blob: 7e144866d30ab93d076abb29b57a70f4b8d09f72 [file] [log] [blame]
Christian Heimes3feef612008-02-11 06:19:17 +00001:mod:`decimal` --- Decimal fixed point and floating point arithmetic
2====================================================================
Georg Brandl116aa622007-08-15 14:28:22 +00003
4.. module:: decimal
5 :synopsis: Implementation of the General Decimal Arithmetic Specification.
6
Georg Brandl116aa622007-08-15 14:28:22 +00007.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
8.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
9.. moduleauthor:: Raymond Hettinger <python at rcn.com>
10.. moduleauthor:: Aahz <aahz at pobox.com>
11.. moduleauthor:: Tim Peters <tim.one at comcast.net>
Georg Brandl116aa622007-08-15 14:28:22 +000012.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
13
Christian Heimesfe337bf2008-03-23 21:54:12 +000014.. import modules for testing inline doctests with the Sphinx doctest builder
15.. testsetup:: *
16
17 import decimal
18 import math
19 from decimal import *
20 # make sure each group gets a fresh context
21 setcontext(Context())
Georg Brandl116aa622007-08-15 14:28:22 +000022
Georg Brandl116aa622007-08-15 14:28:22 +000023The :mod:`decimal` module provides support for decimal floating point
Thomas Wouters1b7f8912007-09-19 03:06:30 +000024arithmetic. It offers several advantages over the :class:`float` datatype:
Georg Brandl116aa622007-08-15 14:28:22 +000025
Christian Heimes3feef612008-02-11 06:19:17 +000026* Decimal "is based on a floating-point model which was designed with people
27 in mind, and necessarily has a paramount guiding principle -- computers must
28 provide an arithmetic that works in the same way as the arithmetic that
29 people learn at school." -- excerpt from the decimal arithmetic specification.
30
Georg Brandl116aa622007-08-15 14:28:22 +000031* Decimal numbers can be represented exactly. In contrast, numbers like
Raymond Hettingerd258d1e2009-04-23 22:06:12 +000032 :const:`1.1` and :const:`2.2` do not have an exact representations in binary
33 floating point. End users typically would not expect ``1.1 + 2.2`` to display
34 as :const:`3.3000000000000003` as it does with binary floating point.
Georg Brandl116aa622007-08-15 14:28:22 +000035
36* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Thomas Wouters1b7f8912007-09-19 03:06:30 +000037 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl116aa622007-08-15 14:28:22 +000038 is :const:`5.5511151231257827e-017`. While near to zero, the differences
39 prevent reliable equality testing and differences can accumulate. For this
Christian Heimes3feef612008-02-11 06:19:17 +000040 reason, decimal is preferred in accounting applications which have strict
Georg Brandl116aa622007-08-15 14:28:22 +000041 equality invariants.
42
43* The decimal module incorporates a notion of significant places so that ``1.30
44 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
45 This is the customary presentation for monetary applications. For
46 multiplication, the "schoolbook" approach uses all the figures in the
47 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
48 1.20`` gives :const:`1.5600`.
49
50* Unlike hardware based binary floating point, the decimal module has a user
Thomas Wouters1b7f8912007-09-19 03:06:30 +000051 alterable precision (defaulting to 28 places) which can be as large as needed for
Christian Heimesfe337bf2008-03-23 21:54:12 +000052 a given problem:
Georg Brandl116aa622007-08-15 14:28:22 +000053
54 >>> getcontext().prec = 6
55 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000056 Decimal('0.142857')
Georg Brandl116aa622007-08-15 14:28:22 +000057 >>> getcontext().prec = 28
58 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000059 Decimal('0.1428571428571428571428571429')
Georg Brandl116aa622007-08-15 14:28:22 +000060
61* Both binary and decimal floating point are implemented in terms of published
62 standards. While the built-in float type exposes only a modest portion of its
63 capabilities, the decimal module exposes all required parts of the standard.
64 When needed, the programmer has full control over rounding and signal handling.
Christian Heimes3feef612008-02-11 06:19:17 +000065 This includes an option to enforce exact arithmetic by using exceptions
66 to block any inexact operations.
67
68* The decimal module was designed to support "without prejudice, both exact
69 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
70 and rounded floating-point arithmetic." -- excerpt from the decimal
71 arithmetic specification.
Georg Brandl116aa622007-08-15 14:28:22 +000072
73The module design is centered around three concepts: the decimal number, the
74context for arithmetic, and signals.
75
76A decimal number is immutable. It has a sign, coefficient digits, and an
77exponent. To preserve significance, the coefficient digits do not truncate
Thomas Wouters1b7f8912007-09-19 03:06:30 +000078trailing zeros. Decimals also include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +000079:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
80differentiates :const:`-0` from :const:`+0`.
81
82The context for arithmetic is an environment specifying precision, rounding
83rules, limits on exponents, flags indicating the results of operations, and trap
84enablers which determine whether signals are treated as exceptions. Rounding
85options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
86:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +000087:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl116aa622007-08-15 14:28:22 +000088
89Signals are groups of exceptional conditions arising during the course of
90computation. Depending on the needs of the application, signals may be ignored,
91considered as informational, or treated as exceptions. The signals in the
92decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
93:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
94:const:`Overflow`, and :const:`Underflow`.
95
96For each signal there is a flag and a trap enabler. When a signal is
Raymond Hettinger86173da2008-02-01 20:38:12 +000097encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl116aa622007-08-15 14:28:22 +000098set to one, an exception is raised. Flags are sticky, so the user needs to
99reset them before monitoring a calculation.
100
101
102.. seealso::
103
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000104 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Raymond Hettinger960dc362009-04-21 03:43:15 +0000105 Specification <http://speleotrove.com/decimal/decarith.html>`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000106
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000107 * IEEE standard 854-1987, `Unofficial IEEE 854 Text
Christian Heimes77c02eb2008-02-09 02:18:51 +0000108 <http://754r.ucbtest.org/standards/854.pdf>`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000109
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000110.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000111
112
113.. _decimal-tutorial:
114
115Quick-start Tutorial
116--------------------
117
118The usual start to using decimals is importing the module, viewing the current
119context with :func:`getcontext` and, if necessary, setting new values for
120precision, rounding, or enabled traps::
121
122 >>> from decimal import *
123 >>> getcontext()
124 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Christian Heimesfe337bf2008-03-23 21:54:12 +0000125 capitals=1, flags=[], traps=[Overflow, DivisionByZero,
126 InvalidOperation])
Georg Brandl116aa622007-08-15 14:28:22 +0000127
128 >>> getcontext().prec = 7 # Set a new precision
129
130Decimal instances can be constructed from integers, strings, or tuples. To
131create a Decimal from a :class:`float`, first convert it to a string. This
132serves as an explicit reminder of the details of the conversion (including
133representation error). Decimal numbers include special values such as
134:const:`NaN` which stands for "Not a number", positive and negative
Christian Heimesfe337bf2008-03-23 21:54:12 +0000135:const:`Infinity`, and :const:`-0`.
Georg Brandl116aa622007-08-15 14:28:22 +0000136
Facundo Batista789bdf02008-06-21 17:29:41 +0000137 >>> getcontext().prec = 28
Georg Brandl116aa622007-08-15 14:28:22 +0000138 >>> Decimal(10)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000139 Decimal('10')
140 >>> Decimal('3.14')
141 Decimal('3.14')
Georg Brandl116aa622007-08-15 14:28:22 +0000142 >>> Decimal((0, (3, 1, 4), -2))
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000143 Decimal('3.14')
Georg Brandl116aa622007-08-15 14:28:22 +0000144 >>> Decimal(str(2.0 ** 0.5))
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000145 Decimal('1.41421356237')
146 >>> Decimal(2) ** Decimal('0.5')
147 Decimal('1.414213562373095048801688724')
148 >>> Decimal('NaN')
149 Decimal('NaN')
150 >>> Decimal('-Infinity')
151 Decimal('-Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000152
153The significance of a new Decimal is determined solely by the number of digits
154input. Context precision and rounding only come into play during arithmetic
Christian Heimesfe337bf2008-03-23 21:54:12 +0000155operations.
156
157.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +0000158
159 >>> getcontext().prec = 6
160 >>> Decimal('3.0')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000161 Decimal('3.0')
Georg Brandl116aa622007-08-15 14:28:22 +0000162 >>> Decimal('3.1415926535')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000163 Decimal('3.1415926535')
Georg Brandl116aa622007-08-15 14:28:22 +0000164 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000165 Decimal('5.85987')
Georg Brandl116aa622007-08-15 14:28:22 +0000166 >>> getcontext().rounding = ROUND_UP
167 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000168 Decimal('5.85988')
Georg Brandl116aa622007-08-15 14:28:22 +0000169
170Decimals interact well with much of the rest of Python. Here is a small decimal
Christian Heimesfe337bf2008-03-23 21:54:12 +0000171floating point flying circus:
172
173.. doctest::
174 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000175
Facundo Batista789bdf02008-06-21 17:29:41 +0000176 >>> data = list(map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split()))
Georg Brandl116aa622007-08-15 14:28:22 +0000177 >>> max(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000178 Decimal('9.25')
Georg Brandl116aa622007-08-15 14:28:22 +0000179 >>> min(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000180 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +0000181 >>> sorted(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000182 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
183 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl116aa622007-08-15 14:28:22 +0000184 >>> sum(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000185 Decimal('19.29')
Georg Brandl116aa622007-08-15 14:28:22 +0000186 >>> a,b,c = data[:3]
187 >>> str(a)
188 '1.34'
189 >>> float(a)
Mark Dickinsoncf2d9ff2009-06-28 20:38:24 +0000190 1.34
191 >>> round(a, 1)
192 Decimal('1.3')
Georg Brandl116aa622007-08-15 14:28:22 +0000193 >>> int(a)
194 1
195 >>> a * 5
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000196 Decimal('6.70')
Georg Brandl116aa622007-08-15 14:28:22 +0000197 >>> a * b
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000198 Decimal('2.5058')
Georg Brandl116aa622007-08-15 14:28:22 +0000199 >>> c % a
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000200 Decimal('0.77')
Georg Brandl116aa622007-08-15 14:28:22 +0000201
Christian Heimesfe337bf2008-03-23 21:54:12 +0000202And some mathematical functions are also available to Decimal:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000203
Facundo Batista789bdf02008-06-21 17:29:41 +0000204 >>> getcontext().prec = 28
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000205 >>> Decimal(2).sqrt()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000206 Decimal('1.414213562373095048801688724')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000207 >>> Decimal(1).exp()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000208 Decimal('2.718281828459045235360287471')
209 >>> Decimal('10').ln()
210 Decimal('2.302585092994045684017991455')
211 >>> Decimal('10').log10()
212 Decimal('1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000213
Georg Brandl116aa622007-08-15 14:28:22 +0000214The :meth:`quantize` method rounds a number to a fixed exponent. This method is
215useful for monetary applications that often round results to a fixed number of
Christian Heimesfe337bf2008-03-23 21:54:12 +0000216places:
Georg Brandl116aa622007-08-15 14:28:22 +0000217
218 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000219 Decimal('7.32')
Georg Brandl116aa622007-08-15 14:28:22 +0000220 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000221 Decimal('8')
Georg Brandl116aa622007-08-15 14:28:22 +0000222
223As shown above, the :func:`getcontext` function accesses the current context and
224allows the settings to be changed. This approach meets the needs of most
225applications.
226
227For more advanced work, it may be useful to create alternate contexts using the
228Context() constructor. To make an alternate active, use the :func:`setcontext`
229function.
230
231In accordance with the standard, the :mod:`Decimal` module provides two ready to
232use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
233former is especially useful for debugging because many of the traps are
Christian Heimesfe337bf2008-03-23 21:54:12 +0000234enabled:
235
236.. doctest:: newcontext
237 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000238
239 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
240 >>> setcontext(myothercontext)
241 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000242 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl116aa622007-08-15 14:28:22 +0000243
244 >>> ExtendedContext
245 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
246 capitals=1, flags=[], traps=[])
247 >>> setcontext(ExtendedContext)
248 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000249 Decimal('0.142857143')
Georg Brandl116aa622007-08-15 14:28:22 +0000250 >>> Decimal(42) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000251 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000252
253 >>> setcontext(BasicContext)
254 >>> Decimal(42) / Decimal(0)
255 Traceback (most recent call last):
256 File "<pyshell#143>", line 1, in -toplevel-
257 Decimal(42) / Decimal(0)
258 DivisionByZero: x / 0
259
260Contexts also have signal flags for monitoring exceptional conditions
261encountered during computations. The flags remain set until explicitly cleared,
262so it is best to clear the flags before each set of monitored computations by
263using the :meth:`clear_flags` method. ::
264
265 >>> setcontext(ExtendedContext)
266 >>> getcontext().clear_flags()
267 >>> Decimal(355) / Decimal(113)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000268 Decimal('3.14159292')
Georg Brandl116aa622007-08-15 14:28:22 +0000269 >>> getcontext()
270 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Facundo Batista789bdf02008-06-21 17:29:41 +0000271 capitals=1, flags=[Inexact, Rounded], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000272
273The *flags* entry shows that the rational approximation to :const:`Pi` was
274rounded (digits beyond the context precision were thrown away) and that the
275result is inexact (some of the discarded digits were non-zero).
276
277Individual traps are set using the dictionary in the :attr:`traps` field of a
Christian Heimesfe337bf2008-03-23 21:54:12 +0000278context:
Georg Brandl116aa622007-08-15 14:28:22 +0000279
Christian Heimesfe337bf2008-03-23 21:54:12 +0000280.. doctest:: newcontext
281
282 >>> setcontext(ExtendedContext)
Georg Brandl116aa622007-08-15 14:28:22 +0000283 >>> Decimal(1) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000284 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000285 >>> getcontext().traps[DivisionByZero] = 1
286 >>> Decimal(1) / Decimal(0)
287 Traceback (most recent call last):
288 File "<pyshell#112>", line 1, in -toplevel-
289 Decimal(1) / Decimal(0)
290 DivisionByZero: x / 0
291
292Most programs adjust the current context only once, at the beginning of the
293program. And, in many applications, data is converted to :class:`Decimal` with
294a single cast inside a loop. With context set and decimals created, the bulk of
295the program manipulates the data no differently than with other Python numeric
296types.
297
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000298.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000299
300
301.. _decimal-decimal:
302
303Decimal objects
304---------------
305
306
Georg Brandlc2a4f4f2009-04-10 09:03:43 +0000307.. class:: Decimal(value="0", context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000308
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000309 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl116aa622007-08-15 14:28:22 +0000310
Christian Heimesa62da1d2008-01-12 19:39:10 +0000311 *value* can be an integer, string, tuple, or another :class:`Decimal`
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000312 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Christian Heimesa62da1d2008-01-12 19:39:10 +0000313 string, it should conform to the decimal numeric string syntax after leading
314 and trailing whitespace characters are removed::
Georg Brandl116aa622007-08-15 14:28:22 +0000315
316 sign ::= '+' | '-'
317 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
318 indicator ::= 'e' | 'E'
319 digits ::= digit [digit]...
320 decimal-part ::= digits '.' [digits] | ['.'] digits
321 exponent-part ::= indicator [sign] digits
322 infinity ::= 'Infinity' | 'Inf'
323 nan ::= 'NaN' [digits] | 'sNaN' [digits]
324 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandl48310cd2009-01-03 21:18:54 +0000325 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl116aa622007-08-15 14:28:22 +0000326
Mark Dickinson8d238292009-08-02 10:16:33 +0000327 Other Unicode decimal digits are also permitted where ``digit``
328 appears above. These include decimal digits from various other
329 alphabets (for example, Arabic-Indic and Devanāgarī digits) along
330 with the fullwidth digits ``'\uff10'`` through ``'\uff19'``.
331
Georg Brandl116aa622007-08-15 14:28:22 +0000332 If *value* is a :class:`tuple`, it should have three components, a sign
333 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
334 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000335 returns ``Decimal('1.414')``.
Georg Brandl116aa622007-08-15 14:28:22 +0000336
337 The *context* precision does not affect how many digits are stored. That is
338 determined exclusively by the number of digits in *value*. For example,
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000339 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl116aa622007-08-15 14:28:22 +0000340 only three.
341
342 The purpose of the *context* argument is determining what to do if *value* is a
343 malformed string. If the context traps :const:`InvalidOperation`, an exception
344 is raised; otherwise, the constructor returns a new Decimal with the value of
345 :const:`NaN`.
346
347 Once constructed, :class:`Decimal` objects are immutable.
348
Benjamin Petersone41251e2008-04-25 01:59:09 +0000349 Decimal floating point objects share many properties with the other built-in
350 numeric types such as :class:`float` and :class:`int`. All of the usual math
351 operations and special methods apply. Likewise, decimal objects can be
352 copied, pickled, printed, used as dictionary keys, used as set elements,
353 compared, sorted, and coerced to another type (such as :class:`float` or
354 :class:`long`).
Christian Heimesa62da1d2008-01-12 19:39:10 +0000355
Benjamin Petersone41251e2008-04-25 01:59:09 +0000356 In addition to the standard numeric properties, decimal floating point
357 objects also have a number of specialized methods:
Georg Brandl116aa622007-08-15 14:28:22 +0000358
Georg Brandl116aa622007-08-15 14:28:22 +0000359
Benjamin Petersone41251e2008-04-25 01:59:09 +0000360 .. method:: adjusted()
Georg Brandl116aa622007-08-15 14:28:22 +0000361
Benjamin Petersone41251e2008-04-25 01:59:09 +0000362 Return the adjusted exponent after shifting out the coefficient's
363 rightmost digits until only the lead digit remains:
364 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
365 position of the most significant digit with respect to the decimal point.
Georg Brandl116aa622007-08-15 14:28:22 +0000366
Georg Brandl116aa622007-08-15 14:28:22 +0000367
Benjamin Petersone41251e2008-04-25 01:59:09 +0000368 .. method:: as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +0000369
Benjamin Petersone41251e2008-04-25 01:59:09 +0000370 Return a :term:`named tuple` representation of the number:
371 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000372
Christian Heimes25bb7832008-01-11 16:17:00 +0000373
Benjamin Petersone41251e2008-04-25 01:59:09 +0000374 .. method:: canonical()
Georg Brandl116aa622007-08-15 14:28:22 +0000375
Benjamin Petersone41251e2008-04-25 01:59:09 +0000376 Return the canonical encoding of the argument. Currently, the encoding of
377 a :class:`Decimal` instance is always canonical, so this operation returns
378 its argument unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000379
Benjamin Petersone41251e2008-04-25 01:59:09 +0000380 .. method:: compare(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000381
Georg Brandl05f5ab72008-09-24 09:11:47 +0000382 Compare the values of two Decimal instances. :meth:`compare` returns a
383 Decimal instance, and if either operand is a NaN then the result is a
384 NaN::
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000385
Georg Brandl05f5ab72008-09-24 09:11:47 +0000386 a or b is a NaN ==> Decimal('NaN')
387 a < b ==> Decimal('-1')
388 a == b ==> Decimal('0')
389 a > b ==> Decimal('1')
Georg Brandl116aa622007-08-15 14:28:22 +0000390
Benjamin Petersone41251e2008-04-25 01:59:09 +0000391 .. method:: compare_signal(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000392
Benjamin Petersone41251e2008-04-25 01:59:09 +0000393 This operation is identical to the :meth:`compare` method, except that all
394 NaNs signal. That is, if neither operand is a signaling NaN then any
395 quiet NaN operand is treated as though it were a signaling NaN.
Georg Brandl116aa622007-08-15 14:28:22 +0000396
Benjamin Petersone41251e2008-04-25 01:59:09 +0000397 .. method:: compare_total(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000398
Benjamin Petersone41251e2008-04-25 01:59:09 +0000399 Compare two operands using their abstract representation rather than their
400 numerical value. Similar to the :meth:`compare` method, but the result
401 gives a total ordering on :class:`Decimal` instances. Two
402 :class:`Decimal` instances with the same numeric value but different
403 representations compare unequal in this ordering:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000404
Benjamin Petersone41251e2008-04-25 01:59:09 +0000405 >>> Decimal('12.0').compare_total(Decimal('12'))
406 Decimal('-1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000407
Benjamin Petersone41251e2008-04-25 01:59:09 +0000408 Quiet and signaling NaNs are also included in the total ordering. The
409 result of this function is ``Decimal('0')`` if both operands have the same
410 representation, ``Decimal('-1')`` if the first operand is lower in the
411 total order than the second, and ``Decimal('1')`` if the first operand is
412 higher in the total order than the second operand. See the specification
413 for details of the total order.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000414
Benjamin Petersone41251e2008-04-25 01:59:09 +0000415 .. method:: compare_total_mag(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000416
Benjamin Petersone41251e2008-04-25 01:59:09 +0000417 Compare two operands using their abstract representation rather than their
418 value as in :meth:`compare_total`, but ignoring the sign of each operand.
419 ``x.compare_total_mag(y)`` is equivalent to
420 ``x.copy_abs().compare_total(y.copy_abs())``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000421
Facundo Batista789bdf02008-06-21 17:29:41 +0000422 .. method:: conjugate()
423
Benjamin Petersondcf97b92008-07-02 17:30:14 +0000424 Just returns self, this method is only to comply with the Decimal
Facundo Batista789bdf02008-06-21 17:29:41 +0000425 Specification.
426
Benjamin Petersone41251e2008-04-25 01:59:09 +0000427 .. method:: copy_abs()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000428
Benjamin Petersone41251e2008-04-25 01:59:09 +0000429 Return the absolute value of the argument. This operation is unaffected
430 by the context and is quiet: no flags are changed and no rounding is
431 performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000432
Benjamin Petersone41251e2008-04-25 01:59:09 +0000433 .. method:: copy_negate()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000434
Benjamin Petersone41251e2008-04-25 01:59:09 +0000435 Return the negation of the argument. This operation is unaffected by the
436 context and is quiet: no flags are changed and no rounding is performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000437
Benjamin Petersone41251e2008-04-25 01:59:09 +0000438 .. method:: copy_sign(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000439
Benjamin Petersone41251e2008-04-25 01:59:09 +0000440 Return a copy of the first operand with the sign set to be the same as the
441 sign of the second operand. For example:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000442
Benjamin Petersone41251e2008-04-25 01:59:09 +0000443 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
444 Decimal('-2.3')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000445
Benjamin Petersone41251e2008-04-25 01:59:09 +0000446 This operation is unaffected by the context and is quiet: no flags are
447 changed and no rounding is performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000448
Benjamin Petersone41251e2008-04-25 01:59:09 +0000449 .. method:: exp([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000450
Benjamin Petersone41251e2008-04-25 01:59:09 +0000451 Return the value of the (natural) exponential function ``e**x`` at the
452 given number. The result is correctly rounded using the
453 :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000454
Benjamin Petersone41251e2008-04-25 01:59:09 +0000455 >>> Decimal(1).exp()
456 Decimal('2.718281828459045235360287471')
457 >>> Decimal(321).exp()
458 Decimal('2.561702493119680037517373933E+139')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000459
Raymond Hettinger771ed762009-01-03 19:20:32 +0000460 .. method:: from_float(f)
461
462 Classmethod that converts a float to a decimal number, exactly.
463
464 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
465 Since 0.1 is not exactly representable in binary floating point, the
466 value is stored as the nearest representable value which is
467 `0x1.999999999999ap-4`. That equivalent value in decimal is
468 `0.1000000000000000055511151231257827021181583404541015625`.
469
470 .. doctest::
471
472 >>> Decimal.from_float(0.1)
473 Decimal('0.1000000000000000055511151231257827021181583404541015625')
474 >>> Decimal.from_float(float('nan'))
475 Decimal('NaN')
476 >>> Decimal.from_float(float('inf'))
477 Decimal('Infinity')
478 >>> Decimal.from_float(float('-inf'))
479 Decimal('-Infinity')
480
Georg Brandl45f53372009-01-03 21:15:20 +0000481 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +0000482
Benjamin Petersone41251e2008-04-25 01:59:09 +0000483 .. method:: fma(other, third[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000484
Benjamin Petersone41251e2008-04-25 01:59:09 +0000485 Fused multiply-add. Return self*other+third with no rounding of the
486 intermediate product self*other.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000487
Benjamin Petersone41251e2008-04-25 01:59:09 +0000488 >>> Decimal(2).fma(3, 5)
489 Decimal('11')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000490
Benjamin Petersone41251e2008-04-25 01:59:09 +0000491 .. method:: is_canonical()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000492
Benjamin Petersone41251e2008-04-25 01:59:09 +0000493 Return :const:`True` if the argument is canonical and :const:`False`
494 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
495 this operation always returns :const:`True`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000496
Benjamin Petersone41251e2008-04-25 01:59:09 +0000497 .. method:: is_finite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000498
Benjamin Petersone41251e2008-04-25 01:59:09 +0000499 Return :const:`True` if the argument is a finite number, and
500 :const:`False` if the argument is an infinity or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000501
Benjamin Petersone41251e2008-04-25 01:59:09 +0000502 .. method:: is_infinite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000503
Benjamin Petersone41251e2008-04-25 01:59:09 +0000504 Return :const:`True` if the argument is either positive or negative
505 infinity and :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000506
Benjamin Petersone41251e2008-04-25 01:59:09 +0000507 .. method:: is_nan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000508
Benjamin Petersone41251e2008-04-25 01:59:09 +0000509 Return :const:`True` if the argument is a (quiet or signaling) NaN and
510 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000511
Benjamin Petersone41251e2008-04-25 01:59:09 +0000512 .. method:: is_normal()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000513
Benjamin Petersone41251e2008-04-25 01:59:09 +0000514 Return :const:`True` if the argument is a *normal* finite number. Return
515 :const:`False` if the argument is zero, subnormal, infinite or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000516
Benjamin Petersone41251e2008-04-25 01:59:09 +0000517 .. method:: is_qnan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000518
Benjamin Petersone41251e2008-04-25 01:59:09 +0000519 Return :const:`True` if the argument is a quiet NaN, and
520 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000521
Benjamin Petersone41251e2008-04-25 01:59:09 +0000522 .. method:: is_signed()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000523
Benjamin Petersone41251e2008-04-25 01:59:09 +0000524 Return :const:`True` if the argument has a negative sign and
525 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000526
Benjamin Petersone41251e2008-04-25 01:59:09 +0000527 .. method:: is_snan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000528
Benjamin Petersone41251e2008-04-25 01:59:09 +0000529 Return :const:`True` if the argument is a signaling NaN and :const:`False`
530 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000531
Benjamin Petersone41251e2008-04-25 01:59:09 +0000532 .. method:: is_subnormal()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000533
Benjamin Petersone41251e2008-04-25 01:59:09 +0000534 Return :const:`True` if the argument is subnormal, and :const:`False`
535 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000536
Benjamin Petersone41251e2008-04-25 01:59:09 +0000537 .. method:: is_zero()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000538
Benjamin Petersone41251e2008-04-25 01:59:09 +0000539 Return :const:`True` if the argument is a (positive or negative) zero and
540 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000541
Benjamin Petersone41251e2008-04-25 01:59:09 +0000542 .. method:: ln([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000543
Benjamin Petersone41251e2008-04-25 01:59:09 +0000544 Return the natural (base e) logarithm of the operand. The result is
545 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000546
Benjamin Petersone41251e2008-04-25 01:59:09 +0000547 .. method:: log10([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000548
Benjamin Petersone41251e2008-04-25 01:59:09 +0000549 Return the base ten logarithm of the operand. The result is correctly
550 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000551
Benjamin Petersone41251e2008-04-25 01:59:09 +0000552 .. method:: logb([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000553
Benjamin Petersone41251e2008-04-25 01:59:09 +0000554 For a nonzero number, return the adjusted exponent of its operand as a
555 :class:`Decimal` instance. If the operand is a zero then
556 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
557 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
558 returned.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000559
Benjamin Petersone41251e2008-04-25 01:59:09 +0000560 .. method:: logical_and(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000561
Benjamin Petersone41251e2008-04-25 01:59:09 +0000562 :meth:`logical_and` is a logical operation which takes two *logical
563 operands* (see :ref:`logical_operands_label`). The result is the
564 digit-wise ``and`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000565
Benjamin Petersone41251e2008-04-25 01:59:09 +0000566 .. method:: logical_invert(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000567
Benjamin Petersone41251e2008-04-25 01:59:09 +0000568 :meth:`logical_invert` is a logical operation. The argument must
569 be a *logical operand* (see :ref:`logical_operands_label`). The
570 result is the digit-wise inversion of the operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000571
Benjamin Petersone41251e2008-04-25 01:59:09 +0000572 .. method:: logical_or(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000573
Benjamin Petersone41251e2008-04-25 01:59:09 +0000574 :meth:`logical_or` is a logical operation which takes two *logical
575 operands* (see :ref:`logical_operands_label`). The result is the
576 digit-wise ``or`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000577
Benjamin Petersone41251e2008-04-25 01:59:09 +0000578 .. method:: logical_xor(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000579
Benjamin Petersone41251e2008-04-25 01:59:09 +0000580 :meth:`logical_xor` is a logical operation which takes two *logical
581 operands* (see :ref:`logical_operands_label`). The result is the
582 digit-wise exclusive or of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000583
Benjamin Petersone41251e2008-04-25 01:59:09 +0000584 .. method:: max(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000585
Benjamin Petersone41251e2008-04-25 01:59:09 +0000586 Like ``max(self, other)`` except that the context rounding rule is applied
587 before returning and that :const:`NaN` values are either signaled or
588 ignored (depending on the context and whether they are signaling or
589 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000590
Benjamin Petersone41251e2008-04-25 01:59:09 +0000591 .. method:: max_mag(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000592
Benjamin Petersone41251e2008-04-25 01:59:09 +0000593 Similar to the :meth:`max` method, but the comparison is done using the
594 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000595
Benjamin Petersone41251e2008-04-25 01:59:09 +0000596 .. method:: min(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000597
Benjamin Petersone41251e2008-04-25 01:59:09 +0000598 Like ``min(self, other)`` except that the context rounding rule is applied
599 before returning and that :const:`NaN` values are either signaled or
600 ignored (depending on the context and whether they are signaling or
601 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000602
Benjamin Petersone41251e2008-04-25 01:59:09 +0000603 .. method:: min_mag(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000604
Benjamin Petersone41251e2008-04-25 01:59:09 +0000605 Similar to the :meth:`min` method, but the comparison is done using the
606 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000607
Benjamin Petersone41251e2008-04-25 01:59:09 +0000608 .. method:: next_minus([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000609
Benjamin Petersone41251e2008-04-25 01:59:09 +0000610 Return the largest number representable in the given context (or in the
611 current thread's context if no context is given) that is smaller than the
612 given operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000613
Benjamin Petersone41251e2008-04-25 01:59:09 +0000614 .. method:: next_plus([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000615
Benjamin Petersone41251e2008-04-25 01:59:09 +0000616 Return the smallest number representable in the given context (or in the
617 current thread's context if no context is given) that is larger than the
618 given operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000619
Benjamin Petersone41251e2008-04-25 01:59:09 +0000620 .. method:: next_toward(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000621
Benjamin Petersone41251e2008-04-25 01:59:09 +0000622 If the two operands are unequal, return the number closest to the first
623 operand in the direction of the second operand. If both operands are
624 numerically equal, return a copy of the first operand with the sign set to
625 be the same as the sign of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000626
Benjamin Petersone41251e2008-04-25 01:59:09 +0000627 .. method:: normalize([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000628
Benjamin Petersone41251e2008-04-25 01:59:09 +0000629 Normalize the number by stripping the rightmost trailing zeros and
630 converting any result equal to :const:`Decimal('0')` to
631 :const:`Decimal('0e0')`. Used for producing canonical values for members
632 of an equivalence class. For example, ``Decimal('32.100')`` and
633 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
634 ``Decimal('32.1')``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000635
Benjamin Petersone41251e2008-04-25 01:59:09 +0000636 .. method:: number_class([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000637
Benjamin Petersone41251e2008-04-25 01:59:09 +0000638 Return a string describing the *class* of the operand. The returned value
639 is one of the following ten strings.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000640
Benjamin Petersone41251e2008-04-25 01:59:09 +0000641 * ``"-Infinity"``, indicating that the operand is negative infinity.
642 * ``"-Normal"``, indicating that the operand is a negative normal number.
643 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
644 * ``"-Zero"``, indicating that the operand is a negative zero.
645 * ``"+Zero"``, indicating that the operand is a positive zero.
646 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
647 * ``"+Normal"``, indicating that the operand is a positive normal number.
648 * ``"+Infinity"``, indicating that the operand is positive infinity.
649 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
650 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000651
Benjamin Petersone41251e2008-04-25 01:59:09 +0000652 .. method:: quantize(exp[, rounding[, context[, watchexp]]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000653
Benjamin Petersone41251e2008-04-25 01:59:09 +0000654 Return a value equal to the first operand after rounding and having the
655 exponent of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000656
Benjamin Petersone41251e2008-04-25 01:59:09 +0000657 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
658 Decimal('1.414')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000659
Benjamin Petersone41251e2008-04-25 01:59:09 +0000660 Unlike other operations, if the length of the coefficient after the
661 quantize operation would be greater than precision, then an
662 :const:`InvalidOperation` is signaled. This guarantees that, unless there
663 is an error condition, the quantized exponent is always equal to that of
664 the right-hand operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000665
Benjamin Petersone41251e2008-04-25 01:59:09 +0000666 Also unlike other operations, quantize never signals Underflow, even if
667 the result is subnormal and inexact.
Georg Brandl116aa622007-08-15 14:28:22 +0000668
Benjamin Petersone41251e2008-04-25 01:59:09 +0000669 If the exponent of the second operand is larger than that of the first
670 then rounding may be necessary. In this case, the rounding mode is
671 determined by the ``rounding`` argument if given, else by the given
672 ``context`` argument; if neither argument is given the rounding mode of
673 the current thread's context is used.
Georg Brandl116aa622007-08-15 14:28:22 +0000674
Benjamin Petersone41251e2008-04-25 01:59:09 +0000675 If *watchexp* is set (default), then an error is returned whenever the
676 resulting exponent is greater than :attr:`Emax` or less than
677 :attr:`Etiny`.
Georg Brandl116aa622007-08-15 14:28:22 +0000678
Benjamin Petersone41251e2008-04-25 01:59:09 +0000679 .. method:: radix()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000680
Benjamin Petersone41251e2008-04-25 01:59:09 +0000681 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
682 class does all its arithmetic. Included for compatibility with the
683 specification.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000684
Benjamin Petersone41251e2008-04-25 01:59:09 +0000685 .. method:: remainder_near(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000686
Benjamin Petersone41251e2008-04-25 01:59:09 +0000687 Compute the modulo as either a positive or negative value depending on
688 which is closest to zero. For instance, ``Decimal(10).remainder_near(6)``
689 returns ``Decimal('-2')`` which is closer to zero than ``Decimal('4')``.
Georg Brandl116aa622007-08-15 14:28:22 +0000690
Benjamin Petersone41251e2008-04-25 01:59:09 +0000691 If both are equally close, the one chosen will have the same sign as
692 *self*.
Georg Brandl116aa622007-08-15 14:28:22 +0000693
Benjamin Petersone41251e2008-04-25 01:59:09 +0000694 .. method:: rotate(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000695
Benjamin Petersone41251e2008-04-25 01:59:09 +0000696 Return the result of rotating the digits of the first operand by an amount
697 specified by the second operand. The second operand must be an integer in
698 the range -precision through precision. The absolute value of the second
699 operand gives the number of places to rotate. If the second operand is
700 positive then rotation is to the left; otherwise rotation is to the right.
701 The coefficient of the first operand is padded on the left with zeros to
702 length precision if necessary. The sign and exponent of the first operand
703 are unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000704
Benjamin Petersone41251e2008-04-25 01:59:09 +0000705 .. method:: same_quantum(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000706
Benjamin Petersone41251e2008-04-25 01:59:09 +0000707 Test whether self and other have the same exponent or whether both are
708 :const:`NaN`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000709
Benjamin Petersone41251e2008-04-25 01:59:09 +0000710 .. method:: scaleb(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000711
Benjamin Petersone41251e2008-04-25 01:59:09 +0000712 Return the first operand with exponent adjusted by the second.
713 Equivalently, return the first operand multiplied by ``10**other``. The
714 second operand must be an integer.
Georg Brandl116aa622007-08-15 14:28:22 +0000715
Benjamin Petersone41251e2008-04-25 01:59:09 +0000716 .. method:: shift(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000717
Benjamin Petersone41251e2008-04-25 01:59:09 +0000718 Return the result of shifting the digits of the first operand by an amount
719 specified by the second operand. The second operand must be an integer in
720 the range -precision through precision. The absolute value of the second
721 operand gives the number of places to shift. If the second operand is
722 positive then the shift is to the left; otherwise the shift is to the
723 right. Digits shifted into the coefficient are zeros. The sign and
724 exponent of the first operand are unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +0000725
Benjamin Petersone41251e2008-04-25 01:59:09 +0000726 .. method:: sqrt([context])
Georg Brandl116aa622007-08-15 14:28:22 +0000727
Benjamin Petersone41251e2008-04-25 01:59:09 +0000728 Return the square root of the argument to full precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000729
Georg Brandl116aa622007-08-15 14:28:22 +0000730
Benjamin Petersone41251e2008-04-25 01:59:09 +0000731 .. method:: to_eng_string([context])
Georg Brandl116aa622007-08-15 14:28:22 +0000732
Benjamin Petersone41251e2008-04-25 01:59:09 +0000733 Convert to an engineering-type string.
Georg Brandl116aa622007-08-15 14:28:22 +0000734
Benjamin Petersone41251e2008-04-25 01:59:09 +0000735 Engineering notation has an exponent which is a multiple of 3, so there
736 are up to 3 digits left of the decimal place. For example, converts
737 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000738
Benjamin Petersone41251e2008-04-25 01:59:09 +0000739 .. method:: to_integral([rounding[, context]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000740
Benjamin Petersone41251e2008-04-25 01:59:09 +0000741 Identical to the :meth:`to_integral_value` method. The ``to_integral``
742 name has been kept for compatibility with older versions.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000743
Benjamin Petersone41251e2008-04-25 01:59:09 +0000744 .. method:: to_integral_exact([rounding[, context]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000745
Benjamin Petersone41251e2008-04-25 01:59:09 +0000746 Round to the nearest integer, signaling :const:`Inexact` or
747 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
748 determined by the ``rounding`` parameter if given, else by the given
749 ``context``. If neither parameter is given then the rounding mode of the
750 current context is used.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000751
Benjamin Petersone41251e2008-04-25 01:59:09 +0000752 .. method:: to_integral_value([rounding[, context]])
Georg Brandl116aa622007-08-15 14:28:22 +0000753
Benjamin Petersone41251e2008-04-25 01:59:09 +0000754 Round to the nearest integer without signaling :const:`Inexact` or
755 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
756 rounding method in either the supplied *context* or the current context.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000757
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000758
759.. _logical_operands_label:
760
761Logical operands
762^^^^^^^^^^^^^^^^
763
764The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
765and :meth:`logical_xor` methods expect their arguments to be *logical
766operands*. A *logical operand* is a :class:`Decimal` instance whose
767exponent and sign are both zero, and whose digits are all either
768:const:`0` or :const:`1`.
769
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000770.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000771
772
773.. _decimal-context:
774
775Context objects
776---------------
777
778Contexts are environments for arithmetic operations. They govern precision, set
779rules for rounding, determine which signals are treated as exceptions, and limit
780the range for exponents.
781
782Each thread has its own current context which is accessed or changed using the
783:func:`getcontext` and :func:`setcontext` functions:
784
785
786.. function:: getcontext()
787
788 Return the current context for the active thread.
789
790
791.. function:: setcontext(c)
792
793 Set the current context for the active thread to *c*.
794
Georg Brandle6bcc912008-05-12 18:05:20 +0000795You can also use the :keyword:`with` statement and the :func:`localcontext`
796function to temporarily change the active context.
Georg Brandl116aa622007-08-15 14:28:22 +0000797
798.. function:: localcontext([c])
799
800 Return a context manager that will set the current context for the active thread
801 to a copy of *c* on entry to the with-statement and restore the previous context
802 when exiting the with-statement. If no context is specified, a copy of the
803 current context is used.
804
Georg Brandl116aa622007-08-15 14:28:22 +0000805 For example, the following code sets the current decimal precision to 42 places,
806 performs a calculation, and then automatically restores the previous context::
807
Georg Brandl116aa622007-08-15 14:28:22 +0000808 from decimal import localcontext
809
810 with localcontext() as ctx:
811 ctx.prec = 42 # Perform a high precision calculation
812 s = calculate_something()
813 s = +s # Round the final result back to the default precision
814
815New contexts can also be created using the :class:`Context` constructor
816described below. In addition, the module provides three pre-made contexts:
817
818
819.. class:: BasicContext
820
821 This is a standard context defined by the General Decimal Arithmetic
822 Specification. Precision is set to nine. Rounding is set to
823 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
824 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
825 :const:`Subnormal`.
826
827 Because many of the traps are enabled, this context is useful for debugging.
828
829
830.. class:: ExtendedContext
831
832 This is a standard context defined by the General Decimal Arithmetic
833 Specification. Precision is set to nine. Rounding is set to
834 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
835 exceptions are not raised during computations).
836
Christian Heimes3feef612008-02-11 06:19:17 +0000837 Because the traps are disabled, this context is useful for applications that
Georg Brandl116aa622007-08-15 14:28:22 +0000838 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
839 raising exceptions. This allows an application to complete a run in the
840 presence of conditions that would otherwise halt the program.
841
842
843.. class:: DefaultContext
844
845 This context is used by the :class:`Context` constructor as a prototype for new
846 contexts. Changing a field (such a precision) has the effect of changing the
847 default for new contexts creating by the :class:`Context` constructor.
848
849 This context is most useful in multi-threaded environments. Changing one of the
850 fields before threads are started has the effect of setting system-wide
851 defaults. Changing the fields after threads have started is not recommended as
852 it would require thread synchronization to prevent race conditions.
853
854 In single threaded environments, it is preferable to not use this context at
855 all. Instead, simply create contexts explicitly as described below.
856
857 The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps
858 for Overflow, InvalidOperation, and DivisionByZero.
859
860In addition to the three supplied contexts, new contexts can be created with the
861:class:`Context` constructor.
862
863
864.. class:: Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)
865
866 Creates a new context. If a field is not specified or is :const:`None`, the
867 default values are copied from the :const:`DefaultContext`. If the *flags*
868 field is not specified or is :const:`None`, all flags are cleared.
869
870 The *prec* field is a positive integer that sets the precision for arithmetic
871 operations in the context.
872
873 The *rounding* option is one of:
874
875 * :const:`ROUND_CEILING` (towards :const:`Infinity`),
876 * :const:`ROUND_DOWN` (towards zero),
877 * :const:`ROUND_FLOOR` (towards :const:`-Infinity`),
878 * :const:`ROUND_HALF_DOWN` (to nearest with ties going towards zero),
879 * :const:`ROUND_HALF_EVEN` (to nearest with ties going to nearest even integer),
880 * :const:`ROUND_HALF_UP` (to nearest with ties going away from zero), or
881 * :const:`ROUND_UP` (away from zero).
Georg Brandl48310cd2009-01-03 21:18:54 +0000882 * :const:`ROUND_05UP` (away from zero if last digit after rounding towards zero
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000883 would have been 0 or 5; otherwise towards zero)
Georg Brandl116aa622007-08-15 14:28:22 +0000884
885 The *traps* and *flags* fields list any signals to be set. Generally, new
886 contexts should only set traps and leave the flags clear.
887
888 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
889 for exponents.
890
891 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
892 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
893 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
894
Georg Brandl116aa622007-08-15 14:28:22 +0000895
Benjamin Petersone41251e2008-04-25 01:59:09 +0000896 The :class:`Context` class defines several general purpose methods as well as
897 a large number of methods for doing arithmetic directly in a given context.
898 In addition, for each of the :class:`Decimal` methods described above (with
899 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
900 a corresponding :class:`Context` method. For example, ``C.exp(x)`` is
901 equivalent to ``x.exp(context=C)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000902
903
Benjamin Petersone41251e2008-04-25 01:59:09 +0000904 .. method:: clear_flags()
Georg Brandl116aa622007-08-15 14:28:22 +0000905
Benjamin Petersone41251e2008-04-25 01:59:09 +0000906 Resets all of the flags to :const:`0`.
Georg Brandl116aa622007-08-15 14:28:22 +0000907
Benjamin Petersone41251e2008-04-25 01:59:09 +0000908 .. method:: copy()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000909
Benjamin Petersone41251e2008-04-25 01:59:09 +0000910 Return a duplicate of the context.
Georg Brandl116aa622007-08-15 14:28:22 +0000911
Benjamin Petersone41251e2008-04-25 01:59:09 +0000912 .. method:: copy_decimal(num)
Georg Brandl116aa622007-08-15 14:28:22 +0000913
Benjamin Petersone41251e2008-04-25 01:59:09 +0000914 Return a copy of the Decimal instance num.
Georg Brandl116aa622007-08-15 14:28:22 +0000915
Benjamin Petersone41251e2008-04-25 01:59:09 +0000916 .. method:: create_decimal(num)
Christian Heimesfe337bf2008-03-23 21:54:12 +0000917
Benjamin Petersone41251e2008-04-25 01:59:09 +0000918 Creates a new Decimal instance from *num* but using *self* as
919 context. Unlike the :class:`Decimal` constructor, the context precision,
920 rounding method, flags, and traps are applied to the conversion.
Georg Brandl116aa622007-08-15 14:28:22 +0000921
Benjamin Petersone41251e2008-04-25 01:59:09 +0000922 This is useful because constants are often given to a greater precision
923 than is needed by the application. Another benefit is that rounding
924 immediately eliminates unintended effects from digits beyond the current
925 precision. In the following example, using unrounded inputs means that
926 adding zero to a sum can change the result:
Georg Brandl116aa622007-08-15 14:28:22 +0000927
Benjamin Petersone41251e2008-04-25 01:59:09 +0000928 .. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +0000929
Benjamin Petersone41251e2008-04-25 01:59:09 +0000930 >>> getcontext().prec = 3
931 >>> Decimal('3.4445') + Decimal('1.0023')
932 Decimal('4.45')
933 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
934 Decimal('4.44')
Georg Brandl116aa622007-08-15 14:28:22 +0000935
Benjamin Petersone41251e2008-04-25 01:59:09 +0000936 This method implements the to-number operation of the IBM specification.
937 If the argument is a string, no leading or trailing whitespace is
938 permitted.
939
Georg Brandl45f53372009-01-03 21:15:20 +0000940 .. method:: create_decimal_from_float(f)
Raymond Hettinger771ed762009-01-03 19:20:32 +0000941
942 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandl45f53372009-01-03 21:15:20 +0000943 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettinger771ed762009-01-03 19:20:32 +0000944 the context precision, rounding method, flags, and traps are applied to
945 the conversion.
946
947 .. doctest::
948
Georg Brandl45f53372009-01-03 21:15:20 +0000949 >>> context = Context(prec=5, rounding=ROUND_DOWN)
950 >>> context.create_decimal_from_float(math.pi)
951 Decimal('3.1415')
952 >>> context = Context(prec=5, traps=[Inexact])
953 >>> context.create_decimal_from_float(math.pi)
954 Traceback (most recent call last):
955 ...
956 decimal.Inexact: None
Raymond Hettinger771ed762009-01-03 19:20:32 +0000957
Georg Brandl45f53372009-01-03 21:15:20 +0000958 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +0000959
Benjamin Petersone41251e2008-04-25 01:59:09 +0000960 .. method:: Etiny()
961
962 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
963 value for subnormal results. When underflow occurs, the exponent is set
964 to :const:`Etiny`.
Georg Brandl116aa622007-08-15 14:28:22 +0000965
966
Benjamin Petersone41251e2008-04-25 01:59:09 +0000967 .. method:: Etop()
Georg Brandl116aa622007-08-15 14:28:22 +0000968
Benjamin Petersone41251e2008-04-25 01:59:09 +0000969 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl116aa622007-08-15 14:28:22 +0000970
Benjamin Petersone41251e2008-04-25 01:59:09 +0000971 The usual approach to working with decimals is to create :class:`Decimal`
972 instances and then apply arithmetic operations which take place within the
973 current context for the active thread. An alternative approach is to use
974 context methods for calculating within a specific context. The methods are
975 similar to those for the :class:`Decimal` class and are only briefly
976 recounted here.
Georg Brandl116aa622007-08-15 14:28:22 +0000977
978
Benjamin Petersone41251e2008-04-25 01:59:09 +0000979 .. method:: abs(x)
Georg Brandl116aa622007-08-15 14:28:22 +0000980
Benjamin Petersone41251e2008-04-25 01:59:09 +0000981 Returns the absolute value of *x*.
Georg Brandl116aa622007-08-15 14:28:22 +0000982
983
Benjamin Petersone41251e2008-04-25 01:59:09 +0000984 .. method:: add(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +0000985
Benjamin Petersone41251e2008-04-25 01:59:09 +0000986 Return the sum of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +0000987
988
Facundo Batista789bdf02008-06-21 17:29:41 +0000989 .. method:: canonical(x)
990
991 Returns the same Decimal object *x*.
992
993
994 .. method:: compare(x, y)
995
996 Compares *x* and *y* numerically.
997
998
999 .. method:: compare_signal(x, y)
1000
1001 Compares the values of the two operands numerically.
1002
1003
1004 .. method:: compare_total(x, y)
1005
1006 Compares two operands using their abstract representation.
1007
1008
1009 .. method:: compare_total_mag(x, y)
1010
1011 Compares two operands using their abstract representation, ignoring sign.
1012
1013
1014 .. method:: copy_abs(x)
1015
1016 Returns a copy of *x* with the sign set to 0.
1017
1018
1019 .. method:: copy_negate(x)
1020
1021 Returns a copy of *x* with the sign inverted.
1022
1023
1024 .. method:: copy_sign(x, y)
1025
1026 Copies the sign from *y* to *x*.
1027
1028
Benjamin Petersone41251e2008-04-25 01:59:09 +00001029 .. method:: divide(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001030
Benjamin Petersone41251e2008-04-25 01:59:09 +00001031 Return *x* divided by *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001032
1033
Benjamin Petersone41251e2008-04-25 01:59:09 +00001034 .. method:: divide_int(x, y)
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001035
Benjamin Petersone41251e2008-04-25 01:59:09 +00001036 Return *x* divided by *y*, truncated to an integer.
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001037
1038
Benjamin Petersone41251e2008-04-25 01:59:09 +00001039 .. method:: divmod(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001040
Benjamin Petersone41251e2008-04-25 01:59:09 +00001041 Divides two numbers and returns the integer part of the result.
Georg Brandl116aa622007-08-15 14:28:22 +00001042
1043
Facundo Batista789bdf02008-06-21 17:29:41 +00001044 .. method:: exp(x)
1045
1046 Returns `e ** x`.
1047
1048
1049 .. method:: fma(x, y, z)
1050
1051 Returns *x* multiplied by *y*, plus *z*.
1052
1053
1054 .. method:: is_canonical(x)
1055
1056 Returns True if *x* is canonical; otherwise returns False.
1057
1058
1059 .. method:: is_finite(x)
1060
1061 Returns True if *x* is finite; otherwise returns False.
1062
1063
1064 .. method:: is_infinite(x)
1065
1066 Returns True if *x* is infinite; otherwise returns False.
1067
1068
1069 .. method:: is_nan(x)
1070
1071 Returns True if *x* is a qNaN or sNaN; otherwise returns False.
1072
1073
1074 .. method:: is_normal(x)
1075
1076 Returns True if *x* is a normal number; otherwise returns False.
1077
1078
1079 .. method:: is_qnan(x)
1080
1081 Returns True if *x* is a quiet NaN; otherwise returns False.
1082
1083
1084 .. method:: is_signed(x)
1085
1086 Returns True if *x* is negative; otherwise returns False.
1087
1088
1089 .. method:: is_snan(x)
1090
1091 Returns True if *x* is a signaling NaN; otherwise returns False.
1092
1093
1094 .. method:: is_subnormal(x)
1095
1096 Returns True if *x* is subnormal; otherwise returns False.
1097
1098
1099 .. method:: is_zero(x)
1100
1101 Returns True if *x* is a zero; otherwise returns False.
1102
1103
1104 .. method:: ln(x)
1105
1106 Returns the natural (base e) logarithm of *x*.
1107
1108
1109 .. method:: log10(x)
1110
1111 Returns the base 10 logarithm of *x*.
1112
1113
1114 .. method:: logb(x)
1115
1116 Returns the exponent of the magnitude of the operand's MSD.
1117
1118
1119 .. method:: logical_and(x, y)
1120
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001121 Applies the logical operation *and* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001122
1123
1124 .. method:: logical_invert(x)
1125
1126 Invert all the digits in *x*.
1127
1128
1129 .. method:: logical_or(x, y)
1130
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001131 Applies the logical operation *or* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001132
1133
1134 .. method:: logical_xor(x, y)
1135
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001136 Applies the logical operation *xor* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001137
1138
1139 .. method:: max(x, y)
1140
1141 Compares two values numerically and returns the maximum.
1142
1143
1144 .. method:: max_mag(x, y)
1145
1146 Compares the values numerically with their sign ignored.
1147
1148
1149 .. method:: min(x, y)
1150
1151 Compares two values numerically and returns the minimum.
1152
1153
1154 .. method:: min_mag(x, y)
1155
1156 Compares the values numerically with their sign ignored.
1157
1158
Benjamin Petersone41251e2008-04-25 01:59:09 +00001159 .. method:: minus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001160
Benjamin Petersone41251e2008-04-25 01:59:09 +00001161 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl116aa622007-08-15 14:28:22 +00001162
1163
Benjamin Petersone41251e2008-04-25 01:59:09 +00001164 .. method:: multiply(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001165
Benjamin Petersone41251e2008-04-25 01:59:09 +00001166 Return the product of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001167
1168
Facundo Batista789bdf02008-06-21 17:29:41 +00001169 .. method:: next_minus(x)
1170
1171 Returns the largest representable number smaller than *x*.
1172
1173
1174 .. method:: next_plus(x)
1175
1176 Returns the smallest representable number larger than *x*.
1177
1178
1179 .. method:: next_toward(x, y)
1180
1181 Returns the number closest to *x*, in direction towards *y*.
1182
1183
1184 .. method:: normalize(x)
1185
1186 Reduces *x* to its simplest form.
1187
1188
1189 .. method:: number_class(x)
1190
1191 Returns an indication of the class of *x*.
1192
1193
Benjamin Petersone41251e2008-04-25 01:59:09 +00001194 .. method:: plus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001195
Benjamin Petersone41251e2008-04-25 01:59:09 +00001196 Plus corresponds to the unary prefix plus operator in Python. This
1197 operation applies the context precision and rounding, so it is *not* an
1198 identity operation.
Georg Brandl116aa622007-08-15 14:28:22 +00001199
1200
Benjamin Petersone41251e2008-04-25 01:59:09 +00001201 .. method:: power(x, y[, modulo])
Georg Brandl116aa622007-08-15 14:28:22 +00001202
Benjamin Petersone41251e2008-04-25 01:59:09 +00001203 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl116aa622007-08-15 14:28:22 +00001204
Benjamin Petersone41251e2008-04-25 01:59:09 +00001205 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1206 must be integral. The result will be inexact unless ``y`` is integral and
1207 the result is finite and can be expressed exactly in 'precision' digits.
1208 The result should always be correctly rounded, using the rounding mode of
1209 the current thread's context.
Georg Brandl116aa622007-08-15 14:28:22 +00001210
Benjamin Petersone41251e2008-04-25 01:59:09 +00001211 With three arguments, compute ``(x**y) % modulo``. For the three argument
1212 form, the following restrictions on the arguments hold:
Georg Brandl116aa622007-08-15 14:28:22 +00001213
Benjamin Petersone41251e2008-04-25 01:59:09 +00001214 - all three arguments must be integral
1215 - ``y`` must be nonnegative
1216 - at least one of ``x`` or ``y`` must be nonzero
1217 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl116aa622007-08-15 14:28:22 +00001218
Benjamin Petersone41251e2008-04-25 01:59:09 +00001219 The result of ``Context.power(x, y, modulo)`` is identical to the result
1220 that would be obtained by computing ``(x**y) % modulo`` with unbounded
1221 precision, but is computed more efficiently. It is always exact.
Georg Brandl116aa622007-08-15 14:28:22 +00001222
Facundo Batista789bdf02008-06-21 17:29:41 +00001223
1224 .. method:: quantize(x, y)
1225
1226 Returns a value equal to *x* (rounded), having the exponent of *y*.
1227
1228
1229 .. method:: radix()
1230
1231 Just returns 10, as this is Decimal, :)
1232
1233
Benjamin Petersone41251e2008-04-25 01:59:09 +00001234 .. method:: remainder(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001235
Benjamin Petersone41251e2008-04-25 01:59:09 +00001236 Returns the remainder from integer division.
Georg Brandl116aa622007-08-15 14:28:22 +00001237
Benjamin Petersone41251e2008-04-25 01:59:09 +00001238 The sign of the result, if non-zero, is the same as that of the original
1239 dividend.
Georg Brandl116aa622007-08-15 14:28:22 +00001240
Benjamin Petersondcf97b92008-07-02 17:30:14 +00001241
Facundo Batista789bdf02008-06-21 17:29:41 +00001242 .. method:: remainder_near(x, y)
1243
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001244 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1245 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista789bdf02008-06-21 17:29:41 +00001246
1247
1248 .. method:: rotate(x, y)
1249
1250 Returns a rotated copy of *x*, *y* times.
1251
1252
1253 .. method:: same_quantum(x, y)
1254
1255 Returns True if the two operands have the same exponent.
1256
1257
1258 .. method:: scaleb (x, y)
1259
1260 Returns the first operand after adding the second value its exp.
1261
1262
1263 .. method:: shift(x, y)
1264
1265 Returns a shifted copy of *x*, *y* times.
1266
1267
1268 .. method:: sqrt(x)
1269
1270 Square root of a non-negative number to context precision.
1271
1272
Benjamin Petersone41251e2008-04-25 01:59:09 +00001273 .. method:: subtract(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001274
Benjamin Petersone41251e2008-04-25 01:59:09 +00001275 Return the difference between *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001276
Facundo Batista789bdf02008-06-21 17:29:41 +00001277
1278 .. method:: to_eng_string(x)
1279
1280 Converts a number to a string, using scientific notation.
1281
1282
1283 .. method:: to_integral_exact(x)
1284
1285 Rounds to an integer.
1286
1287
Benjamin Petersone41251e2008-04-25 01:59:09 +00001288 .. method:: to_sci_string(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001289
Benjamin Petersone41251e2008-04-25 01:59:09 +00001290 Converts a number to a string using scientific notation.
Georg Brandl116aa622007-08-15 14:28:22 +00001291
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001292.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001293
1294
1295.. _decimal-signals:
1296
1297Signals
1298-------
1299
1300Signals represent conditions that arise during computation. Each corresponds to
1301one context flag and one context trap enabler.
1302
Raymond Hettinger86173da2008-02-01 20:38:12 +00001303The context flag is set whenever the condition is encountered. After the
Georg Brandl116aa622007-08-15 14:28:22 +00001304computation, flags may be checked for informational purposes (for instance, to
1305determine whether a computation was exact). After checking the flags, be sure to
1306clear all flags before starting the next computation.
1307
1308If the context's trap enabler is set for the signal, then the condition causes a
1309Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1310is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1311condition.
1312
1313
1314.. class:: Clamped
1315
1316 Altered an exponent to fit representation constraints.
1317
1318 Typically, clamping occurs when an exponent falls outside the context's
1319 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001320 fit by adding zeros to the coefficient.
Georg Brandl116aa622007-08-15 14:28:22 +00001321
1322
1323.. class:: DecimalException
1324
1325 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1326
1327
1328.. class:: DivisionByZero
1329
1330 Signals the division of a non-infinite number by zero.
1331
1332 Can occur with division, modulo division, or when raising a number to a negative
1333 power. If this signal is not trapped, returns :const:`Infinity` or
1334 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1335
1336
1337.. class:: Inexact
1338
1339 Indicates that rounding occurred and the result is not exact.
1340
1341 Signals when non-zero digits were discarded during rounding. The rounded result
1342 is returned. The signal flag or trap is used to detect when results are
1343 inexact.
1344
1345
1346.. class:: InvalidOperation
1347
1348 An invalid operation was performed.
1349
1350 Indicates that an operation was requested that does not make sense. If not
1351 trapped, returns :const:`NaN`. Possible causes include::
1352
1353 Infinity - Infinity
1354 0 * Infinity
1355 Infinity / Infinity
1356 x % 0
1357 Infinity % x
1358 x._rescale( non-integer )
1359 sqrt(-x) and x > 0
1360 0 ** 0
1361 x ** (non-integer)
Georg Brandl48310cd2009-01-03 21:18:54 +00001362 x ** Infinity
Georg Brandl116aa622007-08-15 14:28:22 +00001363
1364
1365.. class:: Overflow
1366
1367 Numerical overflow.
1368
Benjamin Petersone41251e2008-04-25 01:59:09 +00001369 Indicates the exponent is larger than :attr:`Emax` after rounding has
1370 occurred. If not trapped, the result depends on the rounding mode, either
1371 pulling inward to the largest representable finite number or rounding outward
1372 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1373 are also signaled.
Georg Brandl116aa622007-08-15 14:28:22 +00001374
1375
1376.. class:: Rounded
1377
1378 Rounding occurred though possibly no information was lost.
1379
Benjamin Petersone41251e2008-04-25 01:59:09 +00001380 Signaled whenever rounding discards digits; even if those digits are zero
1381 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1382 the result unchanged. This signal is used to detect loss of significant
1383 digits.
Georg Brandl116aa622007-08-15 14:28:22 +00001384
1385
1386.. class:: Subnormal
1387
1388 Exponent was lower than :attr:`Emin` prior to rounding.
1389
Benjamin Petersone41251e2008-04-25 01:59:09 +00001390 Occurs when an operation result is subnormal (the exponent is too small). If
1391 not trapped, returns the result unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +00001392
1393
1394.. class:: Underflow
1395
1396 Numerical underflow with result rounded to zero.
1397
1398 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1399 and :class:`Subnormal` are also signaled.
1400
1401The following table summarizes the hierarchy of signals::
1402
1403 exceptions.ArithmeticError(exceptions.Exception)
1404 DecimalException
1405 Clamped
1406 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1407 Inexact
1408 Overflow(Inexact, Rounded)
1409 Underflow(Inexact, Rounded, Subnormal)
1410 InvalidOperation
1411 Rounded
1412 Subnormal
1413
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001414.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001415
1416
1417.. _decimal-notes:
1418
1419Floating Point Notes
1420--------------------
1421
1422
1423Mitigating round-off error with increased precision
1424^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1425
1426The use of decimal floating point eliminates decimal representation error
1427(making it possible to represent :const:`0.1` exactly); however, some operations
1428can still incur round-off error when non-zero digits exceed the fixed precision.
1429
1430The effects of round-off error can be amplified by the addition or subtraction
1431of nearly offsetting quantities resulting in loss of significance. Knuth
1432provides two instructive examples where rounded floating point arithmetic with
1433insufficient precision causes the breakdown of the associative and distributive
Christian Heimesfe337bf2008-03-23 21:54:12 +00001434properties of addition:
1435
1436.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001437
1438 # Examples from Seminumerical Algorithms, Section 4.2.2.
1439 >>> from decimal import Decimal, getcontext
1440 >>> getcontext().prec = 8
1441
1442 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1443 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001444 Decimal('9.5111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001445 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001446 Decimal('10')
Georg Brandl116aa622007-08-15 14:28:22 +00001447
1448 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1449 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001450 Decimal('0.01')
Georg Brandl116aa622007-08-15 14:28:22 +00001451 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001452 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001453
1454The :mod:`decimal` module makes it possible to restore the identities by
Christian Heimesfe337bf2008-03-23 21:54:12 +00001455expanding the precision sufficiently to avoid loss of significance:
1456
1457.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001458
1459 >>> getcontext().prec = 20
1460 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1461 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001462 Decimal('9.51111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001463 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001464 Decimal('9.51111111')
Georg Brandl48310cd2009-01-03 21:18:54 +00001465 >>>
Georg Brandl116aa622007-08-15 14:28:22 +00001466 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1467 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001468 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001469 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001470 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001471
1472
1473Special values
1474^^^^^^^^^^^^^^
1475
1476The number system for the :mod:`decimal` module provides special values
1477including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001478and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl116aa622007-08-15 14:28:22 +00001479
1480Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1481they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1482not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1483can result from rounding beyond the limits of the largest representable number.
1484
1485The infinities are signed (affine) and can be used in arithmetic operations
1486where they get treated as very large, indeterminate numbers. For instance,
1487adding a constant to infinity gives another infinite result.
1488
1489Some operations are indeterminate and return :const:`NaN`, or if the
1490:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1491``0/0`` returns :const:`NaN` which means "not a number". This variety of
1492:const:`NaN` is quiet and, once created, will flow through other computations
1493always resulting in another :const:`NaN`. This behavior can be useful for a
1494series of computations that occasionally have missing inputs --- it allows the
1495calculation to proceed while flagging specific results as invalid.
1496
1497A variant is :const:`sNaN` which signals rather than remaining quiet after every
1498operation. This is a useful return value when an invalid result needs to
1499interrupt a calculation for special handling.
1500
Christian Heimes77c02eb2008-02-09 02:18:51 +00001501The behavior of Python's comparison operators can be a little surprising where a
1502:const:`NaN` is involved. A test for equality where one of the operands is a
1503quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1504``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
1505:const:`True`. An attempt to compare two Decimals using any of the ``<``,
1506``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1507if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Christian Heimes3feef612008-02-11 06:19:17 +00001508not trapped. Note that the General Decimal Arithmetic specification does not
Christian Heimes77c02eb2008-02-09 02:18:51 +00001509specify the behavior of direct comparisons; these rules for comparisons
1510involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1511section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
1512and :meth:`compare-signal` methods instead.
1513
Georg Brandl116aa622007-08-15 14:28:22 +00001514The signed zeros can result from calculations that underflow. They keep the sign
1515that would have resulted if the calculation had been carried out to greater
1516precision. Since their magnitude is zero, both positive and negative zeros are
1517treated as equal and their sign is informational.
1518
1519In addition to the two signed zeros which are distinct yet equal, there are
1520various representations of zero with differing precisions yet equivalent in
1521value. This takes a bit of getting used to. For an eye accustomed to
1522normalized floating point representations, it is not immediately obvious that
Christian Heimesfe337bf2008-03-23 21:54:12 +00001523the following calculation returns a value equal to zero:
Georg Brandl116aa622007-08-15 14:28:22 +00001524
1525 >>> 1 / Decimal('Infinity')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001526 Decimal('0E-1000000026')
Georg Brandl116aa622007-08-15 14:28:22 +00001527
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001528.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001529
1530
1531.. _decimal-threads:
1532
1533Working with threads
1534--------------------
1535
1536The :func:`getcontext` function accesses a different :class:`Context` object for
1537each thread. Having separate thread contexts means that threads may make
1538changes (such as ``getcontext.prec=10``) without interfering with other threads.
1539
1540Likewise, the :func:`setcontext` function automatically assigns its target to
1541the current thread.
1542
1543If :func:`setcontext` has not been called before :func:`getcontext`, then
1544:func:`getcontext` will automatically create a new context for use in the
1545current thread.
1546
1547The new context is copied from a prototype context called *DefaultContext*. To
1548control the defaults so that each thread will use the same values throughout the
1549application, directly modify the *DefaultContext* object. This should be done
1550*before* any threads are started so that there won't be a race condition between
1551threads calling :func:`getcontext`. For example::
1552
1553 # Set applicationwide defaults for all threads about to be launched
1554 DefaultContext.prec = 12
1555 DefaultContext.rounding = ROUND_DOWN
1556 DefaultContext.traps = ExtendedContext.traps.copy()
1557 DefaultContext.traps[InvalidOperation] = 1
1558 setcontext(DefaultContext)
1559
1560 # Afterwards, the threads can be started
1561 t1.start()
1562 t2.start()
1563 t3.start()
1564 . . .
1565
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001566.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001567
1568
1569.. _decimal-recipes:
1570
1571Recipes
1572-------
1573
1574Here are a few recipes that serve as utility functions and that demonstrate ways
1575to work with the :class:`Decimal` class::
1576
1577 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1578 pos='', neg='-', trailneg=''):
1579 """Convert Decimal to a money formatted string.
1580
1581 places: required number of places after the decimal point
1582 curr: optional currency symbol before the sign (may be blank)
1583 sep: optional grouping separator (comma, period, space, or blank)
1584 dp: decimal point indicator (comma or period)
1585 only specify as blank when places is zero
1586 pos: optional sign for positive numbers: '+', space or blank
1587 neg: optional sign for negative numbers: '-', '(', space or blank
1588 trailneg:optional trailing minus indicator: '-', ')', space or blank
1589
1590 >>> d = Decimal('-1234567.8901')
1591 >>> moneyfmt(d, curr='$')
1592 '-$1,234,567.89'
1593 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1594 '1.234.568-'
1595 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1596 '($1,234,567.89)'
1597 >>> moneyfmt(Decimal(123456789), sep=' ')
1598 '123 456 789.00'
1599 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Christian Heimesdae2a892008-04-19 00:55:37 +00001600 '<0.02>'
Georg Brandl116aa622007-08-15 14:28:22 +00001601
1602 """
Christian Heimesa156e092008-02-16 07:38:31 +00001603 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandl48310cd2009-01-03 21:18:54 +00001604 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +00001605 result = []
Facundo Batista789bdf02008-06-21 17:29:41 +00001606 digits = list(map(str, digits))
Georg Brandl116aa622007-08-15 14:28:22 +00001607 build, next = result.append, digits.pop
1608 if sign:
1609 build(trailneg)
1610 for i in range(places):
Christian Heimesa156e092008-02-16 07:38:31 +00001611 build(next() if digits else '0')
Georg Brandl116aa622007-08-15 14:28:22 +00001612 build(dp)
Christian Heimesdae2a892008-04-19 00:55:37 +00001613 if not digits:
1614 build('0')
Georg Brandl116aa622007-08-15 14:28:22 +00001615 i = 0
1616 while digits:
1617 build(next())
1618 i += 1
1619 if i == 3 and digits:
1620 i = 0
1621 build(sep)
1622 build(curr)
Christian Heimesa156e092008-02-16 07:38:31 +00001623 build(neg if sign else pos)
1624 return ''.join(reversed(result))
Georg Brandl116aa622007-08-15 14:28:22 +00001625
1626 def pi():
1627 """Compute Pi to the current precision.
1628
Georg Brandl6911e3c2007-09-04 07:15:32 +00001629 >>> print(pi())
Georg Brandl116aa622007-08-15 14:28:22 +00001630 3.141592653589793238462643383
1631
1632 """
1633 getcontext().prec += 2 # extra digits for intermediate steps
1634 three = Decimal(3) # substitute "three=3.0" for regular floats
1635 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1636 while s != lasts:
1637 lasts = s
1638 n, na = n+na, na+8
1639 d, da = d+da, da+32
1640 t = (t * n) / d
1641 s += t
1642 getcontext().prec -= 2
1643 return +s # unary plus applies the new precision
1644
1645 def exp(x):
1646 """Return e raised to the power of x. Result type matches input type.
1647
Georg Brandl6911e3c2007-09-04 07:15:32 +00001648 >>> print(exp(Decimal(1)))
Georg Brandl116aa622007-08-15 14:28:22 +00001649 2.718281828459045235360287471
Georg Brandl6911e3c2007-09-04 07:15:32 +00001650 >>> print(exp(Decimal(2)))
Georg Brandl116aa622007-08-15 14:28:22 +00001651 7.389056098930650227230427461
Georg Brandl6911e3c2007-09-04 07:15:32 +00001652 >>> print(exp(2.0))
Georg Brandl116aa622007-08-15 14:28:22 +00001653 7.38905609893
Georg Brandl6911e3c2007-09-04 07:15:32 +00001654 >>> print(exp(2+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001655 (7.38905609893+0j)
1656
1657 """
1658 getcontext().prec += 2
1659 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1660 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001661 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001662 i += 1
1663 fact *= i
Georg Brandl48310cd2009-01-03 21:18:54 +00001664 num *= x
1665 s += num / fact
1666 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001667 return +s
1668
1669 def cos(x):
1670 """Return the cosine of x as measured in radians.
1671
Georg Brandl6911e3c2007-09-04 07:15:32 +00001672 >>> print(cos(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001673 0.8775825618903727161162815826
Georg Brandl6911e3c2007-09-04 07:15:32 +00001674 >>> print(cos(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001675 0.87758256189
Georg Brandl6911e3c2007-09-04 07:15:32 +00001676 >>> print(cos(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001677 (0.87758256189+0j)
1678
1679 """
1680 getcontext().prec += 2
1681 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1682 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001683 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001684 i += 2
1685 fact *= i * (i-1)
1686 num *= x * x
1687 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001688 s += num / fact * sign
1689 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001690 return +s
1691
1692 def sin(x):
1693 """Return the sine of x as measured in radians.
1694
Georg Brandl6911e3c2007-09-04 07:15:32 +00001695 >>> print(sin(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001696 0.4794255386042030002732879352
Georg Brandl6911e3c2007-09-04 07:15:32 +00001697 >>> print(sin(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001698 0.479425538604
Georg Brandl6911e3c2007-09-04 07:15:32 +00001699 >>> print(sin(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001700 (0.479425538604+0j)
1701
1702 """
1703 getcontext().prec += 2
1704 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1705 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001706 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001707 i += 2
1708 fact *= i * (i-1)
1709 num *= x * x
1710 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001711 s += num / fact * sign
1712 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001713 return +s
1714
1715
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001716.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001717
1718
1719.. _decimal-faq:
1720
1721Decimal FAQ
1722-----------
1723
1724Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1725minimize typing when using the interactive interpreter?
1726
Christian Heimesfe337bf2008-03-23 21:54:12 +00001727A. Some users abbreviate the constructor to just a single letter:
Georg Brandl116aa622007-08-15 14:28:22 +00001728
1729 >>> D = decimal.Decimal
1730 >>> D('1.23') + D('3.45')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001731 Decimal('4.68')
Georg Brandl116aa622007-08-15 14:28:22 +00001732
1733Q. In a fixed-point application with two decimal places, some inputs have many
1734places and need to be rounded. Others are not supposed to have excess digits
1735and need to be validated. What methods should be used?
1736
1737A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Christian Heimesfe337bf2008-03-23 21:54:12 +00001738the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl116aa622007-08-15 14:28:22 +00001739
1740 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1741
1742 >>> # Round to two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001743 >>> Decimal('3.214').quantize(TWOPLACES)
1744 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001745
Georg Brandl48310cd2009-01-03 21:18:54 +00001746 >>> # Validate that a number does not exceed two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001747 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1748 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001749
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001750 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl116aa622007-08-15 14:28:22 +00001751 Traceback (most recent call last):
1752 ...
Benjamin Peterson25c95f12009-05-08 20:42:26 +00001753 Inexact: None
Georg Brandl116aa622007-08-15 14:28:22 +00001754
1755Q. Once I have valid two place inputs, how do I maintain that invariant
1756throughout an application?
1757
Christian Heimesa156e092008-02-16 07:38:31 +00001758A. Some operations like addition, subtraction, and multiplication by an integer
1759will automatically preserve fixed point. Others operations, like division and
1760non-integer multiplication, will change the number of decimal places and need to
Christian Heimesfe337bf2008-03-23 21:54:12 +00001761be followed-up with a :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00001762
1763 >>> a = Decimal('102.72') # Initial fixed-point values
1764 >>> b = Decimal('3.17')
1765 >>> a + b # Addition preserves fixed-point
1766 Decimal('105.89')
1767 >>> a - b
1768 Decimal('99.55')
1769 >>> a * 42 # So does integer multiplication
1770 Decimal('4314.24')
1771 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1772 Decimal('325.62')
1773 >>> (b / a).quantize(TWOPLACES) # And quantize division
1774 Decimal('0.03')
1775
1776In developing fixed-point applications, it is convenient to define functions
Christian Heimesfe337bf2008-03-23 21:54:12 +00001777to handle the :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00001778
1779 >>> def mul(x, y, fp=TWOPLACES):
1780 ... return (x * y).quantize(fp)
1781 >>> def div(x, y, fp=TWOPLACES):
1782 ... return (x / y).quantize(fp)
1783
1784 >>> mul(a, b) # Automatically preserve fixed-point
1785 Decimal('325.62')
1786 >>> div(b, a)
1787 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +00001788
1789Q. There are many ways to express the same value. The numbers :const:`200`,
1790:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
1791various precisions. Is there a way to transform them to a single recognizable
1792canonical value?
1793
1794A. The :meth:`normalize` method maps all equivalent values to a single
Christian Heimesfe337bf2008-03-23 21:54:12 +00001795representative:
Georg Brandl116aa622007-08-15 14:28:22 +00001796
1797 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1798 >>> [v.normalize() for v in values]
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001799 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl116aa622007-08-15 14:28:22 +00001800
1801Q. Some decimal values always print with exponential notation. Is there a way
1802to get a non-exponential representation?
1803
1804A. For some values, exponential notation is the only way to express the number
1805of significant places in the coefficient. For example, expressing
1806:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
1807original's two-place significance.
1808
Christian Heimesa156e092008-02-16 07:38:31 +00001809If an application does not care about tracking significance, it is easy to
Christian Heimesc3f30c42008-02-22 16:37:40 +00001810remove the exponent and trailing zeroes, losing significance, but keeping the
Christian Heimesfe337bf2008-03-23 21:54:12 +00001811value unchanged:
Christian Heimesa156e092008-02-16 07:38:31 +00001812
1813 >>> def remove_exponent(d):
1814 ... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
1815
1816 >>> remove_exponent(Decimal('5E+3'))
1817 Decimal('5000')
1818
Georg Brandl116aa622007-08-15 14:28:22 +00001819Q. Is there a way to convert a regular float to a :class:`Decimal`?
1820
1821A. Yes, all binary floating point numbers can be exactly expressed as a
1822Decimal. An exact conversion may take more precision than intuition would
Christian Heimesfe337bf2008-03-23 21:54:12 +00001823suggest, so we trap :const:`Inexact` to signal a need for more precision:
1824
1825.. testcode::
Georg Brandl116aa622007-08-15 14:28:22 +00001826
Raymond Hettinger66cb7d42008-02-07 20:09:43 +00001827 def float_to_decimal(f):
1828 "Convert a floating point number to a Decimal with no loss of information"
1829 n, d = f.as_integer_ratio()
1830 with localcontext() as ctx:
1831 ctx.traps[Inexact] = True
1832 while True:
1833 try:
1834 return Decimal(n) / Decimal(d)
1835 except Inexact:
1836 ctx.prec += 1
Georg Brandl116aa622007-08-15 14:28:22 +00001837
Christian Heimesfe337bf2008-03-23 21:54:12 +00001838.. doctest::
1839
Raymond Hettinger66cb7d42008-02-07 20:09:43 +00001840 >>> float_to_decimal(math.pi)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001841 Decimal('3.141592653589793115997963468544185161590576171875')
Georg Brandl116aa622007-08-15 14:28:22 +00001842
Raymond Hettinger66cb7d42008-02-07 20:09:43 +00001843Q. Why isn't the :func:`float_to_decimal` routine included in the module?
Georg Brandl116aa622007-08-15 14:28:22 +00001844
1845A. There is some question about whether it is advisable to mix binary and
1846decimal floating point. Also, its use requires some care to avoid the
Christian Heimesfe337bf2008-03-23 21:54:12 +00001847representation issues associated with binary floating point:
Georg Brandl116aa622007-08-15 14:28:22 +00001848
Raymond Hettinger66cb7d42008-02-07 20:09:43 +00001849 >>> float_to_decimal(1.1)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001850 Decimal('1.100000000000000088817841970012523233890533447265625')
Georg Brandl116aa622007-08-15 14:28:22 +00001851
1852Q. Within a complex calculation, how can I make sure that I haven't gotten a
1853spurious result because of insufficient precision or rounding anomalies.
1854
1855A. The decimal module makes it easy to test results. A best practice is to
1856re-run calculations using greater precision and with various rounding modes.
1857Widely differing results indicate insufficient precision, rounding mode issues,
1858ill-conditioned inputs, or a numerically unstable algorithm.
1859
1860Q. I noticed that context precision is applied to the results of operations but
1861not to the inputs. Is there anything to watch out for when mixing values of
1862different precisions?
1863
1864A. Yes. The principle is that all values are considered to be exact and so is
1865the arithmetic on those values. Only the results are rounded. The advantage
1866for inputs is that "what you type is what you get". A disadvantage is that the
Christian Heimesfe337bf2008-03-23 21:54:12 +00001867results can look odd if you forget that the inputs haven't been rounded:
1868
1869.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001870
1871 >>> getcontext().prec = 3
Christian Heimesfe337bf2008-03-23 21:54:12 +00001872 >>> Decimal('3.104') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001873 Decimal('5.21')
Christian Heimesfe337bf2008-03-23 21:54:12 +00001874 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001875 Decimal('5.20')
Georg Brandl116aa622007-08-15 14:28:22 +00001876
1877The solution is either to increase precision or to force rounding of inputs
Christian Heimesfe337bf2008-03-23 21:54:12 +00001878using the unary plus operation:
1879
1880.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001881
1882 >>> getcontext().prec = 3
1883 >>> +Decimal('1.23456789') # unary plus triggers rounding
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001884 Decimal('1.23')
Georg Brandl116aa622007-08-15 14:28:22 +00001885
1886Alternatively, inputs can be rounded upon creation using the
Christian Heimesfe337bf2008-03-23 21:54:12 +00001887:meth:`Context.create_decimal` method:
Georg Brandl116aa622007-08-15 14:28:22 +00001888
1889 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001890 Decimal('1.2345')
Georg Brandl116aa622007-08-15 14:28:22 +00001891