counts) != n:
471 raise ValueError('The number of counts does not match the population')
472 total = cum_counts.pop()
473 if not isinstance(total, int):
474 raise TypeError('Counts must be integers')
475 if total <= 0:
476 raise ValueError('Total of counts must be greater than zero')
jonanifrancof7b5bacd2021-01-18 19:04:29 +0100477 selections = self.sample(range(total), k=k)
Raymond Hettinger81a5fc32020-05-08 07:53:15 -0700478 bisect = _bisect
479 return [population[bisect(cum_counts, s)] for s in selections]
480 randbelow = self._randbelow
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000481 if not 0 <= k <= n:
Raymond Hettingerbf871262016-11-21 14:34:33 -0800482 raise ValueError("Sample larger than population or is negative")
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000483 result = [None] * k
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000484 setsize = 21 # size of a small set minus size of an empty list
485 if k > 5:
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700486 setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
Raymond Hettinger1acde192008-01-14 01:00:53 +0000487 if n <= setsize:
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700488 # An n-length list is smaller than a k-length set.
489 # Invariant: non-selected at pool[0 : n-i]
Raymond Hettinger311f4192002-11-18 09:01:24 +0000490 pool = list(population)
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700491 for i in range(k):
492 j = randbelow(n - i)
Raymond Hettinger311f4192002-11-18 09:01:24 +0000493 result[i] = pool[j]
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700494 pool[j] = pool[n - i - 1] # move non-selected item into vacancy
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000495 else:
Raymond Hettinger1acde192008-01-14 01:00:53 +0000496 selected = set()
497 selected_add = selected.add
498 for i in range(k):
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000499 j = randbelow(n)
Raymond Hettinger1acde192008-01-14 01:00:53 +0000500 while j in selected:
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000501 j = randbelow(n)
Raymond Hettinger1acde192008-01-14 01:00:53 +0000502 selected_add(j)
503 result[i] = population[j]
Raymond Hettinger311f4192002-11-18 09:01:24 +0000504 return result
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000505
Raymond Hettinger9016f282016-09-26 21:45:57 -0700506 def choices(self, population, weights=None, *, cum_weights=None, k=1):
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700507 """Return a k sized list of population elements chosen with replacement.
508
509 If the relative weights or cumulative weights are not specified,
510 the selections are made with equal probability.
511
512 """
Raymond Hettinger30d00e52016-10-29 16:55:36 -0700513 random = self.random
Raymond Hettingere69cd162018-07-04 15:28:20 -0700514 n = len(population)
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700515 if cum_weights is None:
516 if weights is None:
Raymond Hettinger26a1ad12020-06-22 19:38:59 -0700517 floor = _floor
Raymond Hettinger0a18e052018-11-09 02:39:50 -0800518 n += 0.0 # convert to float for a small speed improvement
Raymond Hettinger26a1ad12020-06-22 19:38:59 -0700519 return [population[floor(random() * n)] for i in _repeat(None, k)]
Raymond Hettinger2a36b092021-04-19 20:29:48 -0700520 try:
521 cum_weights = list(_accumulate(weights))
522 except TypeError:
523 if not isinstance(weights, int):
524 raise
525 k = weights
526 raise TypeError(
527 f'The number of choices must be a keyword argument: {k=}'
528 ) from None
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700529 elif weights is not None:
Raymond Hettinger24e42392016-11-13 00:42:56 -0500530 raise TypeError('Cannot specify both weights and cumulative weights')
Raymond Hettingere69cd162018-07-04 15:28:20 -0700531 if len(cum_weights) != n:
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700532 raise ValueError('The number of weights does not match the population')
Raymond Hettinger0a18e052018-11-09 02:39:50 -0800533 total = cum_weights[-1] + 0.0 # convert to float
Raymond Hettinger041d8b42019-11-23 02:22:13 -0800534 if total <= 0.0:
535 raise ValueError('Total of weights must be greater than zero')
Ram Rachumb0dfc752020-09-29 04:32:10 +0300536 if not _isfinite(total):
537 raise ValueError('Total of weights must be finite')
Raymond Hettinger041d8b42019-11-23 02:22:13 -0800538 bisect = _bisect
Raymond Hettingere69cd162018-07-04 15:28:20 -0700539 hi = n - 1
Raymond Hettingerddf71712018-06-27 01:08:31 -0700540 return [population[bisect(cum_weights, random() * total, 0, hi)]
Raymond Hettinger53822032019-02-16 13:30:51 -0800541 for i in _repeat(None, k)]
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700542
Tim Peterscd804102001-01-25 20:25:57 +0000543
Raymond Hettingeref19bad2020-06-25 17:03:50 -0700544 ## -------------------- real-valued distributions -------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000545
546 def uniform(self, a, b):
Raymond Hettingerbe40db02009-06-11 23:12:14 +0000547 "Get a random number in the range [a, b) or [a, b] depending on rounding."
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700548 return a + (b - a) * self.random()
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000549
Christian Heimesfe337bf2008-03-23 21:54:12 +0000550 def triangular(self, low=0.0, high=1.0, mode=None):
551 """Triangular distribution.
552
553 Continuous distribution bounded by given lower and upper limits,
554 and having a given mode value in-between.
555
556 http://en.wikipedia.org/wiki/Triangular_distribution
557
558 """
559 u = self.random()
Raymond Hettinger978c6ab2014-05-25 17:25:27 -0700560 try:
561 c = 0.5 if mode is None else (mode - low) / (high - low)
562 except ZeroDivisionError:
563 return low
Christian Heimesfe337bf2008-03-23 21:54:12 +0000564 if u > c:
565 u = 1.0 - u
566 c = 1.0 - c
567 low, high = high, low
Raymond Hettingerf5ea83f2017-09-04 16:51:06 -0700568 return low + (high - low) * _sqrt(u * c)
Christian Heimesfe337bf2008-03-23 21:54:12 +0000569
Tim Petersd7b5e882001-01-25 03:36:26 +0000570 def normalvariate(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000571 """Normal distribution.
572
573 mu is the mean, and sigma is the standard deviation.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000574
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000575 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000576 # Uses Kinderman and Monahan method. Reference: Kinderman,
577 # A.J. and Monahan, J.F., "Computer generation of random
578 # variables using the ratio of uniform deviates", ACM Trans
579 # Math Software, 3, (1977), pp257-260.
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000580
Tim Petersd7b5e882001-01-25 03:36:26 +0000581 random = self.random
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700582 while True:
Tim Peters0c9886d2001-01-15 01:18:21 +0000583 u1 = random()
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000584 u2 = 1.0 - random()
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700585 z = NV_MAGICCONST * (u1 - 0.5) / u2
586 zz = z * z / 4.0
Tim Petersd7b5e882001-01-25 03:36:26 +0000587 if zz <= -_log(u2):
588 break
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700589 return mu + z * sigma
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000590
Raymond Hettingeref19bad2020-06-25 17:03:50 -0700591 def gauss(self, mu, sigma):
592 """Gaussian distribution.
593
594 mu is the mean, and sigma is the standard deviation. This is
595 slightly faster than the normalvariate() function.
596
597 Not thread-safe without a lock around calls.
598
599 """
600 # When x and y are two variables from [0, 1), uniformly
601 # distributed, then
602 #
603 # cos(2*pi*x)*sqrt(-2*log(1-y))
604 # sin(2*pi*x)*sqrt(-2*log(1-y))
605 #
606 # are two *independent* variables with normal distribution
607 # (mu = 0, sigma = 1).
608 # (Lambert Meertens)
609 # (corrected version; bug discovered by Mike Miller, fixed by LM)
610
611 # Multithreading note: When two threads call this function
612 # simultaneously, it is possible that they will receive the
613 # same return value. The window is very small though. To
614 # avoid this, you have to use a lock around all calls. (I
615 # didn't want to slow this down in the serial case by using a
616 # lock here.)
617
618 random = self.random
619 z = self.gauss_next
620 self.gauss_next = None
621 if z is None:
622 x2pi = random() * TWOPI
623 g2rad = _sqrt(-2.0 * _log(1.0 - random()))
624 z = _cos(x2pi) * g2rad
625 self.gauss_next = _sin(x2pi) * g2rad
626
627 return mu + z * sigma
Tim Petersd7b5e882001-01-25 03:36:26 +0000628
629 def lognormvariate(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000630 """Log normal distribution.
631
632 If you take the natural logarithm of this distribution, you'll get a
633 normal distribution with mean mu and standard deviation sigma.
634 mu can have any value, and sigma must be greater than zero.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000635
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000636 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000637 return _exp(self.normalvariate(mu, sigma))
638
Tim Petersd7b5e882001-01-25 03:36:26 +0000639 def expovariate(self, lambd):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000640 """Exponential distribution.
641
Mark Dickinson2f947362009-01-07 17:54:07 +0000642 lambd is 1.0 divided by the desired mean. It should be
643 nonzero. (The parameter would be called "lambda", but that is
644 a reserved word in Python.) Returned values range from 0 to
645 positive infinity if lambd is positive, and from negative
646 infinity to 0 if lambd is negative.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000647
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000648 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000649 # lambd: rate lambd = 1/mean
650 # ('lambda' is a Python reserved word)
651
Raymond Hettinger5279fb92011-06-25 11:30:53 +0200652 # we use 1-random() instead of random() to preclude the
653 # possibility of taking the log of zero.
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700654 return -_log(1.0 - self.random()) / lambd
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000655
Tim Petersd7b5e882001-01-25 03:36:26 +0000656 def vonmisesvariate(self, mu, kappa):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000657 """Circular data distribution.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000658
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000659 mu is the mean angle, expressed in radians between 0 and 2*pi, and
660 kappa is the concentration parameter, which must be greater than or
661 equal to zero. If kappa is equal to zero, this distribution reduces
662 to a uniform random angle over the range 0 to 2*pi.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000663
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000664 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000665 # Based upon an algorithm published in: Fisher, N.I.,
666 # "Statistical Analysis of Circular Data", Cambridge
667 # University Press, 1993.
668
669 # Thanks to Magnus Kessler for a correction to the
670 # implementation of step 4.
671
672 random = self.random
673 if kappa <= 1e-6:
674 return TWOPI * random()
675
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200676 s = 0.5 / kappa
677 r = s + _sqrt(1.0 + s * s)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000678
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700679 while True:
Tim Peters0c9886d2001-01-15 01:18:21 +0000680 u1 = random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000681 z = _cos(_pi * u1)
Tim Petersd7b5e882001-01-25 03:36:26 +0000682
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200683 d = z / (r + z)
Tim Petersd7b5e882001-01-25 03:36:26 +0000684 u2 = random()
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200685 if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
Tim Peters0c9886d2001-01-15 01:18:21 +0000686 break
Tim Petersd7b5e882001-01-25 03:36:26 +0000687
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200688 q = 1.0 / r
689 f = (q + z) / (1.0 + q * z)
Tim Petersd7b5e882001-01-25 03:36:26 +0000690 u3 = random()
691 if u3 > 0.5:
Mark Dickinsonbe5f9192013-02-10 14:16:10 +0000692 theta = (mu + _acos(f)) % TWOPI
Tim Petersd7b5e882001-01-25 03:36:26 +0000693 else:
Mark Dickinsonbe5f9192013-02-10 14:16:10 +0000694 theta = (mu - _acos(f)) % TWOPI
Tim Petersd7b5e882001-01-25 03:36:26 +0000695
696 return theta
697
Tim Petersd7b5e882001-01-25 03:36:26 +0000698 def gammavariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000699 """Gamma distribution. Not the gamma function!
700
701 Conditions on the parameters are alpha > 0 and beta > 0.
702
Raymond Hettingera8e4d6e2011-03-22 15:55:51 -0700703 The probability distribution function is:
704
705 x ** (alpha - 1) * math.exp(-x / beta)
706 pdf(x) = --------------------------------------
707 math.gamma(alpha) * beta ** alpha
708
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000709 """
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000710 # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
Tim Peters8ac14952002-05-23 15:15:30 +0000711
Guido van Rossum570764d2002-05-14 14:08:12 +0000712 # Warning: a few older sources define the gamma distribution in terms
713 # of alpha > -1.0
714 if alpha <= 0.0 or beta <= 0.0:
Collin Winterce36ad82007-08-30 01:19:48 +0000715 raise ValueError('gammavariate: alpha and beta must be > 0.0')
Tim Peters8ac14952002-05-23 15:15:30 +0000716
Tim Petersd7b5e882001-01-25 03:36:26 +0000717 random = self.random
Tim Petersd7b5e882001-01-25 03:36:26 +0000718 if alpha > 1.0:
719
720 # Uses R.C.H. Cheng, "The generation of Gamma
721 # variables with non-integral shape parameters",
722 # Applied Statistics, (1977), 26, No. 1, p71-74
723
Raymond Hettingerca6cdc22002-05-13 23:40:14 +0000724 ainv = _sqrt(2.0 * alpha - 1.0)
725 bbb = alpha - LOG4
726 ccc = alpha + ainv
Tim Peters8ac14952002-05-23 15:15:30 +0000727
Raymond Hettinger6a613f92020-08-02 12:03:32 -0700728 while True:
Tim Petersd7b5e882001-01-25 03:36:26 +0000729 u1 = random()
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700730 if not 1e-7 < u1 < 0.9999999:
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000731 continue
732 u2 = 1.0 - random()
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700733 v = _log(u1 / (1.0 - u1)) / ainv
734 x = alpha * _exp(v)
735 z = u1 * u1 * u2
736 r = bbb + ccc * v - x
737 if r + SG_MAGICCONST - 4.5 * z >= 0.0 or r >= _log(z):
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000738 return x * beta
Tim Petersd7b5e882001-01-25 03:36:26 +0000739
740 elif alpha == 1.0:
leodema9f396b62017-06-04 07:41:41 +0100741 # expovariate(1/beta)
leodema63d15222018-12-24 07:54:25 +0100742 return -_log(1.0 - random()) * beta
Tim Petersd7b5e882001-01-25 03:36:26 +0000743
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700744 else:
745 # alpha is between 0 and 1 (exclusive)
Tim Petersd7b5e882001-01-25 03:36:26 +0000746 # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700747 while True:
Tim Petersd7b5e882001-01-25 03:36:26 +0000748 u = random()
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700749 b = (_e + alpha) / _e
750 p = b * u
Tim Petersd7b5e882001-01-25 03:36:26 +0000751 if p <= 1.0:
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700752 x = p ** (1.0 / alpha)
Tim Petersd7b5e882001-01-25 03:36:26 +0000753 else:
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700754 x = -_log((b - p) / alpha)
Tim Petersd7b5e882001-01-25 03:36:26 +0000755 u1 = random()
Raymond Hettinger42406e62005-04-30 09:02:51 +0000756 if p > 1.0:
757 if u1 <= x ** (alpha - 1.0):
758 break
759 elif u1 <= _exp(-x):
Tim Petersd7b5e882001-01-25 03:36:26 +0000760 break
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000761 return x * beta
762
Tim Petersd7b5e882001-01-25 03:36:26 +0000763 def betavariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000764 """Beta distribution.
765
Thomas Woutersb2137042007-02-01 18:02:27 +0000766 Conditions on the parameters are alpha > 0 and beta > 0.
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000767 Returned values range between 0 and 1.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000768
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000769 """
Raymond Hettingeref19bad2020-06-25 17:03:50 -0700770 ## See
771 ## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
772 ## for Ivan Frohne's insightful analysis of why the original implementation:
773 ##
774 ## def betavariate(self, alpha, beta):
775 ## # Discrete Event Simulation in C, pp 87-88.
776 ##
777 ## y = self.expovariate(alpha)
778 ## z = self.expovariate(1.0/beta)
779 ## return z/(y+z)
780 ##
781 ## was dead wrong, and how it probably got that way.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000782
Tim Peters85e2e472001-01-26 06:49:56 +0000783 # This version due to Janne Sinkkonen, and matches all the std
784 # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
Raymond Hettinger650c1c92016-06-25 05:36:42 +0300785 y = self.gammavariate(alpha, 1.0)
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700786 if y:
Raymond Hettinger650c1c92016-06-25 05:36:42 +0300787 return y / (y + self.gammavariate(beta, 1.0))
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700788 return 0.0
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000789
Tim Petersd7b5e882001-01-25 03:36:26 +0000790 def paretovariate(self, alpha):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000791 """Pareto distribution. alpha is the shape parameter."""
Tim Petersd7b5e882001-01-25 03:36:26 +0000792 # Jain, pg. 495
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000793
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000794 u = 1.0 - self.random()
Raymond Hettinger5c327092020-08-01 01:18:26 -0700795 return u ** (-1.0 / alpha)
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000796
Tim Petersd7b5e882001-01-25 03:36:26 +0000797 def weibullvariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000798 """Weibull distribution.
799
800 alpha is the scale parameter and beta is the shape parameter.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000801
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000802 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000803 # Jain, pg. 499; bug fix courtesy Bill Arms
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000804
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000805 u = 1.0 - self.random()
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700806 return alpha * (-_log(u)) ** (1.0 / beta)
807
Guido van Rossum6c395ba1999-08-18 13:53:28 +0000808
Raymond Hettingeref19bad2020-06-25 17:03:50 -0700809## ------------------------------------------------------------------
Raymond Hettinger23f12412004-09-13 22:23:21 +0000810## --------------- Operating System Random Source ------------------
Raymond Hettinger356a4592004-08-30 06:14:31 +0000811
Raymond Hettingeref19bad2020-06-25 17:03:50 -0700812
Raymond Hettinger23f12412004-09-13 22:23:21 +0000813class SystemRandom(Random):
814 """Alternate random number generator using sources provided
815 by the operating system (such as /dev/urandom on Unix or
816 CryptGenRandom on Windows).
Raymond Hettinger356a4592004-08-30 06:14:31 +0000817
818 Not available on all systems (see os.urandom() for details).
Raymond Hettingeref19bad2020-06-25 17:03:50 -0700819
Raymond Hettinger356a4592004-08-30 06:14:31 +0000820 """
821
822 def random(self):
823 """Get the next random number in the range [0.0, 1.0)."""
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000824 return (int.from_bytes(_urandom(7), 'big') >> 3) * RECIP_BPF
Raymond Hettinger356a4592004-08-30 06:14:31 +0000825
826 def getrandbits(self, k):
Serhiy Storchaka95949422013-08-27 19:40:23 +0300827 """getrandbits(k) -> x. Generates an int with k random bits."""
Antoine Pitrou75a33782020-04-17 19:32:14 +0200828 if k < 0:
829 raise ValueError('number of bits must be non-negative')
Raymond Hettinger63b17672010-09-08 19:27:59 +0000830 numbytes = (k + 7) // 8 # bits / 8 and rounded up
831 x = int.from_bytes(_urandom(numbytes), 'big')
832 return x >> (numbytes * 8 - k) # trim excess bits
Raymond Hettinger356a4592004-08-30 06:14:31 +0000833
Victor Stinner9f5fe792020-04-17 19:05:35 +0200834 def randbytes(self, n):
835 """Generate n random bytes."""
836 # os.urandom(n) fails with ValueError for n < 0
837 # and returns an empty bytes string for n == 0.
838 return _urandom(n)
839
Raymond Hettinger28de64f2008-01-13 23:40:30 +0000840 def seed(self, *args, **kwds):
Raymond Hettinger23f12412004-09-13 22:23:21 +0000841 "Stub method. Not used for a system random number generator."
Raymond Hettinger356a4592004-08-30 06:14:31 +0000842 return None
Raymond Hettinger356a4592004-08-30 06:14:31 +0000843
844 def _notimplemented(self, *args, **kwds):
Raymond Hettinger23f12412004-09-13 22:23:21 +0000845 "Method should not be called for a system random number generator."
846 raise NotImplementedError('System entropy source does not have state.')
Raymond Hettinger356a4592004-08-30 06:14:31 +0000847 getstate = setstate = _notimplemented
848
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700849
Raymond Hettingeref19bad2020-06-25 17:03:50 -0700850# ----------------------------------------------------------------------
851# Create one instance, seeded from current time, and export its methods
852# as module-level functions. The functions share state across all uses
853# (both in the user's code and in the Python libraries), but that's fine
854# for most programs and is easier for the casual user than making them
855# instantiate their own Random() instance.
856
857_inst = Random()
858seed = _inst.seed
859random = _inst.random
860uniform = _inst.uniform
861triangular = _inst.triangular
862randint = _inst.randint
863choice = _inst.choice
864randrange = _inst.randrange
865sample = _inst.sample
866shuffle = _inst.shuffle
867choices = _inst.choices
868normalvariate = _inst.normalvariate
869lognormvariate = _inst.lognormvariate
870expovariate = _inst.expovariate
871vonmisesvariate = _inst.vonmisesvariate
872gammavariate = _inst.gammavariate
873gauss = _inst.gauss
874betavariate = _inst.betavariate
875paretovariate = _inst.paretovariate
876weibullvariate = _inst.weibullvariate
877getstate = _inst.getstate
878setstate = _inst.setstate
879getrandbits = _inst.getrandbits
880randbytes = _inst.randbytes
881
882
883## ------------------------------------------------------
884## ----------------- test program -----------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000885
Raymond Hettinger62297132003-08-30 01:24:19 +0000886def _test_generator(n, func, args):
Raymond Hettinger26a1ad12020-06-22 19:38:59 -0700887 from statistics import stdev, fmean as mean
888 from time import perf_counter
889
890 t0 = perf_counter()
Raymond Hettingerd9dda322021-02-04 21:36:03 -0800891 data = [func(*args) for i in _repeat(None, n)]
Raymond Hettinger26a1ad12020-06-22 19:38:59 -0700892 t1 = perf_counter()
893
894 xbar = mean(data)
895 sigma = stdev(data, xbar)
896 low = min(data)
897 high = max(data)
898
899 print(f'{t1 - t0:.3f} sec, {n} times {func.__name__}')
900 print('avg %g, stddev %g, min %g, max %g\n' % (xbar, sigma, low, high))
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000901
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000902
903def _test(N=2000):
Raymond Hettinger62297132003-08-30 01:24:19 +0000904 _test_generator(N, random, ())
905 _test_generator(N, normalvariate, (0.0, 1.0))
906 _test_generator(N, lognormvariate, (0.0, 1.0))
907 _test_generator(N, vonmisesvariate, (0.0, 1.0))
908 _test_generator(N, gammavariate, (0.01, 1.0))
909 _test_generator(N, gammavariate, (0.1, 1.0))
910 _test_generator(N, gammavariate, (0.1, 2.0))
911 _test_generator(N, gammavariate, (0.5, 1.0))
912 _test_generator(N, gammavariate, (0.9, 1.0))
913 _test_generator(N, gammavariate, (1.0, 1.0))
914 _test_generator(N, gammavariate, (2.0, 1.0))
915 _test_generator(N, gammavariate, (20.0, 1.0))
916 _test_generator(N, gammavariate, (200.0, 1.0))
917 _test_generator(N, gauss, (0.0, 1.0))
918 _test_generator(N, betavariate, (3.0, 3.0))
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700919 _test_generator(N, triangular, (0.0, 1.0, 1.0 / 3.0))
Tim Peterscd804102001-01-25 20:25:57 +0000920
Raymond Hettinger40f62172002-12-29 23:03:38 +0000921
Raymond Hettingeref19bad2020-06-25 17:03:50 -0700922## ------------------------------------------------------
923## ------------------ fork support ---------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000924
Antoine Pitrou346cbd32017-05-27 17:50:54 +0200925if hasattr(_os, "fork"):
Gregory P. Smith163468a2017-05-29 10:03:41 -0700926 _os.register_at_fork(after_in_child=_inst.seed)
Antoine Pitrou346cbd32017-05-27 17:50:54 +0200927
928
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000929if __name__ == '__main__':
Tim Petersd7b5e882001-01-25 03:36:26 +0000930 _test()