blob: 7e5fd4a8e954e9f781b026b50d94db0e13324db1 [file] [log] [blame]
Tim Peters1221c0a2002-03-23 00:20:15 +00001#include "Python.h"
2
3#ifdef WITH_PYMALLOC
4
Neil Schemenauera35c6882001-02-27 04:45:05 +00005/* An object allocator for Python.
6
7 Here is an introduction to the layers of the Python memory architecture,
8 showing where the object allocator is actually used (layer +2), It is
9 called for every object allocation and deallocation (PyObject_New/Del),
10 unless the object-specific allocators implement a proprietary allocation
11 scheme (ex.: ints use a simple free list). This is also the place where
12 the cyclic garbage collector operates selectively on container objects.
13
14
15 Object-specific allocators
16 _____ ______ ______ ________
17 [ int ] [ dict ] [ list ] ... [ string ] Python core |
18+3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
19 _______________________________ | |
20 [ Python's object allocator ] | |
21+2 | ####### Object memory ####### | <------ Internal buffers ------> |
22 ______________________________________________________________ |
23 [ Python's raw memory allocator (PyMem_ API) ] |
24+1 | <----- Python memory (under PyMem manager's control) ------> | |
25 __________________________________________________________________
26 [ Underlying general-purpose allocator (ex: C library malloc) ]
27 0 | <------ Virtual memory allocated for the python process -------> |
28
29 =========================================================================
30 _______________________________________________________________________
31 [ OS-specific Virtual Memory Manager (VMM) ]
32-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
33 __________________________________ __________________________________
34 [ ] [ ]
35-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
36
37*/
38/*==========================================================================*/
39
40/* A fast, special-purpose memory allocator for small blocks, to be used
41 on top of a general-purpose malloc -- heavily based on previous art. */
42
43/* Vladimir Marangozov -- August 2000 */
44
45/*
46 * "Memory management is where the rubber meets the road -- if we do the wrong
47 * thing at any level, the results will not be good. And if we don't make the
48 * levels work well together, we are in serious trouble." (1)
49 *
50 * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
51 * "Dynamic Storage Allocation: A Survey and Critical Review",
52 * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
53 */
54
55/* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */
Neil Schemenauera35c6882001-02-27 04:45:05 +000056
57/*==========================================================================*/
58
59/*
Neil Schemenauera35c6882001-02-27 04:45:05 +000060 * Allocation strategy abstract:
61 *
62 * For small requests, the allocator sub-allocates <Big> blocks of memory.
63 * Requests greater than 256 bytes are routed to the system's allocator.
Tim Petersce7fb9b2002-03-23 00:28:57 +000064 *
Neil Schemenauera35c6882001-02-27 04:45:05 +000065 * Small requests are grouped in size classes spaced 8 bytes apart, due
66 * to the required valid alignment of the returned address. Requests of
67 * a particular size are serviced from memory pools of 4K (one VMM page).
68 * Pools are fragmented on demand and contain free lists of blocks of one
69 * particular size class. In other words, there is a fixed-size allocator
70 * for each size class. Free pools are shared by the different allocators
71 * thus minimizing the space reserved for a particular size class.
72 *
73 * This allocation strategy is a variant of what is known as "simple
74 * segregated storage based on array of free lists". The main drawback of
75 * simple segregated storage is that we might end up with lot of reserved
76 * memory for the different free lists, which degenerate in time. To avoid
77 * this, we partition each free list in pools and we share dynamically the
78 * reserved space between all free lists. This technique is quite efficient
79 * for memory intensive programs which allocate mainly small-sized blocks.
80 *
81 * For small requests we have the following table:
82 *
83 * Request in bytes Size of allocated block Size class idx
84 * ----------------------------------------------------------------
85 * 1-8 8 0
86 * 9-16 16 1
87 * 17-24 24 2
88 * 25-32 32 3
89 * 33-40 40 4
90 * 41-48 48 5
91 * 49-56 56 6
92 * 57-64 64 7
93 * 65-72 72 8
94 * ... ... ...
95 * 241-248 248 30
96 * 249-256 256 31
Tim Petersce7fb9b2002-03-23 00:28:57 +000097 *
Neil Schemenauera35c6882001-02-27 04:45:05 +000098 * 0, 257 and up: routed to the underlying allocator.
99 */
100
101/*==========================================================================*/
102
103/*
104 * -- Main tunable settings section --
105 */
106
107/*
108 * Alignment of addresses returned to the user. 8-bytes alignment works
109 * on most current architectures (with 32-bit or 64-bit address busses).
110 * The alignment value is also used for grouping small requests in size
111 * classes spaced ALIGNMENT bytes apart.
112 *
113 * You shouldn't change this unless you know what you are doing.
114 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000115#define ALIGNMENT 8 /* must be 2^N */
116#define ALIGNMENT_SHIFT 3
117#define ALIGNMENT_MASK (ALIGNMENT - 1)
118
Tim Peterse70ddf32002-04-05 04:32:29 +0000119/* Return the number of bytes in size class I, as a uint. */
120#define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)
121
Neil Schemenauera35c6882001-02-27 04:45:05 +0000122/*
123 * Max size threshold below which malloc requests are considered to be
124 * small enough in order to use preallocated memory pools. You can tune
125 * this value according to your application behaviour and memory needs.
126 *
127 * The following invariants must hold:
128 * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 256
Tim Petersd97a1c02002-03-30 06:09:22 +0000129 * 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
Neil Schemenauera35c6882001-02-27 04:45:05 +0000130 *
131 * Although not required, for better performance and space efficiency,
132 * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
133 */
Tim Petersd97a1c02002-03-30 06:09:22 +0000134#define SMALL_REQUEST_THRESHOLD 256
Neil Schemenauera35c6882001-02-27 04:45:05 +0000135#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
136
137/*
138 * The system's VMM page size can be obtained on most unices with a
139 * getpagesize() call or deduced from various header files. To make
140 * things simpler, we assume that it is 4K, which is OK for most systems.
141 * It is probably better if this is the native page size, but it doesn't
Martin v. Löwis8c140282002-10-26 15:01:53 +0000142 * have to be. In theory, if SYSTEM_PAGE_SIZE is larger than the native page
143 * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation
144 * violation fault. 4K is apparently OK for all the platforms that python
145 * currently targets.
Neil Schemenauera35c6882001-02-27 04:45:05 +0000146 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000147#define SYSTEM_PAGE_SIZE (4 * 1024)
148#define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1)
149
150/*
151 * Maximum amount of memory managed by the allocator for small requests.
152 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000153#ifdef WITH_MEMORY_LIMITS
154#ifndef SMALL_MEMORY_LIMIT
155#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */
156#endif
157#endif
158
159/*
160 * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
161 * on a page boundary. This is a reserved virtual address space for the
162 * current process (obtained through a malloc call). In no way this means
163 * that the memory arenas will be used entirely. A malloc(<Big>) is usually
164 * an address range reservation for <Big> bytes, unless all pages within this
165 * space are referenced subsequently. So malloc'ing big blocks and not using
166 * them does not mean "wasting memory". It's an addressable range wastage...
167 *
168 * Therefore, allocating arenas with malloc is not optimal, because there is
169 * some address space wastage, but this is the most portable way to request
Tim Petersd97a1c02002-03-30 06:09:22 +0000170 * memory from the system across various platforms.
Neil Schemenauera35c6882001-02-27 04:45:05 +0000171 */
Tim Peters3c83df22002-03-30 07:04:41 +0000172#define ARENA_SIZE (256 << 10) /* 256KB */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000173
174#ifdef WITH_MEMORY_LIMITS
175#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE)
176#endif
177
178/*
179 * Size of the pools used for small blocks. Should be a power of 2,
Tim Petersc2ce91a2002-03-30 21:36:04 +0000180 * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k.
Neil Schemenauera35c6882001-02-27 04:45:05 +0000181 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000182#define POOL_SIZE SYSTEM_PAGE_SIZE /* must be 2^N */
183#define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK
Neil Schemenauera35c6882001-02-27 04:45:05 +0000184
185/*
186 * -- End of tunable settings section --
187 */
188
189/*==========================================================================*/
190
191/*
192 * Locking
193 *
194 * To reduce lock contention, it would probably be better to refine the
195 * crude function locking with per size class locking. I'm not positive
196 * however, whether it's worth switching to such locking policy because
197 * of the performance penalty it might introduce.
198 *
199 * The following macros describe the simplest (should also be the fastest)
200 * lock object on a particular platform and the init/fini/lock/unlock
201 * operations on it. The locks defined here are not expected to be recursive
202 * because it is assumed that they will always be called in the order:
203 * INIT, [LOCK, UNLOCK]*, FINI.
204 */
205
206/*
207 * Python's threads are serialized, so object malloc locking is disabled.
208 */
209#define SIMPLELOCK_DECL(lock) /* simple lock declaration */
210#define SIMPLELOCK_INIT(lock) /* allocate (if needed) and initialize */
211#define SIMPLELOCK_FINI(lock) /* free/destroy an existing lock */
212#define SIMPLELOCK_LOCK(lock) /* acquire released lock */
213#define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */
214
215/*
216 * Basic types
217 * I don't care if these are defined in <sys/types.h> or elsewhere. Axiom.
218 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000219#undef uchar
220#define uchar unsigned char /* assuming == 8 bits */
221
Neil Schemenauera35c6882001-02-27 04:45:05 +0000222#undef uint
223#define uint unsigned int /* assuming >= 16 bits */
224
225#undef ulong
226#define ulong unsigned long /* assuming >= 32 bits */
227
Tim Petersd97a1c02002-03-30 06:09:22 +0000228#undef uptr
229#define uptr Py_uintptr_t
230
Neil Schemenauera35c6882001-02-27 04:45:05 +0000231/* When you say memory, my mind reasons in terms of (pointers to) blocks */
232typedef uchar block;
233
Tim Peterse70ddf32002-04-05 04:32:29 +0000234/* Pool for small blocks. */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000235struct pool_header {
Tim Petersb2336522001-03-11 18:36:13 +0000236 union { block *_padding;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000237 uint count; } ref; /* number of allocated blocks */
238 block *freeblock; /* pool's free list head */
239 struct pool_header *nextpool; /* next pool of this size class */
240 struct pool_header *prevpool; /* previous pool "" */
Tim Peters1d99af82002-03-30 10:35:09 +0000241 uint arenaindex; /* index into arenas of base adr */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000242 uint szidx; /* block size class index */
Tim Peterse70ddf32002-04-05 04:32:29 +0000243 uint nextoffset; /* bytes to virgin block */
244 uint maxnextoffset; /* largest valid nextoffset */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000245};
246
247typedef struct pool_header *poolp;
248
249#undef ROUNDUP
250#define ROUNDUP(x) (((x) + ALIGNMENT_MASK) & ~ALIGNMENT_MASK)
251#define POOL_OVERHEAD ROUNDUP(sizeof(struct pool_header))
252
253#define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */
254
Tim Petersd97a1c02002-03-30 06:09:22 +0000255/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
Tim Peterse70ddf32002-04-05 04:32:29 +0000256#define POOL_ADDR(P) ((poolp)((uptr)(P) & ~(uptr)POOL_SIZE_MASK))
257
Tim Peters16bcb6b2002-04-05 05:45:31 +0000258/* Return total number of blocks in pool of size index I, as a uint. */
259#define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))
Tim Petersd97a1c02002-03-30 06:09:22 +0000260
Neil Schemenauera35c6882001-02-27 04:45:05 +0000261/*==========================================================================*/
262
263/*
264 * This malloc lock
265 */
Jeremy Hyltond1fedb62002-07-18 18:49:52 +0000266SIMPLELOCK_DECL(_malloc_lock)
Tim Petersb2336522001-03-11 18:36:13 +0000267#define LOCK() SIMPLELOCK_LOCK(_malloc_lock)
268#define UNLOCK() SIMPLELOCK_UNLOCK(_malloc_lock)
269#define LOCK_INIT() SIMPLELOCK_INIT(_malloc_lock)
270#define LOCK_FINI() SIMPLELOCK_FINI(_malloc_lock)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000271
272/*
Tim Peters1e16db62002-03-31 01:05:22 +0000273 * Pool table -- headed, circular, doubly-linked lists of partially used pools.
274
275This is involved. For an index i, usedpools[i+i] is the header for a list of
276all partially used pools holding small blocks with "size class idx" i. So
277usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
27816, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.
279
Tim Peters338e0102002-04-01 19:23:44 +0000280Pools are carved off the current arena highwater mark (file static arenabase)
281as needed. Once carved off, a pool is in one of three states forever after:
Tim Peters1e16db62002-03-31 01:05:22 +0000282
Tim Peters338e0102002-04-01 19:23:44 +0000283used == partially used, neither empty nor full
284 At least one block in the pool is currently allocated, and at least one
285 block in the pool is not currently allocated (note this implies a pool
286 has room for at least two blocks).
287 This is a pool's initial state, as a pool is created only when malloc
288 needs space.
289 The pool holds blocks of a fixed size, and is in the circular list headed
290 at usedpools[i] (see above). It's linked to the other used pools of the
291 same size class via the pool_header's nextpool and prevpool members.
292 If all but one block is currently allocated, a malloc can cause a
293 transition to the full state. If all but one block is not currently
294 allocated, a free can cause a transition to the empty state.
Tim Peters1e16db62002-03-31 01:05:22 +0000295
Tim Peters338e0102002-04-01 19:23:44 +0000296full == all the pool's blocks are currently allocated
297 On transition to full, a pool is unlinked from its usedpools[] list.
298 It's not linked to from anything then anymore, and its nextpool and
299 prevpool members are meaningless until it transitions back to used.
300 A free of a block in a full pool puts the pool back in the used state.
301 Then it's linked in at the front of the appropriate usedpools[] list, so
302 that the next allocation for its size class will reuse the freed block.
303
304empty == all the pool's blocks are currently available for allocation
305 On transition to empty, a pool is unlinked from its usedpools[] list,
306 and linked to the front of the (file static) singly-linked freepools list,
307 via its nextpool member. The prevpool member has no meaning in this case.
308 Empty pools have no inherent size class: the next time a malloc finds
309 an empty list in usedpools[], it takes the first pool off of freepools.
310 If the size class needed happens to be the same as the size class the pool
Tim Peterse70ddf32002-04-05 04:32:29 +0000311 last had, some pool initialization can be skipped.
Tim Peters338e0102002-04-01 19:23:44 +0000312
313
314Block Management
315
316Blocks within pools are again carved out as needed. pool->freeblock points to
317the start of a singly-linked list of free blocks within the pool. When a
318block is freed, it's inserted at the front of its pool's freeblock list. Note
319that the available blocks in a pool are *not* linked all together when a pool
Tim Peterse70ddf32002-04-05 04:32:29 +0000320is initialized. Instead only "the first two" (lowest addresses) blocks are
321set up, returning the first such block, and setting pool->freeblock to a
322one-block list holding the second such block. This is consistent with that
323pymalloc strives at all levels (arena, pool, and block) never to touch a piece
324of memory until it's actually needed.
325
326So long as a pool is in the used state, we're certain there *is* a block
Tim Peters52aefc82002-04-11 06:36:45 +0000327available for allocating, and pool->freeblock is not NULL. If pool->freeblock
328points to the end of the free list before we've carved the entire pool into
329blocks, that means we simply haven't yet gotten to one of the higher-address
330blocks. The offset from the pool_header to the start of "the next" virgin
331block is stored in the pool_header nextoffset member, and the largest value
332of nextoffset that makes sense is stored in the maxnextoffset member when a
333pool is initialized. All the blocks in a pool have been passed out at least
334once when and only when nextoffset > maxnextoffset.
Tim Peters338e0102002-04-01 19:23:44 +0000335
Tim Peters1e16db62002-03-31 01:05:22 +0000336
337Major obscurity: While the usedpools vector is declared to have poolp
338entries, it doesn't really. It really contains two pointers per (conceptual)
339poolp entry, the nextpool and prevpool members of a pool_header. The
340excruciating initialization code below fools C so that
341
342 usedpool[i+i]
343
344"acts like" a genuine poolp, but only so long as you only reference its
345nextpool and prevpool members. The "- 2*sizeof(block *)" gibberish is
346compensating for that a pool_header's nextpool and prevpool members
347immediately follow a pool_header's first two members:
348
349 union { block *_padding;
350 uint count; } ref;
351 block *freeblock;
352
353each of which consume sizeof(block *) bytes. So what usedpools[i+i] really
354contains is a fudged-up pointer p such that *if* C believes it's a poolp
355pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
356circular list is empty).
357
358It's unclear why the usedpools setup is so convoluted. It could be to
359minimize the amount of cache required to hold this heavily-referenced table
360(which only *needs* the two interpool pointer members of a pool_header). OTOH,
361referencing code has to remember to "double the index" and doing so isn't
362free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
363on that C doesn't insert any padding anywhere in a pool_header at or before
364the prevpool member.
365**************************************************************************** */
366
Neil Schemenauera35c6882001-02-27 04:45:05 +0000367#define PTA(x) ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
368#define PT(x) PTA(x), PTA(x)
369
370static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
371 PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
372#if NB_SMALL_SIZE_CLASSES > 8
373 , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
374#if NB_SMALL_SIZE_CLASSES > 16
375 , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
376#if NB_SMALL_SIZE_CLASSES > 24
377 , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
378#if NB_SMALL_SIZE_CLASSES > 32
379 , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
380#if NB_SMALL_SIZE_CLASSES > 40
381 , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
382#if NB_SMALL_SIZE_CLASSES > 48
383 , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
384#if NB_SMALL_SIZE_CLASSES > 56
385 , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
386#endif /* NB_SMALL_SIZE_CLASSES > 56 */
387#endif /* NB_SMALL_SIZE_CLASSES > 48 */
388#endif /* NB_SMALL_SIZE_CLASSES > 40 */
389#endif /* NB_SMALL_SIZE_CLASSES > 32 */
390#endif /* NB_SMALL_SIZE_CLASSES > 24 */
391#endif /* NB_SMALL_SIZE_CLASSES > 16 */
392#endif /* NB_SMALL_SIZE_CLASSES > 8 */
393};
394
395/*
396 * Free (cached) pools
397 */
398static poolp freepools = NULL; /* free list for cached pools */
399
Tim Petersd97a1c02002-03-30 06:09:22 +0000400/*==========================================================================*/
401/* Arena management. */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000402
Tim Petersd97a1c02002-03-30 06:09:22 +0000403/* arenas is a vector of arena base addresses, in order of allocation time.
404 * arenas currently contains narenas entries, and has space allocated
405 * for at most maxarenas entries.
406 *
407 * CAUTION: See the long comment block about thread safety in new_arena():
408 * the code currently relies in deep ways on that this vector only grows,
409 * and only grows by appending at the end. For now we never return an arena
410 * to the OS.
411 */
Tim Petersc2ce91a2002-03-30 21:36:04 +0000412static uptr *volatile arenas = NULL; /* the pointer itself is volatile */
413static volatile uint narenas = 0;
Tim Peters1d99af82002-03-30 10:35:09 +0000414static uint maxarenas = 0;
Tim Petersd97a1c02002-03-30 06:09:22 +0000415
Tim Peters3c83df22002-03-30 07:04:41 +0000416/* Number of pools still available to be allocated in the current arena. */
417static uint nfreepools = 0;
Tim Petersd97a1c02002-03-30 06:09:22 +0000418
Tim Peters3c83df22002-03-30 07:04:41 +0000419/* Free space start address in current arena. This is pool-aligned. */
Tim Petersd97a1c02002-03-30 06:09:22 +0000420static block *arenabase = NULL;
421
Tim Petersd97a1c02002-03-30 06:09:22 +0000422/* Allocate a new arena and return its base address. If we run out of
423 * memory, return NULL.
424 */
425static block *
426new_arena(void)
427{
Tim Peters3c83df22002-03-30 07:04:41 +0000428 uint excess; /* number of bytes above pool alignment */
Tim Peters84c1b972002-04-04 04:44:32 +0000429 block *bp = (block *)malloc(ARENA_SIZE);
Tim Petersd97a1c02002-03-30 06:09:22 +0000430 if (bp == NULL)
431 return NULL;
432
Tim Peters0e871182002-04-13 08:29:14 +0000433#ifdef PYMALLOC_DEBUG
434 if (Py_GETENV("PYTHONMALLOCSTATS"))
435 _PyObject_DebugMallocStats();
436#endif
437
Tim Peters3c83df22002-03-30 07:04:41 +0000438 /* arenabase <- first pool-aligned address in the arena
439 nfreepools <- number of whole pools that fit after alignment */
440 arenabase = bp;
441 nfreepools = ARENA_SIZE / POOL_SIZE;
Tim Petersc2ce91a2002-03-30 21:36:04 +0000442 assert(POOL_SIZE * nfreepools == ARENA_SIZE);
Guido van Rossumefc11882002-09-12 14:43:41 +0000443 excess = (uint) ((Py_uintptr_t)bp & POOL_SIZE_MASK);
Tim Peters3c83df22002-03-30 07:04:41 +0000444 if (excess != 0) {
445 --nfreepools;
446 arenabase += POOL_SIZE - excess;
447 }
Tim Petersd97a1c02002-03-30 06:09:22 +0000448
449 /* Make room for a new entry in the arenas vector. */
450 if (arenas == NULL) {
Tim Petersc2ce91a2002-03-30 21:36:04 +0000451 assert(narenas == 0 && maxarenas == 0);
Tim Peters84c1b972002-04-04 04:44:32 +0000452 arenas = (uptr *)malloc(16 * sizeof(*arenas));
Tim Petersd97a1c02002-03-30 06:09:22 +0000453 if (arenas == NULL)
454 goto error;
455 maxarenas = 16;
Tim Petersd97a1c02002-03-30 06:09:22 +0000456 }
457 else if (narenas == maxarenas) {
Tim Peters52aefc82002-04-11 06:36:45 +0000458 /* Grow arenas.
Tim Petersc2ce91a2002-03-30 21:36:04 +0000459 *
Tim Petersd97a1c02002-03-30 06:09:22 +0000460 * Exceedingly subtle: Someone may be calling the pymalloc
461 * free via PyMem_{DEL, Del, FREE, Free} without holding the
462 *.GIL. Someone else may simultaneously be calling the
463 * pymalloc malloc while holding the GIL via, e.g.,
464 * PyObject_New. Now the pymalloc free may index into arenas
465 * for an address check, while the pymalloc malloc calls
466 * new_arena and we end up here to grow a new arena *and*
467 * grow the arenas vector. If the value for arenas pymalloc
468 * free picks up "vanishes" during this resize, anything may
469 * happen, and it would be an incredibly rare bug. Therefore
470 * the code here takes great pains to make sure that, at every
471 * moment, arenas always points to an intact vector of
472 * addresses. It doesn't matter whether arenas points to a
473 * wholly up-to-date vector when pymalloc free checks it in
474 * this case, because the only legal (and that even this is
475 * legal is debatable) way to call PyMem_{Del, etc} while not
476 * holding the GIL is if the memory being released is not
477 * object memory, i.e. if the address check in pymalloc free
478 * is supposed to fail. Having an incomplete vector can't
479 * make a supposed-to-fail case succeed by mistake (it could
480 * only make a supposed-to-succeed case fail by mistake).
Tim Petersc2ce91a2002-03-30 21:36:04 +0000481 *
482 * In addition, without a lock we can't know for sure when
483 * an old vector is no longer referenced, so we simply let
484 * old vectors leak.
485 *
486 * And on top of that, since narenas and arenas can't be
487 * changed as-a-pair atomically without a lock, we're also
488 * careful to declare them volatile and ensure that we change
489 * arenas first. This prevents another thread from picking
490 * up an narenas value too large for the arenas value it
491 * reads up (arenas never shrinks).
492 *
Tim Petersd97a1c02002-03-30 06:09:22 +0000493 * Read the above 50 times before changing anything in this
494 * block.
495 */
Tim Peters1d99af82002-03-30 10:35:09 +0000496 uptr *p;
Tim Petersc2ce91a2002-03-30 21:36:04 +0000497 uint newmax = maxarenas << 1;
Tim Peters1d99af82002-03-30 10:35:09 +0000498 if (newmax <= maxarenas) /* overflow */
499 goto error;
Tim Peters84c1b972002-04-04 04:44:32 +0000500 p = (uptr *)malloc(newmax * sizeof(*arenas));
Tim Petersd97a1c02002-03-30 06:09:22 +0000501 if (p == NULL)
502 goto error;
503 memcpy(p, arenas, narenas * sizeof(*arenas));
Tim Petersc2ce91a2002-03-30 21:36:04 +0000504 arenas = p; /* old arenas deliberately leaked */
Tim Petersd97a1c02002-03-30 06:09:22 +0000505 maxarenas = newmax;
506 }
507
508 /* Append the new arena address to arenas. */
509 assert(narenas < maxarenas);
510 arenas[narenas] = (uptr)bp;
Tim Peters1d99af82002-03-30 10:35:09 +0000511 ++narenas; /* can't overflow, since narenas < maxarenas before */
Tim Petersd97a1c02002-03-30 06:09:22 +0000512 return bp;
513
514error:
Tim Peters84c1b972002-04-04 04:44:32 +0000515 free(bp);
Tim Peters7b85b4a2002-03-30 10:42:09 +0000516 nfreepools = 0;
Tim Petersd97a1c02002-03-30 06:09:22 +0000517 return NULL;
518}
519
520/* Return true if and only if P is an address that was allocated by
521 * pymalloc. I must be the index into arenas that the address claims
522 * to come from.
Tim Petersc2ce91a2002-03-30 21:36:04 +0000523 *
Tim Petersd97a1c02002-03-30 06:09:22 +0000524 * Tricky: Letting B be the arena base address in arenas[I], P belongs to the
525 * arena if and only if
Tim Peters3c83df22002-03-30 07:04:41 +0000526 * B <= P < B + ARENA_SIZE
Tim Petersd97a1c02002-03-30 06:09:22 +0000527 * Subtracting B throughout, this is true iff
Tim Peters3c83df22002-03-30 07:04:41 +0000528 * 0 <= P-B < ARENA_SIZE
Tim Petersd97a1c02002-03-30 06:09:22 +0000529 * By using unsigned arithmetic, the "0 <=" half of the test can be skipped.
Tim Petersc2ce91a2002-03-30 21:36:04 +0000530 *
531 * Obscure: A PyMem "free memory" function can call the pymalloc free or
532 * realloc before the first arena has been allocated. arenas is still
533 * NULL in that case. We're relying on that narenas is also 0 in that case,
534 * so the (I) < narenas must be false, saving us from trying to index into
535 * a NULL arenas.
Tim Petersd97a1c02002-03-30 06:09:22 +0000536 */
537#define ADDRESS_IN_RANGE(P, I) \
Tim Peters3c83df22002-03-30 07:04:41 +0000538 ((I) < narenas && (uptr)(P) - arenas[I] < (uptr)ARENA_SIZE)
Tim Peters338e0102002-04-01 19:23:44 +0000539
Neil Schemenauera35c6882001-02-27 04:45:05 +0000540/*==========================================================================*/
541
Tim Peters84c1b972002-04-04 04:44:32 +0000542/* malloc. Note that nbytes==0 tries to return a non-NULL pointer, distinct
543 * from all other currently live pointers. This may not be possible.
544 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000545
546/*
547 * The basic blocks are ordered by decreasing execution frequency,
548 * which minimizes the number of jumps in the most common cases,
549 * improves branching prediction and instruction scheduling (small
550 * block allocations typically result in a couple of instructions).
551 * Unless the optimizer reorders everything, being too smart...
552 */
553
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000554#undef PyObject_Malloc
Neil Schemenauera35c6882001-02-27 04:45:05 +0000555void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000556PyObject_Malloc(size_t nbytes)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000557{
558 block *bp;
559 poolp pool;
560 poolp next;
561 uint size;
562
Neil Schemenauera35c6882001-02-27 04:45:05 +0000563 /*
Tim Peters84c1b972002-04-04 04:44:32 +0000564 * This implicitly redirects malloc(0).
Neil Schemenauera35c6882001-02-27 04:45:05 +0000565 */
566 if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) {
567 LOCK();
568 /*
569 * Most frequent paths first
570 */
571 size = (uint )(nbytes - 1) >> ALIGNMENT_SHIFT;
572 pool = usedpools[size + size];
573 if (pool != pool->nextpool) {
574 /*
575 * There is a used pool for this size class.
576 * Pick up the head block of its free list.
577 */
578 ++pool->ref.count;
579 bp = pool->freeblock;
Tim Peters52aefc82002-04-11 06:36:45 +0000580 assert(bp != NULL);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000581 if ((pool->freeblock = *(block **)bp) != NULL) {
582 UNLOCK();
583 return (void *)bp;
584 }
585 /*
586 * Reached the end of the free list, try to extend it
587 */
Tim Peterse70ddf32002-04-05 04:32:29 +0000588 if (pool->nextoffset <= pool->maxnextoffset) {
Neil Schemenauera35c6882001-02-27 04:45:05 +0000589 /*
590 * There is room for another block
591 */
Tim Peterse70ddf32002-04-05 04:32:29 +0000592 pool->freeblock = (block *)pool +
593 pool->nextoffset;
594 pool->nextoffset += INDEX2SIZE(size);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000595 *(block **)(pool->freeblock) = NULL;
596 UNLOCK();
597 return (void *)bp;
598 }
599 /*
600 * Pool is full, unlink from used pools
601 */
602 next = pool->nextpool;
603 pool = pool->prevpool;
604 next->prevpool = pool;
605 pool->nextpool = next;
606 UNLOCK();
607 return (void *)bp;
608 }
609 /*
610 * Try to get a cached free pool
611 */
612 pool = freepools;
613 if (pool != NULL) {
614 /*
615 * Unlink from cached pools
616 */
617 freepools = pool->nextpool;
618 init_pool:
619 /*
620 * Frontlink to used pools
621 */
622 next = usedpools[size + size]; /* == prev */
623 pool->nextpool = next;
624 pool->prevpool = next;
625 next->nextpool = pool;
626 next->prevpool = pool;
627 pool->ref.count = 1;
628 if (pool->szidx == size) {
629 /*
630 * Luckily, this pool last contained blocks
631 * of the same size class, so its header
632 * and free list are already initialized.
633 */
634 bp = pool->freeblock;
635 pool->freeblock = *(block **)bp;
636 UNLOCK();
637 return (void *)bp;
638 }
639 /*
Tim Peterse70ddf32002-04-05 04:32:29 +0000640 * Initialize the pool header, set up the free list to
641 * contain just the second block, and return the first
642 * block.
Neil Schemenauera35c6882001-02-27 04:45:05 +0000643 */
644 pool->szidx = size;
Tim Peterse70ddf32002-04-05 04:32:29 +0000645 size = INDEX2SIZE(size);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000646 bp = (block *)pool + POOL_OVERHEAD;
Tim Peterse70ddf32002-04-05 04:32:29 +0000647 pool->nextoffset = POOL_OVERHEAD + (size << 1);
648 pool->maxnextoffset = POOL_SIZE - size;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000649 pool->freeblock = bp + size;
650 *(block **)(pool->freeblock) = NULL;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000651 UNLOCK();
652 return (void *)bp;
653 }
Walter Dörwalde0a1bb62003-06-17 15:48:11 +0000654 /*
655 * Allocate new pool
656 */
Tim Peters3c83df22002-03-30 07:04:41 +0000657 if (nfreepools) {
Neil Schemenauera35c6882001-02-27 04:45:05 +0000658 commit_pool:
Tim Peters3c83df22002-03-30 07:04:41 +0000659 --nfreepools;
660 pool = (poolp)arenabase;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000661 arenabase += POOL_SIZE;
Tim Petersd97a1c02002-03-30 06:09:22 +0000662 pool->arenaindex = narenas - 1;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000663 pool->szidx = DUMMY_SIZE_IDX;
664 goto init_pool;
665 }
Walter Dörwalde0a1bb62003-06-17 15:48:11 +0000666 /*
667 * Allocate new arena
668 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000669#ifdef WITH_MEMORY_LIMITS
Tim Petersd97a1c02002-03-30 06:09:22 +0000670 if (!(narenas < MAX_ARENAS)) {
Neil Schemenauera35c6882001-02-27 04:45:05 +0000671 UNLOCK();
672 goto redirect;
673 }
674#endif
Tim Petersd97a1c02002-03-30 06:09:22 +0000675 bp = new_arena();
676 if (bp != NULL)
677 goto commit_pool;
678 UNLOCK();
679 goto redirect;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000680 }
681
682 /* The small block allocator ends here. */
683
Tim Petersd97a1c02002-03-30 06:09:22 +0000684redirect:
Neil Schemenauera35c6882001-02-27 04:45:05 +0000685 /*
686 * Redirect the original request to the underlying (libc) allocator.
687 * We jump here on bigger requests, on error in the code above (as a
688 * last chance to serve the request) or when the max memory limit
689 * has been reached.
690 */
Tim Peters64d80c92002-04-18 21:58:56 +0000691 if (nbytes == 0)
692 nbytes = 1;
Tim Peters64d80c92002-04-18 21:58:56 +0000693 return (void *)malloc(nbytes);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000694}
695
696/* free */
697
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000698#undef PyObject_Free
Neil Schemenauera35c6882001-02-27 04:45:05 +0000699void
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000700PyObject_Free(void *p)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000701{
702 poolp pool;
Tim Peters2c95c992002-03-31 02:18:01 +0000703 block *lastfree;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000704 poolp next, prev;
705 uint size;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000706
Neil Schemenauera35c6882001-02-27 04:45:05 +0000707 if (p == NULL) /* free(NULL) has no effect */
708 return;
709
Tim Petersd97a1c02002-03-30 06:09:22 +0000710 pool = POOL_ADDR(p);
711 if (ADDRESS_IN_RANGE(p, pool->arenaindex)) {
712 /* We allocated this address. */
Tim Petersd97a1c02002-03-30 06:09:22 +0000713 LOCK();
714 /*
Tim Peters2c95c992002-03-31 02:18:01 +0000715 * Link p to the start of the pool's freeblock list. Since
716 * the pool had at least the p block outstanding, the pool
717 * wasn't empty (so it's already in a usedpools[] list, or
718 * was full and is in no list -- it's not in the freeblocks
719 * list in any case).
Tim Petersd97a1c02002-03-30 06:09:22 +0000720 */
Tim Peters57b17ad2002-03-31 02:59:48 +0000721 assert(pool->ref.count > 0); /* else it was empty */
Tim Peters2c95c992002-03-31 02:18:01 +0000722 *(block **)p = lastfree = pool->freeblock;
Tim Petersd97a1c02002-03-30 06:09:22 +0000723 pool->freeblock = (block *)p;
Tim Peters2c95c992002-03-31 02:18:01 +0000724 if (lastfree) {
725 /*
726 * freeblock wasn't NULL, so the pool wasn't full,
727 * and the pool is in a usedpools[] list.
728 */
Tim Peters2c95c992002-03-31 02:18:01 +0000729 if (--pool->ref.count != 0) {
730 /* pool isn't empty: leave it in usedpools */
731 UNLOCK();
732 return;
733 }
734 /*
735 * Pool is now empty: unlink from usedpools, and
Tim Petersb1da0502002-03-31 02:51:40 +0000736 * link to the front of freepools. This ensures that
Tim Peters2c95c992002-03-31 02:18:01 +0000737 * previously freed pools will be allocated later
738 * (being not referenced, they are perhaps paged out).
739 */
740 next = pool->nextpool;
741 prev = pool->prevpool;
742 next->prevpool = prev;
743 prev->nextpool = next;
744 /* Link to freepools. This is a singly-linked list,
745 * and pool->prevpool isn't used there.
746 */
747 pool->nextpool = freepools;
748 freepools = pool;
Tim Petersd97a1c02002-03-30 06:09:22 +0000749 UNLOCK();
750 return;
751 }
752 /*
Tim Peters2c95c992002-03-31 02:18:01 +0000753 * Pool was full, so doesn't currently live in any list:
754 * link it to the front of the appropriate usedpools[] list.
755 * This mimics LRU pool usage for new allocations and
756 * targets optimal filling when several pools contain
757 * blocks of the same size class.
Tim Petersd97a1c02002-03-30 06:09:22 +0000758 */
Tim Peters2c95c992002-03-31 02:18:01 +0000759 --pool->ref.count;
760 assert(pool->ref.count > 0); /* else the pool is empty */
761 size = pool->szidx;
762 next = usedpools[size + size];
763 prev = next->prevpool;
764 /* insert pool before next: prev <-> pool <-> next */
765 pool->nextpool = next;
766 pool->prevpool = prev;
767 next->prevpool = pool;
768 prev->nextpool = pool;
Tim Petersd97a1c02002-03-30 06:09:22 +0000769 UNLOCK();
Neil Schemenauera35c6882001-02-27 04:45:05 +0000770 return;
771 }
772
Tim Peters2c95c992002-03-31 02:18:01 +0000773 /* We didn't allocate this address. */
Tim Peters84c1b972002-04-04 04:44:32 +0000774 free(p);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000775}
776
Tim Peters84c1b972002-04-04 04:44:32 +0000777/* realloc. If p is NULL, this acts like malloc(nbytes). Else if nbytes==0,
778 * then as the Python docs promise, we do not treat this like free(p), and
779 * return a non-NULL result.
780 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000781
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000782#undef PyObject_Realloc
Neil Schemenauera35c6882001-02-27 04:45:05 +0000783void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000784PyObject_Realloc(void *p, size_t nbytes)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000785{
Tim Peters84c1b972002-04-04 04:44:32 +0000786 void *bp;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000787 poolp pool;
788 uint size;
789
Neil Schemenauera35c6882001-02-27 04:45:05 +0000790 if (p == NULL)
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000791 return PyObject_Malloc(nbytes);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000792
Tim Petersd97a1c02002-03-30 06:09:22 +0000793 pool = POOL_ADDR(p);
794 if (ADDRESS_IN_RANGE(p, pool->arenaindex)) {
Neil Schemenauera35c6882001-02-27 04:45:05 +0000795 /* We're in charge of this block */
Tim Peterse70ddf32002-04-05 04:32:29 +0000796 size = INDEX2SIZE(pool->szidx);
Tim Peters4ce71f72002-05-02 20:19:34 +0000797 if (nbytes <= size) {
798 /* The block is staying the same or shrinking. If
799 * it's shrinking, there's a tradeoff: it costs
800 * cycles to copy the block to a smaller size class,
801 * but it wastes memory not to copy it. The
802 * compromise here is to copy on shrink only if at
803 * least 25% of size can be shaved off.
804 */
805 if (4 * nbytes > 3 * size) {
806 /* It's the same,
807 * or shrinking and new/old > 3/4.
808 */
809 return p;
810 }
811 size = nbytes;
812 }
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000813 bp = PyObject_Malloc(nbytes);
Tim Peters84c1b972002-04-04 04:44:32 +0000814 if (bp != NULL) {
815 memcpy(bp, p, size);
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000816 PyObject_Free(p);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000817 }
Tim Peters84c1b972002-04-04 04:44:32 +0000818 return bp;
819 }
820 /* We're not managing this block. */
Tim Peters84c1b972002-04-04 04:44:32 +0000821 if (nbytes <= SMALL_REQUEST_THRESHOLD) {
Tim Peters64d80c92002-04-18 21:58:56 +0000822 /* Take over this block -- ask for at least one byte so
823 * we really do take it over (PyObject_Malloc(0) goes to
824 * the system malloc).
825 */
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000826 bp = PyObject_Malloc(nbytes ? nbytes : 1);
Tim Peters84c1b972002-04-04 04:44:32 +0000827 if (bp != NULL) {
828 memcpy(bp, p, nbytes);
829 free(p);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000830 }
Tim Peters84c1b972002-04-04 04:44:32 +0000831 else if (nbytes == 0) {
832 /* Meet the doc's promise that nbytes==0 will
833 * never return a NULL pointer when p isn't NULL.
834 */
835 bp = p;
836 }
837
Neil Schemenauera35c6882001-02-27 04:45:05 +0000838 }
Tim Petersd97a1c02002-03-30 06:09:22 +0000839 else {
Tim Peters84c1b972002-04-04 04:44:32 +0000840 assert(nbytes != 0);
841 bp = realloc(p, nbytes);
Tim Petersd97a1c02002-03-30 06:09:22 +0000842 }
Tim Peters84c1b972002-04-04 04:44:32 +0000843 return bp;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000844}
845
Tim Peters1221c0a2002-03-23 00:20:15 +0000846#else /* ! WITH_PYMALLOC */
Tim Petersddea2082002-03-23 10:03:50 +0000847
848/*==========================================================================*/
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000849/* pymalloc not enabled: Redirect the entry points to malloc. These will
850 * only be used by extensions that are compiled with pymalloc enabled. */
Tim Peters62c06ba2002-03-23 22:28:18 +0000851
Tim Petersce7fb9b2002-03-23 00:28:57 +0000852void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000853PyObject_Malloc(size_t n)
Tim Peters1221c0a2002-03-23 00:20:15 +0000854{
855 return PyMem_MALLOC(n);
856}
857
Tim Petersce7fb9b2002-03-23 00:28:57 +0000858void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000859PyObject_Realloc(void *p, size_t n)
Tim Peters1221c0a2002-03-23 00:20:15 +0000860{
861 return PyMem_REALLOC(p, n);
862}
863
864void
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000865PyObject_Free(void *p)
Tim Peters1221c0a2002-03-23 00:20:15 +0000866{
867 PyMem_FREE(p);
868}
869#endif /* WITH_PYMALLOC */
870
Tim Petersddea2082002-03-23 10:03:50 +0000871#ifdef PYMALLOC_DEBUG
872/*==========================================================================*/
Tim Peters62c06ba2002-03-23 22:28:18 +0000873/* A x-platform debugging allocator. This doesn't manage memory directly,
874 * it wraps a real allocator, adding extra debugging info to the memory blocks.
875 */
Tim Petersddea2082002-03-23 10:03:50 +0000876
Tim Petersf6fb5012002-04-12 07:38:53 +0000877/* Special bytes broadcast into debug memory blocks at appropriate times.
878 * Strings of these are unlikely to be valid addresses, floats, ints or
879 * 7-bit ASCII.
880 */
881#undef CLEANBYTE
882#undef DEADBYTE
883#undef FORBIDDENBYTE
884#define CLEANBYTE 0xCB /* clean (newly allocated) memory */
Tim Peters889f61d2002-07-10 19:29:49 +0000885#define DEADBYTE 0xDB /* dead (newly freed) memory */
Tim Petersf6fb5012002-04-12 07:38:53 +0000886#define FORBIDDENBYTE 0xFB /* untouchable bytes at each end of a block */
Tim Petersddea2082002-03-23 10:03:50 +0000887
888static ulong serialno = 0; /* incremented on each debug {m,re}alloc */
889
Tim Peterse0850172002-03-24 00:34:21 +0000890/* serialno is always incremented via calling this routine. The point is
891 to supply a single place to set a breakpoint.
892*/
893static void
Neil Schemenauerbd02b142002-03-28 21:05:38 +0000894bumpserialno(void)
Tim Peterse0850172002-03-24 00:34:21 +0000895{
896 ++serialno;
897}
898
899
Tim Petersddea2082002-03-23 10:03:50 +0000900/* Read 4 bytes at p as a big-endian ulong. */
901static ulong
902read4(const void *p)
903{
Tim Peters62c06ba2002-03-23 22:28:18 +0000904 const uchar *q = (const uchar *)p;
Tim Petersddea2082002-03-23 10:03:50 +0000905 return ((ulong)q[0] << 24) |
906 ((ulong)q[1] << 16) |
907 ((ulong)q[2] << 8) |
908 (ulong)q[3];
909}
910
911/* Write the 4 least-significant bytes of n as a big-endian unsigned int,
912 MSB at address p, LSB at p+3. */
913static void
914write4(void *p, ulong n)
915{
Tim Peters62c06ba2002-03-23 22:28:18 +0000916 uchar *q = (uchar *)p;
917 q[0] = (uchar)((n >> 24) & 0xff);
918 q[1] = (uchar)((n >> 16) & 0xff);
919 q[2] = (uchar)((n >> 8) & 0xff);
920 q[3] = (uchar)( n & 0xff);
Tim Petersddea2082002-03-23 10:03:50 +0000921}
922
Tim Peters08d82152002-04-18 22:25:03 +0000923#ifdef Py_DEBUG
924/* Is target in the list? The list is traversed via the nextpool pointers.
925 * The list may be NULL-terminated, or circular. Return 1 if target is in
926 * list, else 0.
927 */
928static int
929pool_is_in_list(const poolp target, poolp list)
930{
931 poolp origlist = list;
932 assert(target != NULL);
933 if (list == NULL)
934 return 0;
935 do {
936 if (target == list)
937 return 1;
938 list = list->nextpool;
939 } while (list != NULL && list != origlist);
940 return 0;
941}
942
943#else
944#define pool_is_in_list(X, Y) 1
945
946#endif /* Py_DEBUG */
947
Tim Petersddea2082002-03-23 10:03:50 +0000948/* The debug malloc asks for 16 extra bytes and fills them with useful stuff,
949 here calling the underlying malloc's result p:
950
951p[0:4]
952 Number of bytes originally asked for. 4-byte unsigned integer,
953 big-endian (easier to read in a memory dump).
Tim Petersd1139e02002-03-28 07:32:11 +0000954p[4:8]
Tim Petersf6fb5012002-04-12 07:38:53 +0000955 Copies of FORBIDDENBYTE. Used to catch under- writes and reads.
Tim Petersddea2082002-03-23 10:03:50 +0000956p[8:8+n]
Tim Petersf6fb5012002-04-12 07:38:53 +0000957 The requested memory, filled with copies of CLEANBYTE.
Tim Petersddea2082002-03-23 10:03:50 +0000958 Used to catch reference to uninitialized memory.
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000959 &p[8] is returned. Note that this is 8-byte aligned if pymalloc
Tim Petersddea2082002-03-23 10:03:50 +0000960 handled the request itself.
961p[8+n:8+n+4]
Tim Petersf6fb5012002-04-12 07:38:53 +0000962 Copies of FORBIDDENBYTE. Used to catch over- writes and reads.
Tim Petersddea2082002-03-23 10:03:50 +0000963p[8+n+4:8+n+8]
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000964 A serial number, incremented by 1 on each call to _PyObject_DebugMalloc
965 and _PyObject_DebugRealloc.
Tim Petersddea2082002-03-23 10:03:50 +0000966 4-byte unsigned integer, big-endian.
967 If "bad memory" is detected later, the serial number gives an
968 excellent way to set a breakpoint on the next run, to capture the
969 instant at which this block was passed out.
970*/
971
972void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000973_PyObject_DebugMalloc(size_t nbytes)
Tim Petersddea2082002-03-23 10:03:50 +0000974{
975 uchar *p; /* base address of malloc'ed block */
Tim Peters62c06ba2002-03-23 22:28:18 +0000976 uchar *tail; /* p + 8 + nbytes == pointer to tail pad bytes */
Tim Petersddea2082002-03-23 10:03:50 +0000977 size_t total; /* nbytes + 16 */
978
Tim Peterse0850172002-03-24 00:34:21 +0000979 bumpserialno();
Tim Petersddea2082002-03-23 10:03:50 +0000980 total = nbytes + 16;
981 if (total < nbytes || (total >> 31) > 1) {
982 /* overflow, or we can't represent it in 4 bytes */
983 /* Obscure: can't do (total >> 32) != 0 instead, because
984 C doesn't define what happens for a right-shift of 32
985 when size_t is a 32-bit type. At least C guarantees
986 size_t is an unsigned type. */
987 return NULL;
988 }
989
Tim Peters8a8cdfd2002-04-12 20:49:36 +0000990 p = (uchar *)PyObject_Malloc(total);
Tim Petersddea2082002-03-23 10:03:50 +0000991 if (p == NULL)
992 return NULL;
993
994 write4(p, nbytes);
Tim Petersf6fb5012002-04-12 07:38:53 +0000995 p[4] = p[5] = p[6] = p[7] = FORBIDDENBYTE;
Tim Petersddea2082002-03-23 10:03:50 +0000996
997 if (nbytes > 0)
Tim Petersf6fb5012002-04-12 07:38:53 +0000998 memset(p+8, CLEANBYTE, nbytes);
Tim Petersddea2082002-03-23 10:03:50 +0000999
Tim Peters62c06ba2002-03-23 22:28:18 +00001000 tail = p + 8 + nbytes;
Tim Petersf6fb5012002-04-12 07:38:53 +00001001 tail[0] = tail[1] = tail[2] = tail[3] = FORBIDDENBYTE;
Tim Peters62c06ba2002-03-23 22:28:18 +00001002 write4(tail + 4, serialno);
Tim Petersddea2082002-03-23 10:03:50 +00001003
1004 return p+8;
1005}
1006
Tim Peters62c06ba2002-03-23 22:28:18 +00001007/* The debug free first checks the 8 bytes on each end for sanity (in
Tim Petersf6fb5012002-04-12 07:38:53 +00001008 particular, that the FORBIDDENBYTEs are still intact).
1009 Then fills the original bytes with DEADBYTE.
Tim Petersddea2082002-03-23 10:03:50 +00001010 Then calls the underlying free.
1011*/
1012void
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001013_PyObject_DebugFree(void *p)
Tim Petersddea2082002-03-23 10:03:50 +00001014{
Tim Peters62c06ba2002-03-23 22:28:18 +00001015 uchar *q = (uchar *)p;
Tim Petersddea2082002-03-23 10:03:50 +00001016 size_t nbytes;
1017
Tim Petersddea2082002-03-23 10:03:50 +00001018 if (p == NULL)
1019 return;
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001020 _PyObject_DebugCheckAddress(p);
Tim Petersddea2082002-03-23 10:03:50 +00001021 nbytes = read4(q-8);
1022 if (nbytes > 0)
Tim Petersf6fb5012002-04-12 07:38:53 +00001023 memset(q, DEADBYTE, nbytes);
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001024 PyObject_Free(q-8);
Tim Petersddea2082002-03-23 10:03:50 +00001025}
1026
1027void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001028_PyObject_DebugRealloc(void *p, size_t nbytes)
Tim Petersddea2082002-03-23 10:03:50 +00001029{
1030 uchar *q = (uchar *)p;
Tim Peters85cc1c42002-04-12 08:52:50 +00001031 uchar *tail;
1032 size_t total; /* nbytes + 16 */
Tim Petersddea2082002-03-23 10:03:50 +00001033 size_t original_nbytes;
Tim Petersddea2082002-03-23 10:03:50 +00001034
Tim Petersddea2082002-03-23 10:03:50 +00001035 if (p == NULL)
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001036 return _PyObject_DebugMalloc(nbytes);
Tim Petersddea2082002-03-23 10:03:50 +00001037
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001038 _PyObject_DebugCheckAddress(p);
Tim Peters85cc1c42002-04-12 08:52:50 +00001039 bumpserialno();
Tim Petersddea2082002-03-23 10:03:50 +00001040 original_nbytes = read4(q-8);
Tim Peters85cc1c42002-04-12 08:52:50 +00001041 total = nbytes + 16;
1042 if (total < nbytes || (total >> 31) > 1) {
1043 /* overflow, or we can't represent it in 4 bytes */
1044 return NULL;
Tim Petersddea2082002-03-23 10:03:50 +00001045 }
1046
1047 if (nbytes < original_nbytes) {
Tim Peters85cc1c42002-04-12 08:52:50 +00001048 /* shrinking: mark old extra memory dead */
1049 memset(q + nbytes, DEADBYTE, original_nbytes - nbytes);
Tim Petersddea2082002-03-23 10:03:50 +00001050 }
1051
Tim Peters85cc1c42002-04-12 08:52:50 +00001052 /* Resize and add decorations. */
1053 q = (uchar *)PyObject_Realloc(q-8, total);
1054 if (q == NULL)
1055 return NULL;
1056
1057 write4(q, nbytes);
1058 assert(q[4] == FORBIDDENBYTE &&
1059 q[5] == FORBIDDENBYTE &&
1060 q[6] == FORBIDDENBYTE &&
1061 q[7] == FORBIDDENBYTE);
1062 q += 8;
1063 tail = q + nbytes;
1064 tail[0] = tail[1] = tail[2] = tail[3] = FORBIDDENBYTE;
1065 write4(tail + 4, serialno);
1066
1067 if (nbytes > original_nbytes) {
1068 /* growing: mark new extra memory clean */
1069 memset(q + original_nbytes, CLEANBYTE,
1070 nbytes - original_nbytes);
Tim Peters52aefc82002-04-11 06:36:45 +00001071 }
Tim Peters85cc1c42002-04-12 08:52:50 +00001072
1073 return q;
Tim Petersddea2082002-03-23 10:03:50 +00001074}
1075
Tim Peters7ccfadf2002-04-01 06:04:21 +00001076/* Check the forbidden bytes on both ends of the memory allocated for p.
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001077 * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
Tim Peters7ccfadf2002-04-01 06:04:21 +00001078 * and call Py_FatalError to kill the program.
1079 */
1080 void
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001081_PyObject_DebugCheckAddress(const void *p)
Tim Petersddea2082002-03-23 10:03:50 +00001082{
1083 const uchar *q = (const uchar *)p;
Tim Petersd1139e02002-03-28 07:32:11 +00001084 char *msg;
Tim Peters449b5a82002-04-28 06:14:45 +00001085 ulong nbytes;
1086 const uchar *tail;
Tim Petersd1139e02002-03-28 07:32:11 +00001087 int i;
Tim Petersddea2082002-03-23 10:03:50 +00001088
Tim Petersd1139e02002-03-28 07:32:11 +00001089 if (p == NULL) {
Tim Petersddea2082002-03-23 10:03:50 +00001090 msg = "didn't expect a NULL pointer";
Tim Petersd1139e02002-03-28 07:32:11 +00001091 goto error;
1092 }
Tim Petersddea2082002-03-23 10:03:50 +00001093
Tim Peters449b5a82002-04-28 06:14:45 +00001094 /* Check the stuff at the start of p first: if there's underwrite
1095 * corruption, the number-of-bytes field may be nuts, and checking
1096 * the tail could lead to a segfault then.
1097 */
Tim Petersd1139e02002-03-28 07:32:11 +00001098 for (i = 4; i >= 1; --i) {
Tim Petersf6fb5012002-04-12 07:38:53 +00001099 if (*(q-i) != FORBIDDENBYTE) {
Tim Petersd1139e02002-03-28 07:32:11 +00001100 msg = "bad leading pad byte";
1101 goto error;
1102 }
1103 }
Tim Petersddea2082002-03-23 10:03:50 +00001104
Tim Peters449b5a82002-04-28 06:14:45 +00001105 nbytes = read4(q-8);
1106 tail = q + nbytes;
1107 for (i = 0; i < 4; ++i) {
1108 if (tail[i] != FORBIDDENBYTE) {
1109 msg = "bad trailing pad byte";
1110 goto error;
Tim Petersddea2082002-03-23 10:03:50 +00001111 }
1112 }
1113
Tim Petersd1139e02002-03-28 07:32:11 +00001114 return;
1115
1116error:
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001117 _PyObject_DebugDumpAddress(p);
Tim Petersd1139e02002-03-28 07:32:11 +00001118 Py_FatalError(msg);
Tim Petersddea2082002-03-23 10:03:50 +00001119}
1120
Tim Peters7ccfadf2002-04-01 06:04:21 +00001121/* Display info to stderr about the memory block at p. */
Tim Petersddea2082002-03-23 10:03:50 +00001122void
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001123_PyObject_DebugDumpAddress(const void *p)
Tim Petersddea2082002-03-23 10:03:50 +00001124{
1125 const uchar *q = (const uchar *)p;
1126 const uchar *tail;
1127 ulong nbytes, serial;
Tim Petersd1139e02002-03-28 07:32:11 +00001128 int i;
Tim Petersddea2082002-03-23 10:03:50 +00001129
1130 fprintf(stderr, "Debug memory block at address p=%p:\n", p);
1131 if (p == NULL)
1132 return;
1133
1134 nbytes = read4(q-8);
Tim Petersf539c682002-04-12 07:43:07 +00001135 fprintf(stderr, " %lu bytes originally requested\n", nbytes);
Tim Petersddea2082002-03-23 10:03:50 +00001136
Tim Peters449b5a82002-04-28 06:14:45 +00001137 /* In case this is nuts, check the leading pad bytes first. */
1138 fputs(" The 4 pad bytes at p-4 are ", stderr);
Tim Petersf6fb5012002-04-12 07:38:53 +00001139 if (*(q-4) == FORBIDDENBYTE &&
1140 *(q-3) == FORBIDDENBYTE &&
1141 *(q-2) == FORBIDDENBYTE &&
1142 *(q-1) == FORBIDDENBYTE) {
Tim Peters449b5a82002-04-28 06:14:45 +00001143 fputs("FORBIDDENBYTE, as expected.\n", stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001144 }
1145 else {
Tim Petersf6fb5012002-04-12 07:38:53 +00001146 fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
1147 FORBIDDENBYTE);
Tim Petersd1139e02002-03-28 07:32:11 +00001148 for (i = 4; i >= 1; --i) {
Tim Petersddea2082002-03-23 10:03:50 +00001149 const uchar byte = *(q-i);
1150 fprintf(stderr, " at p-%d: 0x%02x", i, byte);
Tim Petersf6fb5012002-04-12 07:38:53 +00001151 if (byte != FORBIDDENBYTE)
Tim Petersddea2082002-03-23 10:03:50 +00001152 fputs(" *** OUCH", stderr);
1153 fputc('\n', stderr);
1154 }
Tim Peters449b5a82002-04-28 06:14:45 +00001155
1156 fputs(" Because memory is corrupted at the start, the "
1157 "count of bytes requested\n"
1158 " may be bogus, and checking the trailing pad "
1159 "bytes may segfault.\n", stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001160 }
1161
1162 tail = q + nbytes;
Tim Peters449b5a82002-04-28 06:14:45 +00001163 fprintf(stderr, " The 4 pad bytes at tail=%p are ", tail);
Tim Petersf6fb5012002-04-12 07:38:53 +00001164 if (tail[0] == FORBIDDENBYTE &&
1165 tail[1] == FORBIDDENBYTE &&
1166 tail[2] == FORBIDDENBYTE &&
1167 tail[3] == FORBIDDENBYTE) {
Tim Peters449b5a82002-04-28 06:14:45 +00001168 fputs("FORBIDDENBYTE, as expected.\n", stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001169 }
1170 else {
Tim Petersf6fb5012002-04-12 07:38:53 +00001171 fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
1172 FORBIDDENBYTE);
Tim Petersddea2082002-03-23 10:03:50 +00001173 for (i = 0; i < 4; ++i) {
1174 const uchar byte = tail[i];
1175 fprintf(stderr, " at tail+%d: 0x%02x",
1176 i, byte);
Tim Petersf6fb5012002-04-12 07:38:53 +00001177 if (byte != FORBIDDENBYTE)
Tim Petersddea2082002-03-23 10:03:50 +00001178 fputs(" *** OUCH", stderr);
1179 fputc('\n', stderr);
1180 }
1181 }
1182
1183 serial = read4(tail+4);
Tim Peters449b5a82002-04-28 06:14:45 +00001184 fprintf(stderr, " The block was made by call #%lu to "
1185 "debug malloc/realloc.\n", serial);
Tim Petersddea2082002-03-23 10:03:50 +00001186
1187 if (nbytes > 0) {
1188 int i = 0;
Tim Peters449b5a82002-04-28 06:14:45 +00001189 fputs(" Data at p:", stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001190 /* print up to 8 bytes at the start */
1191 while (q < tail && i < 8) {
1192 fprintf(stderr, " %02x", *q);
1193 ++i;
1194 ++q;
1195 }
1196 /* and up to 8 at the end */
1197 if (q < tail) {
1198 if (tail - q > 8) {
Tim Peters62c06ba2002-03-23 22:28:18 +00001199 fputs(" ...", stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001200 q = tail - 8;
1201 }
1202 while (q < tail) {
1203 fprintf(stderr, " %02x", *q);
1204 ++q;
1205 }
1206 }
Tim Peters62c06ba2002-03-23 22:28:18 +00001207 fputc('\n', stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001208 }
1209}
1210
Tim Peters16bcb6b2002-04-05 05:45:31 +00001211static ulong
1212printone(const char* msg, ulong value)
1213{
Tim Peters49f26812002-04-06 01:45:35 +00001214 int i, k;
1215 char buf[100];
1216 ulong origvalue = value;
Tim Peters16bcb6b2002-04-05 05:45:31 +00001217
1218 fputs(msg, stderr);
Tim Peters49f26812002-04-06 01:45:35 +00001219 for (i = (int)strlen(msg); i < 35; ++i)
Tim Peters16bcb6b2002-04-05 05:45:31 +00001220 fputc(' ', stderr);
Tim Peters49f26812002-04-06 01:45:35 +00001221 fputc('=', stderr);
1222
1223 /* Write the value with commas. */
1224 i = 22;
1225 buf[i--] = '\0';
1226 buf[i--] = '\n';
1227 k = 3;
1228 do {
1229 ulong nextvalue = value / 10UL;
1230 uint digit = value - nextvalue * 10UL;
1231 value = nextvalue;
1232 buf[i--] = (char)(digit + '0');
1233 --k;
1234 if (k == 0 && value && i >= 0) {
1235 k = 3;
1236 buf[i--] = ',';
1237 }
1238 } while (value && i >= 0);
1239
1240 while (i >= 0)
1241 buf[i--] = ' ';
1242 fputs(buf, stderr);
1243
1244 return origvalue;
Tim Peters16bcb6b2002-04-05 05:45:31 +00001245}
1246
Tim Peters08d82152002-04-18 22:25:03 +00001247/* Print summary info to stderr about the state of pymalloc's structures.
1248 * In Py_DEBUG mode, also perform some expensive internal consistency
1249 * checks.
1250 */
Tim Peters7ccfadf2002-04-01 06:04:21 +00001251void
Tim Peters0e871182002-04-13 08:29:14 +00001252_PyObject_DebugMallocStats(void)
Tim Peters7ccfadf2002-04-01 06:04:21 +00001253{
1254 uint i;
1255 const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
Tim Peters16bcb6b2002-04-05 05:45:31 +00001256 /* # of pools, allocated blocks, and free blocks per class index */
Tim Peters7ccfadf2002-04-01 06:04:21 +00001257 ulong numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
Tim Peters7ccfadf2002-04-01 06:04:21 +00001258 ulong numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
Tim Peters7ccfadf2002-04-01 06:04:21 +00001259 ulong numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
Tim Peters16bcb6b2002-04-05 05:45:31 +00001260 /* total # of allocated bytes in used and full pools */
1261 ulong allocated_bytes = 0;
1262 /* total # of available bytes in used pools */
1263 ulong available_bytes = 0;
1264 /* # of free pools + pools not yet carved out of current arena */
1265 uint numfreepools = 0;
1266 /* # of bytes for arena alignment padding */
Tim Peters8a8cdfd2002-04-12 20:49:36 +00001267 ulong arena_alignment = 0;
Tim Peters16bcb6b2002-04-05 05:45:31 +00001268 /* # of bytes in used and full pools used for pool_headers */
1269 ulong pool_header_bytes = 0;
1270 /* # of bytes in used and full pools wasted due to quantization,
1271 * i.e. the necessarily leftover space at the ends of used and
1272 * full pools.
1273 */
1274 ulong quantization = 0;
1275 /* running total -- should equal narenas * ARENA_SIZE */
1276 ulong total;
1277 char buf[128];
Tim Peters7ccfadf2002-04-01 06:04:21 +00001278
Tim Peters7ccfadf2002-04-01 06:04:21 +00001279 fprintf(stderr, "Small block threshold = %d, in %u size classes.\n",
1280 SMALL_REQUEST_THRESHOLD, numclasses);
Tim Peters7ccfadf2002-04-01 06:04:21 +00001281
1282 for (i = 0; i < numclasses; ++i)
1283 numpools[i] = numblocks[i] = numfreeblocks[i] = 0;
1284
Tim Peters6169f092002-04-01 20:12:59 +00001285 /* Because full pools aren't linked to from anything, it's easiest
1286 * to march over all the arenas. If we're lucky, most of the memory
1287 * will be living in full pools -- would be a shame to miss them.
Tim Peters7ccfadf2002-04-01 06:04:21 +00001288 */
1289 for (i = 0; i < narenas; ++i) {
1290 uint poolsinarena;
1291 uint j;
1292 uptr base = arenas[i];
1293
1294 /* round up to pool alignment */
1295 poolsinarena = ARENA_SIZE / POOL_SIZE;
1296 if (base & (uptr)POOL_SIZE_MASK) {
1297 --poolsinarena;
Tim Peters16bcb6b2002-04-05 05:45:31 +00001298 arena_alignment += POOL_SIZE;
Tim Peters7ccfadf2002-04-01 06:04:21 +00001299 base &= ~(uptr)POOL_SIZE_MASK;
1300 base += POOL_SIZE;
1301 }
1302
1303 if (i == narenas - 1) {
1304 /* current arena may have raw memory at the end */
1305 numfreepools += nfreepools;
1306 poolsinarena -= nfreepools;
1307 }
1308
1309 /* visit every pool in the arena */
1310 for (j = 0; j < poolsinarena; ++j, base += POOL_SIZE) {
1311 poolp p = (poolp)base;
Tim Peters08d82152002-04-18 22:25:03 +00001312 const uint sz = p->szidx;
1313 uint freeblocks;
1314
Tim Peters7ccfadf2002-04-01 06:04:21 +00001315 if (p->ref.count == 0) {
1316 /* currently unused */
1317 ++numfreepools;
Tim Peters08d82152002-04-18 22:25:03 +00001318 assert(pool_is_in_list(p, freepools));
Tim Peters7ccfadf2002-04-01 06:04:21 +00001319 continue;
1320 }
Tim Peters08d82152002-04-18 22:25:03 +00001321 ++numpools[sz];
1322 numblocks[sz] += p->ref.count;
1323 freeblocks = NUMBLOCKS(sz) - p->ref.count;
1324 numfreeblocks[sz] += freeblocks;
1325#ifdef Py_DEBUG
1326 if (freeblocks > 0)
1327 assert(pool_is_in_list(p, usedpools[sz + sz]));
1328#endif
Tim Peters7ccfadf2002-04-01 06:04:21 +00001329 }
1330 }
1331
1332 fputc('\n', stderr);
Tim Peters49f26812002-04-06 01:45:35 +00001333 fputs("class size num pools blocks in use avail blocks\n"
1334 "----- ---- --------- ------------- ------------\n",
Tim Peters7ccfadf2002-04-01 06:04:21 +00001335 stderr);
1336
Tim Peters7ccfadf2002-04-01 06:04:21 +00001337 for (i = 0; i < numclasses; ++i) {
1338 ulong p = numpools[i];
1339 ulong b = numblocks[i];
1340 ulong f = numfreeblocks[i];
Tim Peterse70ddf32002-04-05 04:32:29 +00001341 uint size = INDEX2SIZE(i);
Tim Peters7ccfadf2002-04-01 06:04:21 +00001342 if (p == 0) {
1343 assert(b == 0 && f == 0);
1344 continue;
1345 }
Tim Peters49f26812002-04-06 01:45:35 +00001346 fprintf(stderr, "%5u %6u %11lu %15lu %13lu\n",
Tim Peters7ccfadf2002-04-01 06:04:21 +00001347 i, size, p, b, f);
Tim Peters16bcb6b2002-04-05 05:45:31 +00001348 allocated_bytes += b * size;
1349 available_bytes += f * size;
1350 pool_header_bytes += p * POOL_OVERHEAD;
1351 quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
Tim Peters7ccfadf2002-04-01 06:04:21 +00001352 }
1353 fputc('\n', stderr);
Tim Peters0e871182002-04-13 08:29:14 +00001354 (void)printone("# times object malloc called", serialno);
Tim Peters16bcb6b2002-04-05 05:45:31 +00001355
1356 PyOS_snprintf(buf, sizeof(buf),
1357 "%u arenas * %d bytes/arena", narenas, ARENA_SIZE);
1358 (void)printone(buf, (ulong)narenas * ARENA_SIZE);
1359
1360 fputc('\n', stderr);
1361
Tim Peters49f26812002-04-06 01:45:35 +00001362 total = printone("# bytes in allocated blocks", allocated_bytes);
Tim Peters0e871182002-04-13 08:29:14 +00001363 total += printone("# bytes in available blocks", available_bytes);
Tim Peters49f26812002-04-06 01:45:35 +00001364
Tim Peters16bcb6b2002-04-05 05:45:31 +00001365 PyOS_snprintf(buf, sizeof(buf),
1366 "%u unused pools * %d bytes", numfreepools, POOL_SIZE);
Tim Peters49f26812002-04-06 01:45:35 +00001367 total += printone(buf, (ulong)numfreepools * POOL_SIZE);
Tim Peters16bcb6b2002-04-05 05:45:31 +00001368
Tim Peters16bcb6b2002-04-05 05:45:31 +00001369 total += printone("# bytes lost to pool headers", pool_header_bytes);
1370 total += printone("# bytes lost to quantization", quantization);
1371 total += printone("# bytes lost to arena alignment", arena_alignment);
1372 (void)printone("Total", total);
Tim Peters7ccfadf2002-04-01 06:04:21 +00001373}
1374
Tim Petersddea2082002-03-23 10:03:50 +00001375#endif /* PYMALLOC_DEBUG */