blob: ff9bd91e8ce49039c92f8117628515ab017f1487 [file] [log] [blame]
Christian Heimes3feef612008-02-11 06:19:17 +00001:mod:`decimal` --- Decimal fixed point and floating point arithmetic
2====================================================================
Georg Brandl116aa622007-08-15 14:28:22 +00003
4.. module:: decimal
5 :synopsis: Implementation of the General Decimal Arithmetic Specification.
6
Georg Brandl116aa622007-08-15 14:28:22 +00007.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
8.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
9.. moduleauthor:: Raymond Hettinger <python at rcn.com>
10.. moduleauthor:: Aahz <aahz at pobox.com>
11.. moduleauthor:: Tim Peters <tim.one at comcast.net>
Georg Brandl116aa622007-08-15 14:28:22 +000012.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
13
Christian Heimesfe337bf2008-03-23 21:54:12 +000014.. import modules for testing inline doctests with the Sphinx doctest builder
15.. testsetup:: *
16
17 import decimal
18 import math
19 from decimal import *
20 # make sure each group gets a fresh context
21 setcontext(Context())
Georg Brandl116aa622007-08-15 14:28:22 +000022
Georg Brandl116aa622007-08-15 14:28:22 +000023The :mod:`decimal` module provides support for decimal floating point
Thomas Wouters1b7f8912007-09-19 03:06:30 +000024arithmetic. It offers several advantages over the :class:`float` datatype:
Georg Brandl116aa622007-08-15 14:28:22 +000025
Christian Heimes3feef612008-02-11 06:19:17 +000026* Decimal "is based on a floating-point model which was designed with people
27 in mind, and necessarily has a paramount guiding principle -- computers must
28 provide an arithmetic that works in the same way as the arithmetic that
29 people learn at school." -- excerpt from the decimal arithmetic specification.
30
Georg Brandl116aa622007-08-15 14:28:22 +000031* Decimal numbers can be represented exactly. In contrast, numbers like
Raymond Hettingerd258d1e2009-04-23 22:06:12 +000032 :const:`1.1` and :const:`2.2` do not have an exact representations in binary
33 floating point. End users typically would not expect ``1.1 + 2.2`` to display
34 as :const:`3.3000000000000003` as it does with binary floating point.
Georg Brandl116aa622007-08-15 14:28:22 +000035
36* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Thomas Wouters1b7f8912007-09-19 03:06:30 +000037 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl116aa622007-08-15 14:28:22 +000038 is :const:`5.5511151231257827e-017`. While near to zero, the differences
39 prevent reliable equality testing and differences can accumulate. For this
Christian Heimes3feef612008-02-11 06:19:17 +000040 reason, decimal is preferred in accounting applications which have strict
Georg Brandl116aa622007-08-15 14:28:22 +000041 equality invariants.
42
43* The decimal module incorporates a notion of significant places so that ``1.30
44 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
45 This is the customary presentation for monetary applications. For
46 multiplication, the "schoolbook" approach uses all the figures in the
47 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
48 1.20`` gives :const:`1.5600`.
49
50* Unlike hardware based binary floating point, the decimal module has a user
Thomas Wouters1b7f8912007-09-19 03:06:30 +000051 alterable precision (defaulting to 28 places) which can be as large as needed for
Christian Heimesfe337bf2008-03-23 21:54:12 +000052 a given problem:
Georg Brandl116aa622007-08-15 14:28:22 +000053
54 >>> getcontext().prec = 6
55 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000056 Decimal('0.142857')
Georg Brandl116aa622007-08-15 14:28:22 +000057 >>> getcontext().prec = 28
58 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000059 Decimal('0.1428571428571428571428571429')
Georg Brandl116aa622007-08-15 14:28:22 +000060
61* Both binary and decimal floating point are implemented in terms of published
62 standards. While the built-in float type exposes only a modest portion of its
63 capabilities, the decimal module exposes all required parts of the standard.
64 When needed, the programmer has full control over rounding and signal handling.
Christian Heimes3feef612008-02-11 06:19:17 +000065 This includes an option to enforce exact arithmetic by using exceptions
66 to block any inexact operations.
67
68* The decimal module was designed to support "without prejudice, both exact
69 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
70 and rounded floating-point arithmetic." -- excerpt from the decimal
71 arithmetic specification.
Georg Brandl116aa622007-08-15 14:28:22 +000072
73The module design is centered around three concepts: the decimal number, the
74context for arithmetic, and signals.
75
76A decimal number is immutable. It has a sign, coefficient digits, and an
77exponent. To preserve significance, the coefficient digits do not truncate
Thomas Wouters1b7f8912007-09-19 03:06:30 +000078trailing zeros. Decimals also include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +000079:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
80differentiates :const:`-0` from :const:`+0`.
81
82The context for arithmetic is an environment specifying precision, rounding
83rules, limits on exponents, flags indicating the results of operations, and trap
84enablers which determine whether signals are treated as exceptions. Rounding
85options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
86:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +000087:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl116aa622007-08-15 14:28:22 +000088
89Signals are groups of exceptional conditions arising during the course of
90computation. Depending on the needs of the application, signals may be ignored,
91considered as informational, or treated as exceptions. The signals in the
92decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
93:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
94:const:`Overflow`, and :const:`Underflow`.
95
96For each signal there is a flag and a trap enabler. When a signal is
Raymond Hettinger86173da2008-02-01 20:38:12 +000097encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl116aa622007-08-15 14:28:22 +000098set to one, an exception is raised. Flags are sticky, so the user needs to
99reset them before monitoring a calculation.
100
101
102.. seealso::
103
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000104 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Raymond Hettinger960dc362009-04-21 03:43:15 +0000105 Specification <http://speleotrove.com/decimal/decarith.html>`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000106
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000107 * IEEE standard 854-1987, `Unofficial IEEE 854 Text
Christian Heimes77c02eb2008-02-09 02:18:51 +0000108 <http://754r.ucbtest.org/standards/854.pdf>`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000109
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000110.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000111
112
113.. _decimal-tutorial:
114
115Quick-start Tutorial
116--------------------
117
118The usual start to using decimals is importing the module, viewing the current
119context with :func:`getcontext` and, if necessary, setting new values for
120precision, rounding, or enabled traps::
121
122 >>> from decimal import *
123 >>> getcontext()
124 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000125 capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
Christian Heimesfe337bf2008-03-23 21:54:12 +0000126 InvalidOperation])
Georg Brandl116aa622007-08-15 14:28:22 +0000127
128 >>> getcontext().prec = 7 # Set a new precision
129
Mark Dickinsone534a072010-04-04 22:13:14 +0000130Decimal instances can be constructed from integers, strings, floats, or tuples.
131Construction from an integer or a float performs an exact conversion of the
132value of that integer or float. Decimal numbers include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +0000133:const:`NaN` which stands for "Not a number", positive and negative
Christian Heimesfe337bf2008-03-23 21:54:12 +0000134:const:`Infinity`, and :const:`-0`.
Georg Brandl116aa622007-08-15 14:28:22 +0000135
Facundo Batista789bdf02008-06-21 17:29:41 +0000136 >>> getcontext().prec = 28
Georg Brandl116aa622007-08-15 14:28:22 +0000137 >>> Decimal(10)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000138 Decimal('10')
139 >>> Decimal('3.14')
140 Decimal('3.14')
Mark Dickinsone534a072010-04-04 22:13:14 +0000141 >>> Decimal(3.14)
142 Decimal('3.140000000000000124344978758017532527446746826171875')
Georg Brandl116aa622007-08-15 14:28:22 +0000143 >>> Decimal((0, (3, 1, 4), -2))
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000144 Decimal('3.14')
Georg Brandl116aa622007-08-15 14:28:22 +0000145 >>> Decimal(str(2.0 ** 0.5))
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000146 Decimal('1.41421356237')
147 >>> Decimal(2) ** Decimal('0.5')
148 Decimal('1.414213562373095048801688724')
149 >>> Decimal('NaN')
150 Decimal('NaN')
151 >>> Decimal('-Infinity')
152 Decimal('-Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000153
154The significance of a new Decimal is determined solely by the number of digits
155input. Context precision and rounding only come into play during arithmetic
Christian Heimesfe337bf2008-03-23 21:54:12 +0000156operations.
157
158.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +0000159
160 >>> getcontext().prec = 6
161 >>> Decimal('3.0')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000162 Decimal('3.0')
Georg Brandl116aa622007-08-15 14:28:22 +0000163 >>> Decimal('3.1415926535')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000164 Decimal('3.1415926535')
Georg Brandl116aa622007-08-15 14:28:22 +0000165 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000166 Decimal('5.85987')
Georg Brandl116aa622007-08-15 14:28:22 +0000167 >>> getcontext().rounding = ROUND_UP
168 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000169 Decimal('5.85988')
Georg Brandl116aa622007-08-15 14:28:22 +0000170
171Decimals interact well with much of the rest of Python. Here is a small decimal
Christian Heimesfe337bf2008-03-23 21:54:12 +0000172floating point flying circus:
173
174.. doctest::
175 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000176
Facundo Batista789bdf02008-06-21 17:29:41 +0000177 >>> data = list(map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split()))
Georg Brandl116aa622007-08-15 14:28:22 +0000178 >>> max(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000179 Decimal('9.25')
Georg Brandl116aa622007-08-15 14:28:22 +0000180 >>> min(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000181 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +0000182 >>> sorted(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000183 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
184 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl116aa622007-08-15 14:28:22 +0000185 >>> sum(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000186 Decimal('19.29')
Georg Brandl116aa622007-08-15 14:28:22 +0000187 >>> a,b,c = data[:3]
188 >>> str(a)
189 '1.34'
190 >>> float(a)
Mark Dickinson8dad7df2009-06-28 20:36:54 +0000191 1.34
192 >>> round(a, 1)
193 Decimal('1.3')
Georg Brandl116aa622007-08-15 14:28:22 +0000194 >>> int(a)
195 1
196 >>> a * 5
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000197 Decimal('6.70')
Georg Brandl116aa622007-08-15 14:28:22 +0000198 >>> a * b
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000199 Decimal('2.5058')
Georg Brandl116aa622007-08-15 14:28:22 +0000200 >>> c % a
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000201 Decimal('0.77')
Georg Brandl116aa622007-08-15 14:28:22 +0000202
Christian Heimesfe337bf2008-03-23 21:54:12 +0000203And some mathematical functions are also available to Decimal:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000204
Facundo Batista789bdf02008-06-21 17:29:41 +0000205 >>> getcontext().prec = 28
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000206 >>> Decimal(2).sqrt()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000207 Decimal('1.414213562373095048801688724')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000208 >>> Decimal(1).exp()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000209 Decimal('2.718281828459045235360287471')
210 >>> Decimal('10').ln()
211 Decimal('2.302585092994045684017991455')
212 >>> Decimal('10').log10()
213 Decimal('1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000214
Georg Brandl116aa622007-08-15 14:28:22 +0000215The :meth:`quantize` method rounds a number to a fixed exponent. This method is
216useful for monetary applications that often round results to a fixed number of
Christian Heimesfe337bf2008-03-23 21:54:12 +0000217places:
Georg Brandl116aa622007-08-15 14:28:22 +0000218
219 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000220 Decimal('7.32')
Georg Brandl116aa622007-08-15 14:28:22 +0000221 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000222 Decimal('8')
Georg Brandl116aa622007-08-15 14:28:22 +0000223
224As shown above, the :func:`getcontext` function accesses the current context and
225allows the settings to be changed. This approach meets the needs of most
226applications.
227
228For more advanced work, it may be useful to create alternate contexts using the
229Context() constructor. To make an alternate active, use the :func:`setcontext`
230function.
231
232In accordance with the standard, the :mod:`Decimal` module provides two ready to
233use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
234former is especially useful for debugging because many of the traps are
Christian Heimesfe337bf2008-03-23 21:54:12 +0000235enabled:
236
237.. doctest:: newcontext
238 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000239
240 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
241 >>> setcontext(myothercontext)
242 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000243 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl116aa622007-08-15 14:28:22 +0000244
245 >>> ExtendedContext
246 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000247 capitals=1, clamp=0, flags=[], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000248 >>> setcontext(ExtendedContext)
249 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000250 Decimal('0.142857143')
Georg Brandl116aa622007-08-15 14:28:22 +0000251 >>> Decimal(42) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000252 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000253
254 >>> setcontext(BasicContext)
255 >>> Decimal(42) / Decimal(0)
256 Traceback (most recent call last):
257 File "<pyshell#143>", line 1, in -toplevel-
258 Decimal(42) / Decimal(0)
259 DivisionByZero: x / 0
260
261Contexts also have signal flags for monitoring exceptional conditions
262encountered during computations. The flags remain set until explicitly cleared,
263so it is best to clear the flags before each set of monitored computations by
264using the :meth:`clear_flags` method. ::
265
266 >>> setcontext(ExtendedContext)
267 >>> getcontext().clear_flags()
268 >>> Decimal(355) / Decimal(113)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000269 Decimal('3.14159292')
Georg Brandl116aa622007-08-15 14:28:22 +0000270 >>> getcontext()
271 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000272 capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000273
274The *flags* entry shows that the rational approximation to :const:`Pi` was
275rounded (digits beyond the context precision were thrown away) and that the
276result is inexact (some of the discarded digits were non-zero).
277
278Individual traps are set using the dictionary in the :attr:`traps` field of a
Christian Heimesfe337bf2008-03-23 21:54:12 +0000279context:
Georg Brandl116aa622007-08-15 14:28:22 +0000280
Christian Heimesfe337bf2008-03-23 21:54:12 +0000281.. doctest:: newcontext
282
283 >>> setcontext(ExtendedContext)
Georg Brandl116aa622007-08-15 14:28:22 +0000284 >>> Decimal(1) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000285 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000286 >>> getcontext().traps[DivisionByZero] = 1
287 >>> Decimal(1) / Decimal(0)
288 Traceback (most recent call last):
289 File "<pyshell#112>", line 1, in -toplevel-
290 Decimal(1) / Decimal(0)
291 DivisionByZero: x / 0
292
293Most programs adjust the current context only once, at the beginning of the
294program. And, in many applications, data is converted to :class:`Decimal` with
295a single cast inside a loop. With context set and decimals created, the bulk of
296the program manipulates the data no differently than with other Python numeric
297types.
298
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000299.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000300
301
302.. _decimal-decimal:
303
304Decimal objects
305---------------
306
307
Georg Brandlc2a4f4f2009-04-10 09:03:43 +0000308.. class:: Decimal(value="0", context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000309
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000310 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl116aa622007-08-15 14:28:22 +0000311
Raymond Hettinger96798592010-04-02 16:58:27 +0000312 *value* can be an integer, string, tuple, :class:`float`, or another :class:`Decimal`
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000313 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Christian Heimesa62da1d2008-01-12 19:39:10 +0000314 string, it should conform to the decimal numeric string syntax after leading
315 and trailing whitespace characters are removed::
Georg Brandl116aa622007-08-15 14:28:22 +0000316
317 sign ::= '+' | '-'
318 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
319 indicator ::= 'e' | 'E'
320 digits ::= digit [digit]...
321 decimal-part ::= digits '.' [digits] | ['.'] digits
322 exponent-part ::= indicator [sign] digits
323 infinity ::= 'Infinity' | 'Inf'
324 nan ::= 'NaN' [digits] | 'sNaN' [digits]
325 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandl48310cd2009-01-03 21:18:54 +0000326 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl116aa622007-08-15 14:28:22 +0000327
Mark Dickinson345adc42009-08-02 10:14:23 +0000328 Other Unicode decimal digits are also permitted where ``digit``
329 appears above. These include decimal digits from various other
330 alphabets (for example, Arabic-Indic and Devanāgarī digits) along
331 with the fullwidth digits ``'\uff10'`` through ``'\uff19'``.
332
Georg Brandl116aa622007-08-15 14:28:22 +0000333 If *value* is a :class:`tuple`, it should have three components, a sign
334 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
335 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000336 returns ``Decimal('1.414')``.
Georg Brandl116aa622007-08-15 14:28:22 +0000337
Raymond Hettinger96798592010-04-02 16:58:27 +0000338 If *value* is a :class:`float`, the binary floating point value is losslessly
339 converted to its exact decimal equivalent. This conversion can often require
Mark Dickinsone534a072010-04-04 22:13:14 +0000340 53 or more digits of precision. For example, ``Decimal(float('1.1'))``
341 converts to
342 ``Decimal('1.100000000000000088817841970012523233890533447265625')``.
Raymond Hettinger96798592010-04-02 16:58:27 +0000343
Georg Brandl116aa622007-08-15 14:28:22 +0000344 The *context* precision does not affect how many digits are stored. That is
345 determined exclusively by the number of digits in *value*. For example,
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000346 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl116aa622007-08-15 14:28:22 +0000347 only three.
348
349 The purpose of the *context* argument is determining what to do if *value* is a
350 malformed string. If the context traps :const:`InvalidOperation`, an exception
351 is raised; otherwise, the constructor returns a new Decimal with the value of
352 :const:`NaN`.
353
354 Once constructed, :class:`Decimal` objects are immutable.
355
Mark Dickinsone534a072010-04-04 22:13:14 +0000356 .. versionchanged:: 3.2
Ezio Melotticfe0af4c2010-04-04 23:27:45 +0000357 The argument to the constructor is now permitted to be a :class:`float` instance.
Mark Dickinsone534a072010-04-04 22:13:14 +0000358
Benjamin Petersone41251e2008-04-25 01:59:09 +0000359 Decimal floating point objects share many properties with the other built-in
360 numeric types such as :class:`float` and :class:`int`. All of the usual math
361 operations and special methods apply. Likewise, decimal objects can be
362 copied, pickled, printed, used as dictionary keys, used as set elements,
363 compared, sorted, and coerced to another type (such as :class:`float` or
Mark Dickinson5d233fd2010-02-18 14:54:37 +0000364 :class:`int`).
Christian Heimesa62da1d2008-01-12 19:39:10 +0000365
Mark Dickinsonac256ab2010-04-03 11:08:14 +0000366 Decimal objects cannot generally be combined with floats in
367 arithmetic operations: an attempt to add a :class:`Decimal` to a
368 :class:`float`, for example, will raise a :exc:`TypeError`.
369 There's one exception to this rule: it's possible to use Python's
370 comparison operators to compare a :class:`float` instance ``x``
371 with a :class:`Decimal` instance ``y``. Without this exception,
372 comparisons between :class:`Decimal` and :class:`float` instances
373 would follow the general rules for comparing objects of different
374 types described in the :ref:`expressions` section of the reference
375 manual, leading to confusing results.
376
Ezio Melotti993a5ee2010-04-04 06:30:08 +0000377 .. versionchanged:: 3.2
Mark Dickinsonac256ab2010-04-03 11:08:14 +0000378 A comparison between a :class:`float` instance ``x`` and a
379 :class:`Decimal` instance ``y`` now returns a result based on
380 the values of ``x`` and ``y``. In earlier versions ``x < y``
381 returned the same (arbitrary) result for any :class:`Decimal`
382 instance ``x`` and any :class:`float` instance ``y``.
383
Benjamin Petersone41251e2008-04-25 01:59:09 +0000384 In addition to the standard numeric properties, decimal floating point
385 objects also have a number of specialized methods:
Georg Brandl116aa622007-08-15 14:28:22 +0000386
Georg Brandl116aa622007-08-15 14:28:22 +0000387
Benjamin Petersone41251e2008-04-25 01:59:09 +0000388 .. method:: adjusted()
Georg Brandl116aa622007-08-15 14:28:22 +0000389
Benjamin Petersone41251e2008-04-25 01:59:09 +0000390 Return the adjusted exponent after shifting out the coefficient's
391 rightmost digits until only the lead digit remains:
392 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
393 position of the most significant digit with respect to the decimal point.
Georg Brandl116aa622007-08-15 14:28:22 +0000394
Georg Brandl116aa622007-08-15 14:28:22 +0000395
Benjamin Petersone41251e2008-04-25 01:59:09 +0000396 .. method:: as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +0000397
Benjamin Petersone41251e2008-04-25 01:59:09 +0000398 Return a :term:`named tuple` representation of the number:
399 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000400
Christian Heimes25bb7832008-01-11 16:17:00 +0000401
Benjamin Petersone41251e2008-04-25 01:59:09 +0000402 .. method:: canonical()
Georg Brandl116aa622007-08-15 14:28:22 +0000403
Benjamin Petersone41251e2008-04-25 01:59:09 +0000404 Return the canonical encoding of the argument. Currently, the encoding of
405 a :class:`Decimal` instance is always canonical, so this operation returns
406 its argument unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000407
Benjamin Petersone41251e2008-04-25 01:59:09 +0000408 .. method:: compare(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000409
Georg Brandl05f5ab72008-09-24 09:11:47 +0000410 Compare the values of two Decimal instances. :meth:`compare` returns a
411 Decimal instance, and if either operand is a NaN then the result is a
412 NaN::
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000413
Georg Brandl05f5ab72008-09-24 09:11:47 +0000414 a or b is a NaN ==> Decimal('NaN')
415 a < b ==> Decimal('-1')
416 a == b ==> Decimal('0')
417 a > b ==> Decimal('1')
Georg Brandl116aa622007-08-15 14:28:22 +0000418
Benjamin Petersone41251e2008-04-25 01:59:09 +0000419 .. method:: compare_signal(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000420
Benjamin Petersone41251e2008-04-25 01:59:09 +0000421 This operation is identical to the :meth:`compare` method, except that all
422 NaNs signal. That is, if neither operand is a signaling NaN then any
423 quiet NaN operand is treated as though it were a signaling NaN.
Georg Brandl116aa622007-08-15 14:28:22 +0000424
Benjamin Petersone41251e2008-04-25 01:59:09 +0000425 .. method:: compare_total(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000426
Benjamin Petersone41251e2008-04-25 01:59:09 +0000427 Compare two operands using their abstract representation rather than their
428 numerical value. Similar to the :meth:`compare` method, but the result
429 gives a total ordering on :class:`Decimal` instances. Two
430 :class:`Decimal` instances with the same numeric value but different
431 representations compare unequal in this ordering:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000432
Benjamin Petersone41251e2008-04-25 01:59:09 +0000433 >>> Decimal('12.0').compare_total(Decimal('12'))
434 Decimal('-1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000435
Benjamin Petersone41251e2008-04-25 01:59:09 +0000436 Quiet and signaling NaNs are also included in the total ordering. The
437 result of this function is ``Decimal('0')`` if both operands have the same
438 representation, ``Decimal('-1')`` if the first operand is lower in the
439 total order than the second, and ``Decimal('1')`` if the first operand is
440 higher in the total order than the second operand. See the specification
441 for details of the total order.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000442
Benjamin Petersone41251e2008-04-25 01:59:09 +0000443 .. method:: compare_total_mag(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000444
Benjamin Petersone41251e2008-04-25 01:59:09 +0000445 Compare two operands using their abstract representation rather than their
446 value as in :meth:`compare_total`, but ignoring the sign of each operand.
447 ``x.compare_total_mag(y)`` is equivalent to
448 ``x.copy_abs().compare_total(y.copy_abs())``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000449
Facundo Batista789bdf02008-06-21 17:29:41 +0000450 .. method:: conjugate()
451
Benjamin Petersondcf97b92008-07-02 17:30:14 +0000452 Just returns self, this method is only to comply with the Decimal
Facundo Batista789bdf02008-06-21 17:29:41 +0000453 Specification.
454
Benjamin Petersone41251e2008-04-25 01:59:09 +0000455 .. method:: copy_abs()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000456
Benjamin Petersone41251e2008-04-25 01:59:09 +0000457 Return the absolute value of the argument. This operation is unaffected
458 by the context and is quiet: no flags are changed and no rounding is
459 performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000460
Benjamin Petersone41251e2008-04-25 01:59:09 +0000461 .. method:: copy_negate()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000462
Benjamin Petersone41251e2008-04-25 01:59:09 +0000463 Return the negation of the argument. This operation is unaffected by the
464 context and is quiet: no flags are changed and no rounding is performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000465
Benjamin Petersone41251e2008-04-25 01:59:09 +0000466 .. method:: copy_sign(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000467
Benjamin Petersone41251e2008-04-25 01:59:09 +0000468 Return a copy of the first operand with the sign set to be the same as the
469 sign of the second operand. For example:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000470
Benjamin Petersone41251e2008-04-25 01:59:09 +0000471 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
472 Decimal('-2.3')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000473
Benjamin Petersone41251e2008-04-25 01:59:09 +0000474 This operation is unaffected by the context and is quiet: no flags are
475 changed and no rounding is performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000476
Benjamin Petersone41251e2008-04-25 01:59:09 +0000477 .. method:: exp([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000478
Benjamin Petersone41251e2008-04-25 01:59:09 +0000479 Return the value of the (natural) exponential function ``e**x`` at the
480 given number. The result is correctly rounded using the
481 :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000482
Benjamin Petersone41251e2008-04-25 01:59:09 +0000483 >>> Decimal(1).exp()
484 Decimal('2.718281828459045235360287471')
485 >>> Decimal(321).exp()
486 Decimal('2.561702493119680037517373933E+139')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000487
Raymond Hettinger771ed762009-01-03 19:20:32 +0000488 .. method:: from_float(f)
489
490 Classmethod that converts a float to a decimal number, exactly.
491
492 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
493 Since 0.1 is not exactly representable in binary floating point, the
494 value is stored as the nearest representable value which is
495 `0x1.999999999999ap-4`. That equivalent value in decimal is
496 `0.1000000000000000055511151231257827021181583404541015625`.
497
Mark Dickinsone534a072010-04-04 22:13:14 +0000498 .. note:: From Python 3.2 onwards, a :class:`Decimal` instance
499 can also be constructed directly from a :class:`float`.
500
Raymond Hettinger771ed762009-01-03 19:20:32 +0000501 .. doctest::
502
503 >>> Decimal.from_float(0.1)
504 Decimal('0.1000000000000000055511151231257827021181583404541015625')
505 >>> Decimal.from_float(float('nan'))
506 Decimal('NaN')
507 >>> Decimal.from_float(float('inf'))
508 Decimal('Infinity')
509 >>> Decimal.from_float(float('-inf'))
510 Decimal('-Infinity')
511
Georg Brandl45f53372009-01-03 21:15:20 +0000512 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +0000513
Benjamin Petersone41251e2008-04-25 01:59:09 +0000514 .. method:: fma(other, third[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000515
Benjamin Petersone41251e2008-04-25 01:59:09 +0000516 Fused multiply-add. Return self*other+third with no rounding of the
517 intermediate product self*other.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000518
Benjamin Petersone41251e2008-04-25 01:59:09 +0000519 >>> Decimal(2).fma(3, 5)
520 Decimal('11')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000521
Benjamin Petersone41251e2008-04-25 01:59:09 +0000522 .. method:: is_canonical()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000523
Benjamin Petersone41251e2008-04-25 01:59:09 +0000524 Return :const:`True` if the argument is canonical and :const:`False`
525 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
526 this operation always returns :const:`True`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000527
Benjamin Petersone41251e2008-04-25 01:59:09 +0000528 .. method:: is_finite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000529
Benjamin Petersone41251e2008-04-25 01:59:09 +0000530 Return :const:`True` if the argument is a finite number, and
531 :const:`False` if the argument is an infinity or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000532
Benjamin Petersone41251e2008-04-25 01:59:09 +0000533 .. method:: is_infinite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000534
Benjamin Petersone41251e2008-04-25 01:59:09 +0000535 Return :const:`True` if the argument is either positive or negative
536 infinity and :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000537
Benjamin Petersone41251e2008-04-25 01:59:09 +0000538 .. method:: is_nan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000539
Benjamin Petersone41251e2008-04-25 01:59:09 +0000540 Return :const:`True` if the argument is a (quiet or signaling) NaN and
541 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000542
Benjamin Petersone41251e2008-04-25 01:59:09 +0000543 .. method:: is_normal()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000544
Benjamin Petersone41251e2008-04-25 01:59:09 +0000545 Return :const:`True` if the argument is a *normal* finite number. Return
546 :const:`False` if the argument is zero, subnormal, infinite or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000547
Benjamin Petersone41251e2008-04-25 01:59:09 +0000548 .. method:: is_qnan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000549
Benjamin Petersone41251e2008-04-25 01:59:09 +0000550 Return :const:`True` if the argument is a quiet NaN, and
551 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000552
Benjamin Petersone41251e2008-04-25 01:59:09 +0000553 .. method:: is_signed()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000554
Benjamin Petersone41251e2008-04-25 01:59:09 +0000555 Return :const:`True` if the argument has a negative sign and
556 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000557
Benjamin Petersone41251e2008-04-25 01:59:09 +0000558 .. method:: is_snan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000559
Benjamin Petersone41251e2008-04-25 01:59:09 +0000560 Return :const:`True` if the argument is a signaling NaN and :const:`False`
561 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000562
Benjamin Petersone41251e2008-04-25 01:59:09 +0000563 .. method:: is_subnormal()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000564
Benjamin Petersone41251e2008-04-25 01:59:09 +0000565 Return :const:`True` if the argument is subnormal, and :const:`False`
566 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000567
Benjamin Petersone41251e2008-04-25 01:59:09 +0000568 .. method:: is_zero()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000569
Benjamin Petersone41251e2008-04-25 01:59:09 +0000570 Return :const:`True` if the argument is a (positive or negative) zero and
571 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000572
Benjamin Petersone41251e2008-04-25 01:59:09 +0000573 .. method:: ln([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000574
Benjamin Petersone41251e2008-04-25 01:59:09 +0000575 Return the natural (base e) logarithm of the operand. The result is
576 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000577
Benjamin Petersone41251e2008-04-25 01:59:09 +0000578 .. method:: log10([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000579
Benjamin Petersone41251e2008-04-25 01:59:09 +0000580 Return the base ten logarithm of the operand. The result is correctly
581 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000582
Benjamin Petersone41251e2008-04-25 01:59:09 +0000583 .. method:: logb([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000584
Benjamin Petersone41251e2008-04-25 01:59:09 +0000585 For a nonzero number, return the adjusted exponent of its operand as a
586 :class:`Decimal` instance. If the operand is a zero then
587 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
588 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
589 returned.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000590
Benjamin Petersone41251e2008-04-25 01:59:09 +0000591 .. method:: logical_and(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000592
Benjamin Petersone41251e2008-04-25 01:59:09 +0000593 :meth:`logical_and` is a logical operation which takes two *logical
594 operands* (see :ref:`logical_operands_label`). The result is the
595 digit-wise ``and`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000596
Alexandre Vassalotti260484d2009-07-17 11:43:26 +0000597 .. method:: logical_invert([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000598
Alexandre Vassalotti260484d2009-07-17 11:43:26 +0000599 :meth:`logical_invert` is a logical operation. The
Benjamin Petersone41251e2008-04-25 01:59:09 +0000600 result is the digit-wise inversion of the operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000601
Benjamin Petersone41251e2008-04-25 01:59:09 +0000602 .. method:: logical_or(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000603
Benjamin Petersone41251e2008-04-25 01:59:09 +0000604 :meth:`logical_or` is a logical operation which takes two *logical
605 operands* (see :ref:`logical_operands_label`). The result is the
606 digit-wise ``or`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000607
Benjamin Petersone41251e2008-04-25 01:59:09 +0000608 .. method:: logical_xor(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000609
Benjamin Petersone41251e2008-04-25 01:59:09 +0000610 :meth:`logical_xor` is a logical operation which takes two *logical
611 operands* (see :ref:`logical_operands_label`). The result is the
612 digit-wise exclusive or of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000613
Benjamin Petersone41251e2008-04-25 01:59:09 +0000614 .. method:: max(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000615
Benjamin Petersone41251e2008-04-25 01:59:09 +0000616 Like ``max(self, other)`` except that the context rounding rule is applied
617 before returning and that :const:`NaN` values are either signaled or
618 ignored (depending on the context and whether they are signaling or
619 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000620
Benjamin Petersone41251e2008-04-25 01:59:09 +0000621 .. method:: max_mag(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000622
Georg Brandl502d9a52009-07-26 15:02:41 +0000623 Similar to the :meth:`.max` method, but the comparison is done using the
Benjamin Petersone41251e2008-04-25 01:59:09 +0000624 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000625
Benjamin Petersone41251e2008-04-25 01:59:09 +0000626 .. method:: min(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000627
Benjamin Petersone41251e2008-04-25 01:59:09 +0000628 Like ``min(self, other)`` except that the context rounding rule is applied
629 before returning and that :const:`NaN` values are either signaled or
630 ignored (depending on the context and whether they are signaling or
631 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000632
Benjamin Petersone41251e2008-04-25 01:59:09 +0000633 .. method:: min_mag(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000634
Georg Brandl502d9a52009-07-26 15:02:41 +0000635 Similar to the :meth:`.min` method, but the comparison is done using the
Benjamin Petersone41251e2008-04-25 01:59:09 +0000636 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000637
Benjamin Petersone41251e2008-04-25 01:59:09 +0000638 .. method:: next_minus([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000639
Benjamin Petersone41251e2008-04-25 01:59:09 +0000640 Return the largest number representable in the given context (or in the
641 current thread's context if no context is given) that is smaller than the
642 given operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000643
Benjamin Petersone41251e2008-04-25 01:59:09 +0000644 .. method:: next_plus([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000645
Benjamin Petersone41251e2008-04-25 01:59:09 +0000646 Return the smallest number representable in the given context (or in the
647 current thread's context if no context is given) that is larger than the
648 given operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000649
Benjamin Petersone41251e2008-04-25 01:59:09 +0000650 .. method:: next_toward(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000651
Benjamin Petersone41251e2008-04-25 01:59:09 +0000652 If the two operands are unequal, return the number closest to the first
653 operand in the direction of the second operand. If both operands are
654 numerically equal, return a copy of the first operand with the sign set to
655 be the same as the sign of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000656
Benjamin Petersone41251e2008-04-25 01:59:09 +0000657 .. method:: normalize([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000658
Benjamin Petersone41251e2008-04-25 01:59:09 +0000659 Normalize the number by stripping the rightmost trailing zeros and
660 converting any result equal to :const:`Decimal('0')` to
661 :const:`Decimal('0e0')`. Used for producing canonical values for members
662 of an equivalence class. For example, ``Decimal('32.100')`` and
663 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
664 ``Decimal('32.1')``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000665
Benjamin Petersone41251e2008-04-25 01:59:09 +0000666 .. method:: number_class([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000667
Benjamin Petersone41251e2008-04-25 01:59:09 +0000668 Return a string describing the *class* of the operand. The returned value
669 is one of the following ten strings.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000670
Benjamin Petersone41251e2008-04-25 01:59:09 +0000671 * ``"-Infinity"``, indicating that the operand is negative infinity.
672 * ``"-Normal"``, indicating that the operand is a negative normal number.
673 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
674 * ``"-Zero"``, indicating that the operand is a negative zero.
675 * ``"+Zero"``, indicating that the operand is a positive zero.
676 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
677 * ``"+Normal"``, indicating that the operand is a positive normal number.
678 * ``"+Infinity"``, indicating that the operand is positive infinity.
679 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
680 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000681
Benjamin Petersone41251e2008-04-25 01:59:09 +0000682 .. method:: quantize(exp[, rounding[, context[, watchexp]]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000683
Benjamin Petersone41251e2008-04-25 01:59:09 +0000684 Return a value equal to the first operand after rounding and having the
685 exponent of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000686
Benjamin Petersone41251e2008-04-25 01:59:09 +0000687 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
688 Decimal('1.414')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000689
Benjamin Petersone41251e2008-04-25 01:59:09 +0000690 Unlike other operations, if the length of the coefficient after the
691 quantize operation would be greater than precision, then an
692 :const:`InvalidOperation` is signaled. This guarantees that, unless there
693 is an error condition, the quantized exponent is always equal to that of
694 the right-hand operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000695
Benjamin Petersone41251e2008-04-25 01:59:09 +0000696 Also unlike other operations, quantize never signals Underflow, even if
697 the result is subnormal and inexact.
Georg Brandl116aa622007-08-15 14:28:22 +0000698
Benjamin Petersone41251e2008-04-25 01:59:09 +0000699 If the exponent of the second operand is larger than that of the first
700 then rounding may be necessary. In this case, the rounding mode is
701 determined by the ``rounding`` argument if given, else by the given
702 ``context`` argument; if neither argument is given the rounding mode of
703 the current thread's context is used.
Georg Brandl116aa622007-08-15 14:28:22 +0000704
Benjamin Petersone41251e2008-04-25 01:59:09 +0000705 If *watchexp* is set (default), then an error is returned whenever the
706 resulting exponent is greater than :attr:`Emax` or less than
707 :attr:`Etiny`.
Georg Brandl116aa622007-08-15 14:28:22 +0000708
Benjamin Petersone41251e2008-04-25 01:59:09 +0000709 .. method:: radix()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000710
Benjamin Petersone41251e2008-04-25 01:59:09 +0000711 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
712 class does all its arithmetic. Included for compatibility with the
713 specification.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000714
Benjamin Petersone41251e2008-04-25 01:59:09 +0000715 .. method:: remainder_near(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000716
Benjamin Petersone41251e2008-04-25 01:59:09 +0000717 Compute the modulo as either a positive or negative value depending on
718 which is closest to zero. For instance, ``Decimal(10).remainder_near(6)``
719 returns ``Decimal('-2')`` which is closer to zero than ``Decimal('4')``.
Georg Brandl116aa622007-08-15 14:28:22 +0000720
Benjamin Petersone41251e2008-04-25 01:59:09 +0000721 If both are equally close, the one chosen will have the same sign as
722 *self*.
Georg Brandl116aa622007-08-15 14:28:22 +0000723
Benjamin Petersone41251e2008-04-25 01:59:09 +0000724 .. method:: rotate(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000725
Benjamin Petersone41251e2008-04-25 01:59:09 +0000726 Return the result of rotating the digits of the first operand by an amount
727 specified by the second operand. The second operand must be an integer in
728 the range -precision through precision. The absolute value of the second
729 operand gives the number of places to rotate. If the second operand is
730 positive then rotation is to the left; otherwise rotation is to the right.
731 The coefficient of the first operand is padded on the left with zeros to
732 length precision if necessary. The sign and exponent of the first operand
733 are unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000734
Benjamin Petersone41251e2008-04-25 01:59:09 +0000735 .. method:: same_quantum(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000736
Benjamin Petersone41251e2008-04-25 01:59:09 +0000737 Test whether self and other have the same exponent or whether both are
738 :const:`NaN`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000739
Benjamin Petersone41251e2008-04-25 01:59:09 +0000740 .. method:: scaleb(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000741
Benjamin Petersone41251e2008-04-25 01:59:09 +0000742 Return the first operand with exponent adjusted by the second.
743 Equivalently, return the first operand multiplied by ``10**other``. The
744 second operand must be an integer.
Georg Brandl116aa622007-08-15 14:28:22 +0000745
Benjamin Petersone41251e2008-04-25 01:59:09 +0000746 .. method:: shift(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000747
Benjamin Petersone41251e2008-04-25 01:59:09 +0000748 Return the result of shifting the digits of the first operand by an amount
749 specified by the second operand. The second operand must be an integer in
750 the range -precision through precision. The absolute value of the second
751 operand gives the number of places to shift. If the second operand is
752 positive then the shift is to the left; otherwise the shift is to the
753 right. Digits shifted into the coefficient are zeros. The sign and
754 exponent of the first operand are unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +0000755
Benjamin Petersone41251e2008-04-25 01:59:09 +0000756 .. method:: sqrt([context])
Georg Brandl116aa622007-08-15 14:28:22 +0000757
Benjamin Petersone41251e2008-04-25 01:59:09 +0000758 Return the square root of the argument to full precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000759
Georg Brandl116aa622007-08-15 14:28:22 +0000760
Benjamin Petersone41251e2008-04-25 01:59:09 +0000761 .. method:: to_eng_string([context])
Georg Brandl116aa622007-08-15 14:28:22 +0000762
Benjamin Petersone41251e2008-04-25 01:59:09 +0000763 Convert to an engineering-type string.
Georg Brandl116aa622007-08-15 14:28:22 +0000764
Benjamin Petersone41251e2008-04-25 01:59:09 +0000765 Engineering notation has an exponent which is a multiple of 3, so there
766 are up to 3 digits left of the decimal place. For example, converts
767 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000768
Benjamin Petersone41251e2008-04-25 01:59:09 +0000769 .. method:: to_integral([rounding[, context]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000770
Benjamin Petersone41251e2008-04-25 01:59:09 +0000771 Identical to the :meth:`to_integral_value` method. The ``to_integral``
772 name has been kept for compatibility with older versions.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000773
Benjamin Petersone41251e2008-04-25 01:59:09 +0000774 .. method:: to_integral_exact([rounding[, context]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000775
Benjamin Petersone41251e2008-04-25 01:59:09 +0000776 Round to the nearest integer, signaling :const:`Inexact` or
777 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
778 determined by the ``rounding`` parameter if given, else by the given
779 ``context``. If neither parameter is given then the rounding mode of the
780 current context is used.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000781
Benjamin Petersone41251e2008-04-25 01:59:09 +0000782 .. method:: to_integral_value([rounding[, context]])
Georg Brandl116aa622007-08-15 14:28:22 +0000783
Benjamin Petersone41251e2008-04-25 01:59:09 +0000784 Round to the nearest integer without signaling :const:`Inexact` or
785 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
786 rounding method in either the supplied *context* or the current context.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000787
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000788
789.. _logical_operands_label:
790
791Logical operands
792^^^^^^^^^^^^^^^^
793
794The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
795and :meth:`logical_xor` methods expect their arguments to be *logical
796operands*. A *logical operand* is a :class:`Decimal` instance whose
797exponent and sign are both zero, and whose digits are all either
798:const:`0` or :const:`1`.
799
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000800.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000801
802
803.. _decimal-context:
804
805Context objects
806---------------
807
808Contexts are environments for arithmetic operations. They govern precision, set
809rules for rounding, determine which signals are treated as exceptions, and limit
810the range for exponents.
811
812Each thread has its own current context which is accessed or changed using the
813:func:`getcontext` and :func:`setcontext` functions:
814
815
816.. function:: getcontext()
817
818 Return the current context for the active thread.
819
820
821.. function:: setcontext(c)
822
823 Set the current context for the active thread to *c*.
824
Georg Brandle6bcc912008-05-12 18:05:20 +0000825You can also use the :keyword:`with` statement and the :func:`localcontext`
826function to temporarily change the active context.
Georg Brandl116aa622007-08-15 14:28:22 +0000827
828.. function:: localcontext([c])
829
830 Return a context manager that will set the current context for the active thread
831 to a copy of *c* on entry to the with-statement and restore the previous context
832 when exiting the with-statement. If no context is specified, a copy of the
833 current context is used.
834
Georg Brandl116aa622007-08-15 14:28:22 +0000835 For example, the following code sets the current decimal precision to 42 places,
836 performs a calculation, and then automatically restores the previous context::
837
Georg Brandl116aa622007-08-15 14:28:22 +0000838 from decimal import localcontext
839
840 with localcontext() as ctx:
841 ctx.prec = 42 # Perform a high precision calculation
842 s = calculate_something()
843 s = +s # Round the final result back to the default precision
844
845New contexts can also be created using the :class:`Context` constructor
846described below. In addition, the module provides three pre-made contexts:
847
848
849.. class:: BasicContext
850
851 This is a standard context defined by the General Decimal Arithmetic
852 Specification. Precision is set to nine. Rounding is set to
853 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
854 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
855 :const:`Subnormal`.
856
857 Because many of the traps are enabled, this context is useful for debugging.
858
859
860.. class:: ExtendedContext
861
862 This is a standard context defined by the General Decimal Arithmetic
863 Specification. Precision is set to nine. Rounding is set to
864 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
865 exceptions are not raised during computations).
866
Christian Heimes3feef612008-02-11 06:19:17 +0000867 Because the traps are disabled, this context is useful for applications that
Georg Brandl116aa622007-08-15 14:28:22 +0000868 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
869 raising exceptions. This allows an application to complete a run in the
870 presence of conditions that would otherwise halt the program.
871
872
873.. class:: DefaultContext
874
875 This context is used by the :class:`Context` constructor as a prototype for new
876 contexts. Changing a field (such a precision) has the effect of changing the
877 default for new contexts creating by the :class:`Context` constructor.
878
879 This context is most useful in multi-threaded environments. Changing one of the
880 fields before threads are started has the effect of setting system-wide
881 defaults. Changing the fields after threads have started is not recommended as
882 it would require thread synchronization to prevent race conditions.
883
884 In single threaded environments, it is preferable to not use this context at
885 all. Instead, simply create contexts explicitly as described below.
886
887 The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps
888 for Overflow, InvalidOperation, and DivisionByZero.
889
890In addition to the three supplied contexts, new contexts can be created with the
891:class:`Context` constructor.
892
893
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000894.. class:: Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=None, clamp=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000895
896 Creates a new context. If a field is not specified or is :const:`None`, the
897 default values are copied from the :const:`DefaultContext`. If the *flags*
898 field is not specified or is :const:`None`, all flags are cleared.
899
900 The *prec* field is a positive integer that sets the precision for arithmetic
901 operations in the context.
902
903 The *rounding* option is one of:
904
905 * :const:`ROUND_CEILING` (towards :const:`Infinity`),
906 * :const:`ROUND_DOWN` (towards zero),
907 * :const:`ROUND_FLOOR` (towards :const:`-Infinity`),
908 * :const:`ROUND_HALF_DOWN` (to nearest with ties going towards zero),
909 * :const:`ROUND_HALF_EVEN` (to nearest with ties going to nearest even integer),
910 * :const:`ROUND_HALF_UP` (to nearest with ties going away from zero), or
911 * :const:`ROUND_UP` (away from zero).
Georg Brandl48310cd2009-01-03 21:18:54 +0000912 * :const:`ROUND_05UP` (away from zero if last digit after rounding towards zero
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000913 would have been 0 or 5; otherwise towards zero)
Georg Brandl116aa622007-08-15 14:28:22 +0000914
915 The *traps* and *flags* fields list any signals to be set. Generally, new
916 contexts should only set traps and leave the flags clear.
917
918 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
919 for exponents.
920
921 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
922 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
923 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
924
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000925 The *clamp* field is either :const:`0` (the default) or :const:`1`.
926 If set to :const:`1`, the exponent ``e`` of a :class:`Decimal`
927 instance representable in this context is strictly limited to the
928 range ``Emin - prec + 1 <= e <= Emax - prec + 1``. If *clamp* is
929 :const:`0` then a weaker condition holds: the adjusted exponent of
930 the :class:`Decimal` instance is at most ``Emax``. When *clamp* is
931 :const:`1`, a large normal number will, where possible, have its
932 exponent reduced and a corresponding number of zeros added to its
933 coefficient, in order to fit the exponent constraints; this
934 preserves the value of the number but loses information about
935 significant trailing zeros. For example::
936
937 >>> Context(prec=6, Emax=999, clamp=1).create_decimal('1.23e999')
938 Decimal('1.23000E+999')
939
940 A *clamp* value of :const:`1` allows compatibility with the
941 fixed-width decimal interchange formats specified in IEEE 754.
Georg Brandl116aa622007-08-15 14:28:22 +0000942
Benjamin Petersone41251e2008-04-25 01:59:09 +0000943 The :class:`Context` class defines several general purpose methods as well as
944 a large number of methods for doing arithmetic directly in a given context.
945 In addition, for each of the :class:`Decimal` methods described above (with
946 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
Mark Dickinson84230a12010-02-18 14:49:50 +0000947 a corresponding :class:`Context` method. For example, for a :class:`Context`
948 instance ``C`` and :class:`Decimal` instance ``x``, ``C.exp(x)`` is
949 equivalent to ``x.exp(context=C)``. Each :class:`Context` method accepts a
Mark Dickinson5d233fd2010-02-18 14:54:37 +0000950 Python integer (an instance of :class:`int`) anywhere that a
Mark Dickinson84230a12010-02-18 14:49:50 +0000951 Decimal instance is accepted.
Georg Brandl116aa622007-08-15 14:28:22 +0000952
953
Benjamin Petersone41251e2008-04-25 01:59:09 +0000954 .. method:: clear_flags()
Georg Brandl116aa622007-08-15 14:28:22 +0000955
Benjamin Petersone41251e2008-04-25 01:59:09 +0000956 Resets all of the flags to :const:`0`.
Georg Brandl116aa622007-08-15 14:28:22 +0000957
Benjamin Petersone41251e2008-04-25 01:59:09 +0000958 .. method:: copy()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000959
Benjamin Petersone41251e2008-04-25 01:59:09 +0000960 Return a duplicate of the context.
Georg Brandl116aa622007-08-15 14:28:22 +0000961
Benjamin Petersone41251e2008-04-25 01:59:09 +0000962 .. method:: copy_decimal(num)
Georg Brandl116aa622007-08-15 14:28:22 +0000963
Benjamin Petersone41251e2008-04-25 01:59:09 +0000964 Return a copy of the Decimal instance num.
Georg Brandl116aa622007-08-15 14:28:22 +0000965
Benjamin Petersone41251e2008-04-25 01:59:09 +0000966 .. method:: create_decimal(num)
Christian Heimesfe337bf2008-03-23 21:54:12 +0000967
Benjamin Petersone41251e2008-04-25 01:59:09 +0000968 Creates a new Decimal instance from *num* but using *self* as
969 context. Unlike the :class:`Decimal` constructor, the context precision,
970 rounding method, flags, and traps are applied to the conversion.
Georg Brandl116aa622007-08-15 14:28:22 +0000971
Benjamin Petersone41251e2008-04-25 01:59:09 +0000972 This is useful because constants are often given to a greater precision
973 than is needed by the application. Another benefit is that rounding
974 immediately eliminates unintended effects from digits beyond the current
975 precision. In the following example, using unrounded inputs means that
976 adding zero to a sum can change the result:
Georg Brandl116aa622007-08-15 14:28:22 +0000977
Benjamin Petersone41251e2008-04-25 01:59:09 +0000978 .. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +0000979
Benjamin Petersone41251e2008-04-25 01:59:09 +0000980 >>> getcontext().prec = 3
981 >>> Decimal('3.4445') + Decimal('1.0023')
982 Decimal('4.45')
983 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
984 Decimal('4.44')
Georg Brandl116aa622007-08-15 14:28:22 +0000985
Benjamin Petersone41251e2008-04-25 01:59:09 +0000986 This method implements the to-number operation of the IBM specification.
987 If the argument is a string, no leading or trailing whitespace is
988 permitted.
989
Georg Brandl45f53372009-01-03 21:15:20 +0000990 .. method:: create_decimal_from_float(f)
Raymond Hettinger771ed762009-01-03 19:20:32 +0000991
992 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandl45f53372009-01-03 21:15:20 +0000993 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettinger771ed762009-01-03 19:20:32 +0000994 the context precision, rounding method, flags, and traps are applied to
995 the conversion.
996
997 .. doctest::
998
Georg Brandl45f53372009-01-03 21:15:20 +0000999 >>> context = Context(prec=5, rounding=ROUND_DOWN)
1000 >>> context.create_decimal_from_float(math.pi)
1001 Decimal('3.1415')
1002 >>> context = Context(prec=5, traps=[Inexact])
1003 >>> context.create_decimal_from_float(math.pi)
1004 Traceback (most recent call last):
1005 ...
1006 decimal.Inexact: None
Raymond Hettinger771ed762009-01-03 19:20:32 +00001007
Georg Brandl45f53372009-01-03 21:15:20 +00001008 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +00001009
Benjamin Petersone41251e2008-04-25 01:59:09 +00001010 .. method:: Etiny()
1011
1012 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1013 value for subnormal results. When underflow occurs, the exponent is set
1014 to :const:`Etiny`.
Georg Brandl116aa622007-08-15 14:28:22 +00001015
1016
Benjamin Petersone41251e2008-04-25 01:59:09 +00001017 .. method:: Etop()
Georg Brandl116aa622007-08-15 14:28:22 +00001018
Benjamin Petersone41251e2008-04-25 01:59:09 +00001019 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl116aa622007-08-15 14:28:22 +00001020
Benjamin Petersone41251e2008-04-25 01:59:09 +00001021 The usual approach to working with decimals is to create :class:`Decimal`
1022 instances and then apply arithmetic operations which take place within the
1023 current context for the active thread. An alternative approach is to use
1024 context methods for calculating within a specific context. The methods are
1025 similar to those for the :class:`Decimal` class and are only briefly
1026 recounted here.
Georg Brandl116aa622007-08-15 14:28:22 +00001027
1028
Benjamin Petersone41251e2008-04-25 01:59:09 +00001029 .. method:: abs(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001030
Benjamin Petersone41251e2008-04-25 01:59:09 +00001031 Returns the absolute value of *x*.
Georg Brandl116aa622007-08-15 14:28:22 +00001032
1033
Benjamin Petersone41251e2008-04-25 01:59:09 +00001034 .. method:: add(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001035
Benjamin Petersone41251e2008-04-25 01:59:09 +00001036 Return the sum of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001037
1038
Facundo Batista789bdf02008-06-21 17:29:41 +00001039 .. method:: canonical(x)
1040
1041 Returns the same Decimal object *x*.
1042
1043
1044 .. method:: compare(x, y)
1045
1046 Compares *x* and *y* numerically.
1047
1048
1049 .. method:: compare_signal(x, y)
1050
1051 Compares the values of the two operands numerically.
1052
1053
1054 .. method:: compare_total(x, y)
1055
1056 Compares two operands using their abstract representation.
1057
1058
1059 .. method:: compare_total_mag(x, y)
1060
1061 Compares two operands using their abstract representation, ignoring sign.
1062
1063
1064 .. method:: copy_abs(x)
1065
1066 Returns a copy of *x* with the sign set to 0.
1067
1068
1069 .. method:: copy_negate(x)
1070
1071 Returns a copy of *x* with the sign inverted.
1072
1073
1074 .. method:: copy_sign(x, y)
1075
1076 Copies the sign from *y* to *x*.
1077
1078
Benjamin Petersone41251e2008-04-25 01:59:09 +00001079 .. method:: divide(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001080
Benjamin Petersone41251e2008-04-25 01:59:09 +00001081 Return *x* divided by *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001082
1083
Benjamin Petersone41251e2008-04-25 01:59:09 +00001084 .. method:: divide_int(x, y)
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001085
Benjamin Petersone41251e2008-04-25 01:59:09 +00001086 Return *x* divided by *y*, truncated to an integer.
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001087
1088
Benjamin Petersone41251e2008-04-25 01:59:09 +00001089 .. method:: divmod(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001090
Benjamin Petersone41251e2008-04-25 01:59:09 +00001091 Divides two numbers and returns the integer part of the result.
Georg Brandl116aa622007-08-15 14:28:22 +00001092
1093
Facundo Batista789bdf02008-06-21 17:29:41 +00001094 .. method:: exp(x)
1095
1096 Returns `e ** x`.
1097
1098
1099 .. method:: fma(x, y, z)
1100
1101 Returns *x* multiplied by *y*, plus *z*.
1102
1103
1104 .. method:: is_canonical(x)
1105
1106 Returns True if *x* is canonical; otherwise returns False.
1107
1108
1109 .. method:: is_finite(x)
1110
1111 Returns True if *x* is finite; otherwise returns False.
1112
1113
1114 .. method:: is_infinite(x)
1115
1116 Returns True if *x* is infinite; otherwise returns False.
1117
1118
1119 .. method:: is_nan(x)
1120
1121 Returns True if *x* is a qNaN or sNaN; otherwise returns False.
1122
1123
1124 .. method:: is_normal(x)
1125
1126 Returns True if *x* is a normal number; otherwise returns False.
1127
1128
1129 .. method:: is_qnan(x)
1130
1131 Returns True if *x* is a quiet NaN; otherwise returns False.
1132
1133
1134 .. method:: is_signed(x)
1135
1136 Returns True if *x* is negative; otherwise returns False.
1137
1138
1139 .. method:: is_snan(x)
1140
1141 Returns True if *x* is a signaling NaN; otherwise returns False.
1142
1143
1144 .. method:: is_subnormal(x)
1145
1146 Returns True if *x* is subnormal; otherwise returns False.
1147
1148
1149 .. method:: is_zero(x)
1150
1151 Returns True if *x* is a zero; otherwise returns False.
1152
1153
1154 .. method:: ln(x)
1155
1156 Returns the natural (base e) logarithm of *x*.
1157
1158
1159 .. method:: log10(x)
1160
1161 Returns the base 10 logarithm of *x*.
1162
1163
1164 .. method:: logb(x)
1165
1166 Returns the exponent of the magnitude of the operand's MSD.
1167
1168
1169 .. method:: logical_and(x, y)
1170
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001171 Applies the logical operation *and* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001172
1173
1174 .. method:: logical_invert(x)
1175
1176 Invert all the digits in *x*.
1177
1178
1179 .. method:: logical_or(x, y)
1180
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001181 Applies the logical operation *or* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001182
1183
1184 .. method:: logical_xor(x, y)
1185
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001186 Applies the logical operation *xor* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001187
1188
1189 .. method:: max(x, y)
1190
1191 Compares two values numerically and returns the maximum.
1192
1193
1194 .. method:: max_mag(x, y)
1195
1196 Compares the values numerically with their sign ignored.
1197
1198
1199 .. method:: min(x, y)
1200
1201 Compares two values numerically and returns the minimum.
1202
1203
1204 .. method:: min_mag(x, y)
1205
1206 Compares the values numerically with their sign ignored.
1207
1208
Benjamin Petersone41251e2008-04-25 01:59:09 +00001209 .. method:: minus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001210
Benjamin Petersone41251e2008-04-25 01:59:09 +00001211 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl116aa622007-08-15 14:28:22 +00001212
1213
Benjamin Petersone41251e2008-04-25 01:59:09 +00001214 .. method:: multiply(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001215
Benjamin Petersone41251e2008-04-25 01:59:09 +00001216 Return the product of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001217
1218
Facundo Batista789bdf02008-06-21 17:29:41 +00001219 .. method:: next_minus(x)
1220
1221 Returns the largest representable number smaller than *x*.
1222
1223
1224 .. method:: next_plus(x)
1225
1226 Returns the smallest representable number larger than *x*.
1227
1228
1229 .. method:: next_toward(x, y)
1230
1231 Returns the number closest to *x*, in direction towards *y*.
1232
1233
1234 .. method:: normalize(x)
1235
1236 Reduces *x* to its simplest form.
1237
1238
1239 .. method:: number_class(x)
1240
1241 Returns an indication of the class of *x*.
1242
1243
Benjamin Petersone41251e2008-04-25 01:59:09 +00001244 .. method:: plus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001245
Benjamin Petersone41251e2008-04-25 01:59:09 +00001246 Plus corresponds to the unary prefix plus operator in Python. This
1247 operation applies the context precision and rounding, so it is *not* an
1248 identity operation.
Georg Brandl116aa622007-08-15 14:28:22 +00001249
1250
Benjamin Petersone41251e2008-04-25 01:59:09 +00001251 .. method:: power(x, y[, modulo])
Georg Brandl116aa622007-08-15 14:28:22 +00001252
Benjamin Petersone41251e2008-04-25 01:59:09 +00001253 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl116aa622007-08-15 14:28:22 +00001254
Benjamin Petersone41251e2008-04-25 01:59:09 +00001255 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1256 must be integral. The result will be inexact unless ``y`` is integral and
1257 the result is finite and can be expressed exactly in 'precision' digits.
1258 The result should always be correctly rounded, using the rounding mode of
1259 the current thread's context.
Georg Brandl116aa622007-08-15 14:28:22 +00001260
Benjamin Petersone41251e2008-04-25 01:59:09 +00001261 With three arguments, compute ``(x**y) % modulo``. For the three argument
1262 form, the following restrictions on the arguments hold:
Georg Brandl116aa622007-08-15 14:28:22 +00001263
Benjamin Petersone41251e2008-04-25 01:59:09 +00001264 - all three arguments must be integral
1265 - ``y`` must be nonnegative
1266 - at least one of ``x`` or ``y`` must be nonzero
1267 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl116aa622007-08-15 14:28:22 +00001268
Mark Dickinson5961b0e2010-02-22 15:41:48 +00001269 The value resulting from ``Context.power(x, y, modulo)`` is
1270 equal to the value that would be obtained by computing ``(x**y)
1271 % modulo`` with unbounded precision, but is computed more
1272 efficiently. The exponent of the result is zero, regardless of
1273 the exponents of ``x``, ``y`` and ``modulo``. The result is
1274 always exact.
Georg Brandl116aa622007-08-15 14:28:22 +00001275
Facundo Batista789bdf02008-06-21 17:29:41 +00001276
1277 .. method:: quantize(x, y)
1278
1279 Returns a value equal to *x* (rounded), having the exponent of *y*.
1280
1281
1282 .. method:: radix()
1283
1284 Just returns 10, as this is Decimal, :)
1285
1286
Benjamin Petersone41251e2008-04-25 01:59:09 +00001287 .. method:: remainder(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001288
Benjamin Petersone41251e2008-04-25 01:59:09 +00001289 Returns the remainder from integer division.
Georg Brandl116aa622007-08-15 14:28:22 +00001290
Benjamin Petersone41251e2008-04-25 01:59:09 +00001291 The sign of the result, if non-zero, is the same as that of the original
1292 dividend.
Georg Brandl116aa622007-08-15 14:28:22 +00001293
Benjamin Petersondcf97b92008-07-02 17:30:14 +00001294
Facundo Batista789bdf02008-06-21 17:29:41 +00001295 .. method:: remainder_near(x, y)
1296
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001297 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1298 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista789bdf02008-06-21 17:29:41 +00001299
1300
1301 .. method:: rotate(x, y)
1302
1303 Returns a rotated copy of *x*, *y* times.
1304
1305
1306 .. method:: same_quantum(x, y)
1307
1308 Returns True if the two operands have the same exponent.
1309
1310
1311 .. method:: scaleb (x, y)
1312
1313 Returns the first operand after adding the second value its exp.
1314
1315
1316 .. method:: shift(x, y)
1317
1318 Returns a shifted copy of *x*, *y* times.
1319
1320
1321 .. method:: sqrt(x)
1322
1323 Square root of a non-negative number to context precision.
1324
1325
Benjamin Petersone41251e2008-04-25 01:59:09 +00001326 .. method:: subtract(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001327
Benjamin Petersone41251e2008-04-25 01:59:09 +00001328 Return the difference between *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001329
Facundo Batista789bdf02008-06-21 17:29:41 +00001330
1331 .. method:: to_eng_string(x)
1332
1333 Converts a number to a string, using scientific notation.
1334
1335
1336 .. method:: to_integral_exact(x)
1337
1338 Rounds to an integer.
1339
1340
Benjamin Petersone41251e2008-04-25 01:59:09 +00001341 .. method:: to_sci_string(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001342
Benjamin Petersone41251e2008-04-25 01:59:09 +00001343 Converts a number to a string using scientific notation.
Georg Brandl116aa622007-08-15 14:28:22 +00001344
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001345.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001346
1347
1348.. _decimal-signals:
1349
1350Signals
1351-------
1352
1353Signals represent conditions that arise during computation. Each corresponds to
1354one context flag and one context trap enabler.
1355
Raymond Hettinger86173da2008-02-01 20:38:12 +00001356The context flag is set whenever the condition is encountered. After the
Georg Brandl116aa622007-08-15 14:28:22 +00001357computation, flags may be checked for informational purposes (for instance, to
1358determine whether a computation was exact). After checking the flags, be sure to
1359clear all flags before starting the next computation.
1360
1361If the context's trap enabler is set for the signal, then the condition causes a
1362Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1363is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1364condition.
1365
1366
1367.. class:: Clamped
1368
1369 Altered an exponent to fit representation constraints.
1370
1371 Typically, clamping occurs when an exponent falls outside the context's
1372 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001373 fit by adding zeros to the coefficient.
Georg Brandl116aa622007-08-15 14:28:22 +00001374
1375
1376.. class:: DecimalException
1377
1378 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1379
1380
1381.. class:: DivisionByZero
1382
1383 Signals the division of a non-infinite number by zero.
1384
1385 Can occur with division, modulo division, or when raising a number to a negative
1386 power. If this signal is not trapped, returns :const:`Infinity` or
1387 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1388
1389
1390.. class:: Inexact
1391
1392 Indicates that rounding occurred and the result is not exact.
1393
1394 Signals when non-zero digits were discarded during rounding. The rounded result
1395 is returned. The signal flag or trap is used to detect when results are
1396 inexact.
1397
1398
1399.. class:: InvalidOperation
1400
1401 An invalid operation was performed.
1402
1403 Indicates that an operation was requested that does not make sense. If not
1404 trapped, returns :const:`NaN`. Possible causes include::
1405
1406 Infinity - Infinity
1407 0 * Infinity
1408 Infinity / Infinity
1409 x % 0
1410 Infinity % x
1411 x._rescale( non-integer )
1412 sqrt(-x) and x > 0
1413 0 ** 0
1414 x ** (non-integer)
Georg Brandl48310cd2009-01-03 21:18:54 +00001415 x ** Infinity
Georg Brandl116aa622007-08-15 14:28:22 +00001416
1417
1418.. class:: Overflow
1419
1420 Numerical overflow.
1421
Benjamin Petersone41251e2008-04-25 01:59:09 +00001422 Indicates the exponent is larger than :attr:`Emax` after rounding has
1423 occurred. If not trapped, the result depends on the rounding mode, either
1424 pulling inward to the largest representable finite number or rounding outward
1425 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1426 are also signaled.
Georg Brandl116aa622007-08-15 14:28:22 +00001427
1428
1429.. class:: Rounded
1430
1431 Rounding occurred though possibly no information was lost.
1432
Benjamin Petersone41251e2008-04-25 01:59:09 +00001433 Signaled whenever rounding discards digits; even if those digits are zero
1434 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1435 the result unchanged. This signal is used to detect loss of significant
1436 digits.
Georg Brandl116aa622007-08-15 14:28:22 +00001437
1438
1439.. class:: Subnormal
1440
1441 Exponent was lower than :attr:`Emin` prior to rounding.
1442
Benjamin Petersone41251e2008-04-25 01:59:09 +00001443 Occurs when an operation result is subnormal (the exponent is too small). If
1444 not trapped, returns the result unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +00001445
1446
1447.. class:: Underflow
1448
1449 Numerical underflow with result rounded to zero.
1450
1451 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1452 and :class:`Subnormal` are also signaled.
1453
1454The following table summarizes the hierarchy of signals::
1455
1456 exceptions.ArithmeticError(exceptions.Exception)
1457 DecimalException
1458 Clamped
1459 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1460 Inexact
1461 Overflow(Inexact, Rounded)
1462 Underflow(Inexact, Rounded, Subnormal)
1463 InvalidOperation
1464 Rounded
1465 Subnormal
1466
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001467.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001468
1469
1470.. _decimal-notes:
1471
1472Floating Point Notes
1473--------------------
1474
1475
1476Mitigating round-off error with increased precision
1477^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1478
1479The use of decimal floating point eliminates decimal representation error
1480(making it possible to represent :const:`0.1` exactly); however, some operations
1481can still incur round-off error when non-zero digits exceed the fixed precision.
1482
1483The effects of round-off error can be amplified by the addition or subtraction
1484of nearly offsetting quantities resulting in loss of significance. Knuth
1485provides two instructive examples where rounded floating point arithmetic with
1486insufficient precision causes the breakdown of the associative and distributive
Christian Heimesfe337bf2008-03-23 21:54:12 +00001487properties of addition:
1488
1489.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001490
1491 # Examples from Seminumerical Algorithms, Section 4.2.2.
1492 >>> from decimal import Decimal, getcontext
1493 >>> getcontext().prec = 8
1494
1495 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1496 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001497 Decimal('9.5111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001498 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001499 Decimal('10')
Georg Brandl116aa622007-08-15 14:28:22 +00001500
1501 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1502 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001503 Decimal('0.01')
Georg Brandl116aa622007-08-15 14:28:22 +00001504 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001505 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001506
1507The :mod:`decimal` module makes it possible to restore the identities by
Christian Heimesfe337bf2008-03-23 21:54:12 +00001508expanding the precision sufficiently to avoid loss of significance:
1509
1510.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001511
1512 >>> getcontext().prec = 20
1513 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1514 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001515 Decimal('9.51111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001516 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001517 Decimal('9.51111111')
Georg Brandl48310cd2009-01-03 21:18:54 +00001518 >>>
Georg Brandl116aa622007-08-15 14:28:22 +00001519 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1520 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001521 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001522 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001523 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001524
1525
1526Special values
1527^^^^^^^^^^^^^^
1528
1529The number system for the :mod:`decimal` module provides special values
1530including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001531and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl116aa622007-08-15 14:28:22 +00001532
1533Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1534they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1535not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1536can result from rounding beyond the limits of the largest representable number.
1537
1538The infinities are signed (affine) and can be used in arithmetic operations
1539where they get treated as very large, indeterminate numbers. For instance,
1540adding a constant to infinity gives another infinite result.
1541
1542Some operations are indeterminate and return :const:`NaN`, or if the
1543:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1544``0/0`` returns :const:`NaN` which means "not a number". This variety of
1545:const:`NaN` is quiet and, once created, will flow through other computations
1546always resulting in another :const:`NaN`. This behavior can be useful for a
1547series of computations that occasionally have missing inputs --- it allows the
1548calculation to proceed while flagging specific results as invalid.
1549
1550A variant is :const:`sNaN` which signals rather than remaining quiet after every
1551operation. This is a useful return value when an invalid result needs to
1552interrupt a calculation for special handling.
1553
Christian Heimes77c02eb2008-02-09 02:18:51 +00001554The behavior of Python's comparison operators can be a little surprising where a
1555:const:`NaN` is involved. A test for equality where one of the operands is a
1556quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1557``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
1558:const:`True`. An attempt to compare two Decimals using any of the ``<``,
1559``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1560if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Christian Heimes3feef612008-02-11 06:19:17 +00001561not trapped. Note that the General Decimal Arithmetic specification does not
Christian Heimes77c02eb2008-02-09 02:18:51 +00001562specify the behavior of direct comparisons; these rules for comparisons
1563involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1564section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
1565and :meth:`compare-signal` methods instead.
1566
Georg Brandl116aa622007-08-15 14:28:22 +00001567The signed zeros can result from calculations that underflow. They keep the sign
1568that would have resulted if the calculation had been carried out to greater
1569precision. Since their magnitude is zero, both positive and negative zeros are
1570treated as equal and their sign is informational.
1571
1572In addition to the two signed zeros which are distinct yet equal, there are
1573various representations of zero with differing precisions yet equivalent in
1574value. This takes a bit of getting used to. For an eye accustomed to
1575normalized floating point representations, it is not immediately obvious that
Christian Heimesfe337bf2008-03-23 21:54:12 +00001576the following calculation returns a value equal to zero:
Georg Brandl116aa622007-08-15 14:28:22 +00001577
1578 >>> 1 / Decimal('Infinity')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001579 Decimal('0E-1000000026')
Georg Brandl116aa622007-08-15 14:28:22 +00001580
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001581.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001582
1583
1584.. _decimal-threads:
1585
1586Working with threads
1587--------------------
1588
1589The :func:`getcontext` function accesses a different :class:`Context` object for
1590each thread. Having separate thread contexts means that threads may make
1591changes (such as ``getcontext.prec=10``) without interfering with other threads.
1592
1593Likewise, the :func:`setcontext` function automatically assigns its target to
1594the current thread.
1595
1596If :func:`setcontext` has not been called before :func:`getcontext`, then
1597:func:`getcontext` will automatically create a new context for use in the
1598current thread.
1599
1600The new context is copied from a prototype context called *DefaultContext*. To
1601control the defaults so that each thread will use the same values throughout the
1602application, directly modify the *DefaultContext* object. This should be done
1603*before* any threads are started so that there won't be a race condition between
1604threads calling :func:`getcontext`. For example::
1605
1606 # Set applicationwide defaults for all threads about to be launched
1607 DefaultContext.prec = 12
1608 DefaultContext.rounding = ROUND_DOWN
1609 DefaultContext.traps = ExtendedContext.traps.copy()
1610 DefaultContext.traps[InvalidOperation] = 1
1611 setcontext(DefaultContext)
1612
1613 # Afterwards, the threads can be started
1614 t1.start()
1615 t2.start()
1616 t3.start()
1617 . . .
1618
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001619.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001620
1621
1622.. _decimal-recipes:
1623
1624Recipes
1625-------
1626
1627Here are a few recipes that serve as utility functions and that demonstrate ways
1628to work with the :class:`Decimal` class::
1629
1630 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1631 pos='', neg='-', trailneg=''):
1632 """Convert Decimal to a money formatted string.
1633
1634 places: required number of places after the decimal point
1635 curr: optional currency symbol before the sign (may be blank)
1636 sep: optional grouping separator (comma, period, space, or blank)
1637 dp: decimal point indicator (comma or period)
1638 only specify as blank when places is zero
1639 pos: optional sign for positive numbers: '+', space or blank
1640 neg: optional sign for negative numbers: '-', '(', space or blank
1641 trailneg:optional trailing minus indicator: '-', ')', space or blank
1642
1643 >>> d = Decimal('-1234567.8901')
1644 >>> moneyfmt(d, curr='$')
1645 '-$1,234,567.89'
1646 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1647 '1.234.568-'
1648 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1649 '($1,234,567.89)'
1650 >>> moneyfmt(Decimal(123456789), sep=' ')
1651 '123 456 789.00'
1652 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Christian Heimesdae2a892008-04-19 00:55:37 +00001653 '<0.02>'
Georg Brandl116aa622007-08-15 14:28:22 +00001654
1655 """
Christian Heimesa156e092008-02-16 07:38:31 +00001656 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandl48310cd2009-01-03 21:18:54 +00001657 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +00001658 result = []
Facundo Batista789bdf02008-06-21 17:29:41 +00001659 digits = list(map(str, digits))
Georg Brandl116aa622007-08-15 14:28:22 +00001660 build, next = result.append, digits.pop
1661 if sign:
1662 build(trailneg)
1663 for i in range(places):
Christian Heimesa156e092008-02-16 07:38:31 +00001664 build(next() if digits else '0')
Georg Brandl116aa622007-08-15 14:28:22 +00001665 build(dp)
Christian Heimesdae2a892008-04-19 00:55:37 +00001666 if not digits:
1667 build('0')
Georg Brandl116aa622007-08-15 14:28:22 +00001668 i = 0
1669 while digits:
1670 build(next())
1671 i += 1
1672 if i == 3 and digits:
1673 i = 0
1674 build(sep)
1675 build(curr)
Christian Heimesa156e092008-02-16 07:38:31 +00001676 build(neg if sign else pos)
1677 return ''.join(reversed(result))
Georg Brandl116aa622007-08-15 14:28:22 +00001678
1679 def pi():
1680 """Compute Pi to the current precision.
1681
Georg Brandl6911e3c2007-09-04 07:15:32 +00001682 >>> print(pi())
Georg Brandl116aa622007-08-15 14:28:22 +00001683 3.141592653589793238462643383
1684
1685 """
1686 getcontext().prec += 2 # extra digits for intermediate steps
1687 three = Decimal(3) # substitute "three=3.0" for regular floats
1688 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1689 while s != lasts:
1690 lasts = s
1691 n, na = n+na, na+8
1692 d, da = d+da, da+32
1693 t = (t * n) / d
1694 s += t
1695 getcontext().prec -= 2
1696 return +s # unary plus applies the new precision
1697
1698 def exp(x):
1699 """Return e raised to the power of x. Result type matches input type.
1700
Georg Brandl6911e3c2007-09-04 07:15:32 +00001701 >>> print(exp(Decimal(1)))
Georg Brandl116aa622007-08-15 14:28:22 +00001702 2.718281828459045235360287471
Georg Brandl6911e3c2007-09-04 07:15:32 +00001703 >>> print(exp(Decimal(2)))
Georg Brandl116aa622007-08-15 14:28:22 +00001704 7.389056098930650227230427461
Georg Brandl6911e3c2007-09-04 07:15:32 +00001705 >>> print(exp(2.0))
Georg Brandl116aa622007-08-15 14:28:22 +00001706 7.38905609893
Georg Brandl6911e3c2007-09-04 07:15:32 +00001707 >>> print(exp(2+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001708 (7.38905609893+0j)
1709
1710 """
1711 getcontext().prec += 2
1712 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1713 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001714 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001715 i += 1
1716 fact *= i
Georg Brandl48310cd2009-01-03 21:18:54 +00001717 num *= x
1718 s += num / fact
1719 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001720 return +s
1721
1722 def cos(x):
1723 """Return the cosine of x as measured in radians.
1724
Georg Brandl6911e3c2007-09-04 07:15:32 +00001725 >>> print(cos(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001726 0.8775825618903727161162815826
Georg Brandl6911e3c2007-09-04 07:15:32 +00001727 >>> print(cos(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001728 0.87758256189
Georg Brandl6911e3c2007-09-04 07:15:32 +00001729 >>> print(cos(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001730 (0.87758256189+0j)
1731
1732 """
1733 getcontext().prec += 2
1734 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1735 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001736 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001737 i += 2
1738 fact *= i * (i-1)
1739 num *= x * x
1740 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001741 s += num / fact * sign
1742 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001743 return +s
1744
1745 def sin(x):
1746 """Return the sine of x as measured in radians.
1747
Georg Brandl6911e3c2007-09-04 07:15:32 +00001748 >>> print(sin(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001749 0.4794255386042030002732879352
Georg Brandl6911e3c2007-09-04 07:15:32 +00001750 >>> print(sin(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001751 0.479425538604
Georg Brandl6911e3c2007-09-04 07:15:32 +00001752 >>> print(sin(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001753 (0.479425538604+0j)
1754
1755 """
1756 getcontext().prec += 2
1757 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1758 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001759 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001760 i += 2
1761 fact *= i * (i-1)
1762 num *= x * x
1763 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001764 s += num / fact * sign
1765 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001766 return +s
1767
1768
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001769.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001770
1771
1772.. _decimal-faq:
1773
1774Decimal FAQ
1775-----------
1776
1777Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1778minimize typing when using the interactive interpreter?
1779
Christian Heimesfe337bf2008-03-23 21:54:12 +00001780A. Some users abbreviate the constructor to just a single letter:
Georg Brandl116aa622007-08-15 14:28:22 +00001781
1782 >>> D = decimal.Decimal
1783 >>> D('1.23') + D('3.45')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001784 Decimal('4.68')
Georg Brandl116aa622007-08-15 14:28:22 +00001785
1786Q. In a fixed-point application with two decimal places, some inputs have many
1787places and need to be rounded. Others are not supposed to have excess digits
1788and need to be validated. What methods should be used?
1789
1790A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Christian Heimesfe337bf2008-03-23 21:54:12 +00001791the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl116aa622007-08-15 14:28:22 +00001792
1793 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1794
1795 >>> # Round to two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001796 >>> Decimal('3.214').quantize(TWOPLACES)
1797 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001798
Georg Brandl48310cd2009-01-03 21:18:54 +00001799 >>> # Validate that a number does not exceed two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001800 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1801 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001802
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001803 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl116aa622007-08-15 14:28:22 +00001804 Traceback (most recent call last):
1805 ...
Benjamin Peterson25c95f12009-05-08 20:42:26 +00001806 Inexact: None
Georg Brandl116aa622007-08-15 14:28:22 +00001807
1808Q. Once I have valid two place inputs, how do I maintain that invariant
1809throughout an application?
1810
Christian Heimesa156e092008-02-16 07:38:31 +00001811A. Some operations like addition, subtraction, and multiplication by an integer
1812will automatically preserve fixed point. Others operations, like division and
1813non-integer multiplication, will change the number of decimal places and need to
Christian Heimesfe337bf2008-03-23 21:54:12 +00001814be followed-up with a :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00001815
1816 >>> a = Decimal('102.72') # Initial fixed-point values
1817 >>> b = Decimal('3.17')
1818 >>> a + b # Addition preserves fixed-point
1819 Decimal('105.89')
1820 >>> a - b
1821 Decimal('99.55')
1822 >>> a * 42 # So does integer multiplication
1823 Decimal('4314.24')
1824 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1825 Decimal('325.62')
1826 >>> (b / a).quantize(TWOPLACES) # And quantize division
1827 Decimal('0.03')
1828
1829In developing fixed-point applications, it is convenient to define functions
Christian Heimesfe337bf2008-03-23 21:54:12 +00001830to handle the :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00001831
1832 >>> def mul(x, y, fp=TWOPLACES):
1833 ... return (x * y).quantize(fp)
1834 >>> def div(x, y, fp=TWOPLACES):
1835 ... return (x / y).quantize(fp)
1836
1837 >>> mul(a, b) # Automatically preserve fixed-point
1838 Decimal('325.62')
1839 >>> div(b, a)
1840 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +00001841
1842Q. There are many ways to express the same value. The numbers :const:`200`,
1843:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
1844various precisions. Is there a way to transform them to a single recognizable
1845canonical value?
1846
1847A. The :meth:`normalize` method maps all equivalent values to a single
Christian Heimesfe337bf2008-03-23 21:54:12 +00001848representative:
Georg Brandl116aa622007-08-15 14:28:22 +00001849
1850 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1851 >>> [v.normalize() for v in values]
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001852 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl116aa622007-08-15 14:28:22 +00001853
1854Q. Some decimal values always print with exponential notation. Is there a way
1855to get a non-exponential representation?
1856
1857A. For some values, exponential notation is the only way to express the number
1858of significant places in the coefficient. For example, expressing
1859:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
1860original's two-place significance.
1861
Christian Heimesa156e092008-02-16 07:38:31 +00001862If an application does not care about tracking significance, it is easy to
Christian Heimesc3f30c42008-02-22 16:37:40 +00001863remove the exponent and trailing zeroes, losing significance, but keeping the
Christian Heimesfe337bf2008-03-23 21:54:12 +00001864value unchanged:
Christian Heimesa156e092008-02-16 07:38:31 +00001865
1866 >>> def remove_exponent(d):
1867 ... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
1868
1869 >>> remove_exponent(Decimal('5E+3'))
1870 Decimal('5000')
1871
Georg Brandl116aa622007-08-15 14:28:22 +00001872Q. Is there a way to convert a regular float to a :class:`Decimal`?
1873
Mark Dickinsone534a072010-04-04 22:13:14 +00001874A. Yes, any binary floating point number can be exactly expressed as a
Raymond Hettinger96798592010-04-02 16:58:27 +00001875Decimal though an exact conversion may take more precision than intuition would
1876suggest:
Georg Brandl116aa622007-08-15 14:28:22 +00001877
Christian Heimesfe337bf2008-03-23 21:54:12 +00001878.. doctest::
1879
Raymond Hettinger96798592010-04-02 16:58:27 +00001880 >>> Decimal(math.pi)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001881 Decimal('3.141592653589793115997963468544185161590576171875')
Georg Brandl116aa622007-08-15 14:28:22 +00001882
Georg Brandl116aa622007-08-15 14:28:22 +00001883Q. Within a complex calculation, how can I make sure that I haven't gotten a
1884spurious result because of insufficient precision or rounding anomalies.
1885
1886A. The decimal module makes it easy to test results. A best practice is to
1887re-run calculations using greater precision and with various rounding modes.
1888Widely differing results indicate insufficient precision, rounding mode issues,
1889ill-conditioned inputs, or a numerically unstable algorithm.
1890
1891Q. I noticed that context precision is applied to the results of operations but
1892not to the inputs. Is there anything to watch out for when mixing values of
1893different precisions?
1894
1895A. Yes. The principle is that all values are considered to be exact and so is
1896the arithmetic on those values. Only the results are rounded. The advantage
1897for inputs is that "what you type is what you get". A disadvantage is that the
Christian Heimesfe337bf2008-03-23 21:54:12 +00001898results can look odd if you forget that the inputs haven't been rounded:
1899
1900.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001901
1902 >>> getcontext().prec = 3
Christian Heimesfe337bf2008-03-23 21:54:12 +00001903 >>> Decimal('3.104') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001904 Decimal('5.21')
Christian Heimesfe337bf2008-03-23 21:54:12 +00001905 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001906 Decimal('5.20')
Georg Brandl116aa622007-08-15 14:28:22 +00001907
1908The solution is either to increase precision or to force rounding of inputs
Christian Heimesfe337bf2008-03-23 21:54:12 +00001909using the unary plus operation:
1910
1911.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001912
1913 >>> getcontext().prec = 3
1914 >>> +Decimal('1.23456789') # unary plus triggers rounding
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001915 Decimal('1.23')
Georg Brandl116aa622007-08-15 14:28:22 +00001916
1917Alternatively, inputs can be rounded upon creation using the
Christian Heimesfe337bf2008-03-23 21:54:12 +00001918:meth:`Context.create_decimal` method:
Georg Brandl116aa622007-08-15 14:28:22 +00001919
1920 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001921 Decimal('1.2345')
Georg Brandl116aa622007-08-15 14:28:22 +00001922