blob: 11ccffa1ec83dc13bdd745c968c4cfb1e3f827bd [file] [log] [blame]
Fred Drake6659c301998-03-03 22:02:19 +00001\documentclass{manual}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00002
Guido van Rossum9faf4c51997-10-07 14:38:54 +00003\title{Python/C API Reference Manual}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00004
5\input{boilerplate}
6
7\makeindex % tell \index to actually write the .idx file
8
9
10\begin{document}
11
Guido van Rossum9231c8f1997-05-15 21:43:21 +000012\maketitle
13
Fred Drake9f86b661998-07-28 21:55:19 +000014\ifhtml
15\chapter*{Front Matter\label{front}}
16\fi
17
Guido van Rossum9231c8f1997-05-15 21:43:21 +000018\input{copyright}
19
20\begin{abstract}
21
22\noindent
Fred Drake659ebfa2000-04-03 15:42:13 +000023This manual documents the API used by C and \Cpp{} programmers who
Fred Drakee058b4f1998-02-16 06:15:35 +000024want to write extension modules or embed Python. It is a companion to
Fred Drakebe486461999-11-09 17:03:03 +000025\citetitle[../ext/ext.html]{Extending and Embedding the Python
26Interpreter}, which describes the general principles of extension
27writing but does not document the API functions in detail.
Guido van Rossum9231c8f1997-05-15 21:43:21 +000028
Guido van Rossum5b8a5231997-12-30 04:38:44 +000029\strong{Warning:} The current version of this document is incomplete.
30I hope that it is nevertheless useful. I will continue to work on it,
31and release new versions from time to time, independent from Python
32source code releases.
33
Guido van Rossum9231c8f1997-05-15 21:43:21 +000034\end{abstract}
35
Fred Drake4d4f9e71998-01-13 22:25:02 +000036\tableofcontents
Guido van Rossum9231c8f1997-05-15 21:43:21 +000037
Guido van Rossum5060b3b1997-08-17 18:02:23 +000038% XXX Consider moving all this back to ext.tex and giving api.tex
39% XXX a *really* short intro only.
Guido van Rossum9231c8f1997-05-15 21:43:21 +000040
Fred Drakeefd146c1999-02-15 15:30:45 +000041\chapter{Introduction \label{intro}}
Guido van Rossum9231c8f1997-05-15 21:43:21 +000042
Fred Drake659ebfa2000-04-03 15:42:13 +000043The Application Programmer's Interface to Python gives C and
44\Cpp{} programmers access to the Python interpreter at a variety of
45levels. The API is equally usable from \Cpp{}, but for brevity it is
46generally referred to as the Python/C API. There are two
47fundamentally different reasons for using the Python/C API. The first
48reason is to write \emph{extension modules} for specific purposes;
49these are C modules that extend the Python interpreter. This is
50probably the most common use. The second reason is to use Python as a
51component in a larger application; this technique is generally
52referred to as \dfn{embedding} Python in an application.
Guido van Rossum59a61351997-08-14 20:34:33 +000053
Guido van Rossum4a944d71997-08-14 20:35:38 +000054Writing an extension module is a relatively well-understood process,
55where a ``cookbook'' approach works well. There are several tools
56that automate the process to some extent. While people have embedded
57Python in other applications since its early existence, the process of
58embedding Python is less straightforward that writing an extension.
Guido van Rossum59a61351997-08-14 20:34:33 +000059
Guido van Rossum4a944d71997-08-14 20:35:38 +000060Many API functions are useful independent of whether you're embedding
61or extending Python; moreover, most applications that embed Python
62will need to provide a custom extension as well, so it's probably a
63good idea to become familiar with writing an extension before
Guido van Rossum59a61351997-08-14 20:34:33 +000064attempting to embed Python in a real application.
65
Fred Drakeefd146c1999-02-15 15:30:45 +000066
67\section{Include Files \label{includes}}
Guido van Rossum580aa8d1997-11-25 15:34:51 +000068
69All function, type and macro definitions needed to use the Python/C
70API are included in your code by the following line:
71
Fred Drakee058b4f1998-02-16 06:15:35 +000072\begin{verbatim}
73#include "Python.h"
74\end{verbatim}
Guido van Rossum580aa8d1997-11-25 15:34:51 +000075
Fred Drakee058b4f1998-02-16 06:15:35 +000076This implies inclusion of the following standard headers:
77\code{<stdio.h>}, \code{<string.h>}, \code{<errno.h>}, and
78\code{<stdlib.h>} (if available).
Guido van Rossum580aa8d1997-11-25 15:34:51 +000079
80All user visible names defined by Python.h (except those defined by
Fred Drakee058b4f1998-02-16 06:15:35 +000081the included standard headers) have one of the prefixes \samp{Py} or
Fred Drake659ebfa2000-04-03 15:42:13 +000082\samp{_Py}. Names beginning with \samp{_Py} are for internal use by
83the Python implementation and should not be used by extension writers.
84Structure member names do not have a reserved prefix.
Guido van Rossum580aa8d1997-11-25 15:34:51 +000085
Fred Drakee058b4f1998-02-16 06:15:35 +000086\strong{Important:} user code should never define names that begin
87with \samp{Py} or \samp{_Py}. This confuses the reader, and
88jeopardizes the portability of the user code to future Python
89versions, which may define additional names beginning with one of
90these prefixes.
Guido van Rossum580aa8d1997-11-25 15:34:51 +000091
Fred Drake659ebfa2000-04-03 15:42:13 +000092The header files are typically installed with Python. On \UNIX, these
93are located in the directories
94\file{\envvar{prefix}/include/python\var{version}/} and
95\file{\envvar{exec_prefix}/include/python\var{version}/}, where
96\envvar{prefix} and \envvar{exec_prefix} are defined by the
97corresponding parameters to Python's \program{configure} script and
98\var{version} is \code{sys.version[:3]}. On Windows, the headers are
99installed in \file{\envvar{prefix}/include}, where \envvar{prefix} is
100the installation directory specified to the installer.
101
102To include the headers, place both directories (if different) on your
103compiler's search path for includes. Do \emph{not} place the parent
104directories on the search path and then use
105\samp{\#include <python1.5/Python.h>}; this will break on
106multi-platform builds since the platform independent headers under
107\envvar{prefix} include the platform specific headers from
108\envvar{exec_prefix}.
109
Fred Drakeefd146c1999-02-15 15:30:45 +0000110
111\section{Objects, Types and Reference Counts \label{objects}}
Guido van Rossum59a61351997-08-14 20:34:33 +0000112
Guido van Rossum580aa8d1997-11-25 15:34:51 +0000113Most Python/C API functions have one or more arguments as well as a
Fred Drake659ebfa2000-04-03 15:42:13 +0000114return value of type \ctype{PyObject*}. This type is a pointer
Fred Drakee058b4f1998-02-16 06:15:35 +0000115to an opaque data type representing an arbitrary Python
Guido van Rossum580aa8d1997-11-25 15:34:51 +0000116object. Since all Python object types are treated the same way by the
117Python language in most situations (e.g., assignments, scope rules,
118and argument passing), it is only fitting that they should be
Fred Drake659ebfa2000-04-03 15:42:13 +0000119represented by a single C type. Almost all Python objects live on the
120heap: you never declare an automatic or static variable of type
121\ctype{PyObject}, only pointer variables of type \ctype{PyObject*} can
122be declared. The sole exception are the type objects\obindex{type};
123since these must never be deallocated, they are typically static
124\ctype{PyTypeObject} objects.
Guido van Rossum59a61351997-08-14 20:34:33 +0000125
Fred Drakee058b4f1998-02-16 06:15:35 +0000126All Python objects (even Python integers) have a \dfn{type} and a
127\dfn{reference count}. An object's type determines what kind of object
Guido van Rossum4a944d71997-08-14 20:35:38 +0000128it is (e.g., an integer, a list, or a user-defined function; there are
Fred Drakebe486461999-11-09 17:03:03 +0000129many more as explained in the \citetitle[../ref/ref.html]{Python
130Reference Manual}). For each of the well-known types there is a macro
131to check whether an object is of that type; for instance,
Fred Drake659ebfa2000-04-03 15:42:13 +0000132\samp{PyList_Check(\var{a})} is true if (and only if) the object
133pointed to by \var{a} is a Python list.
Guido van Rossum59a61351997-08-14 20:34:33 +0000134
Fred Drakeefd146c1999-02-15 15:30:45 +0000135
136\subsection{Reference Counts \label{refcounts}}
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000137
Guido van Rossum580aa8d1997-11-25 15:34:51 +0000138The reference count is important because today's computers have a
Fred Drake003d8da1998-04-13 00:53:42 +0000139finite (and often severely limited) memory size; it counts how many
Guido van Rossum4a944d71997-08-14 20:35:38 +0000140different places there are that have a reference to an object. Such a
Fred Drake659ebfa2000-04-03 15:42:13 +0000141place could be another object, or a global (or static) C variable, or
142a local variable in some C function. When an object's reference count
Guido van Rossum4a944d71997-08-14 20:35:38 +0000143becomes zero, the object is deallocated. If it contains references to
144other objects, their reference count is decremented. Those other
145objects may be deallocated in turn, if this decrement makes their
146reference count become zero, and so on. (There's an obvious problem
147with objects that reference each other here; for now, the solution is
Fred Drake659ebfa2000-04-03 15:42:13 +0000148``don't do that.'')
Guido van Rossum59a61351997-08-14 20:34:33 +0000149
Guido van Rossum4a944d71997-08-14 20:35:38 +0000150Reference counts are always manipulated explicitly. The normal way is
Fred Drake659ebfa2000-04-03 15:42:13 +0000151to use the macro \cfunction{Py_INCREF()}\ttindex{Py_INCREF()} to
152increment an object's reference count by one, and
153\cfunction{Py_DECREF()}\ttindex{Py_DECREF()} to decrement it by
154one. The \cfunction{Py_DECREF()} macro is considerably more complex
155than the incref one, since it must check whether the reference count
156becomes zero and then cause the object's deallocator to be called.
157The deallocator is a function pointer contained in the object's type
158structure. The type-specific deallocator takes care of decrementing
159the reference counts for other objects contained in the object if this
160is a compound object type, such as a list, as well as performing any
161additional finalization that's needed. There's no chance that the
162reference count can overflow; at least as many bits are used to hold
163the reference count as there are distinct memory locations in virtual
164memory (assuming \code{sizeof(long) >= sizeof(char*)}). Thus, the
165reference count increment is a simple operation.
Guido van Rossum59a61351997-08-14 20:34:33 +0000166
Guido van Rossum4a944d71997-08-14 20:35:38 +0000167It is not necessary to increment an object's reference count for every
168local variable that contains a pointer to an object. In theory, the
Fred Drakee058b4f1998-02-16 06:15:35 +0000169object's reference count goes up by one when the variable is made to
Guido van Rossum4a944d71997-08-14 20:35:38 +0000170point to it and it goes down by one when the variable goes out of
171scope. However, these two cancel each other out, so at the end the
172reference count hasn't changed. The only real reason to use the
173reference count is to prevent the object from being deallocated as
174long as our variable is pointing to it. If we know that there is at
175least one other reference to the object that lives at least as long as
176our variable, there is no need to increment the reference count
177temporarily. An important situation where this arises is in objects
Fred Drake659ebfa2000-04-03 15:42:13 +0000178that are passed as arguments to C functions in an extension module
Guido van Rossum4a944d71997-08-14 20:35:38 +0000179that are called from Python; the call mechanism guarantees to hold a
Guido van Rossum59a61351997-08-14 20:34:33 +0000180reference to every argument for the duration of the call.
181
Fred Drakee058b4f1998-02-16 06:15:35 +0000182However, a common pitfall is to extract an object from a list and
183hold on to it for a while without incrementing its reference count.
184Some other operation might conceivably remove the object from the
185list, decrementing its reference count and possible deallocating it.
186The real danger is that innocent-looking operations may invoke
187arbitrary Python code which could do this; there is a code path which
188allows control to flow back to the user from a \cfunction{Py_DECREF()},
189so almost any operation is potentially dangerous.
Guido van Rossum59a61351997-08-14 20:34:33 +0000190
Guido van Rossum4a944d71997-08-14 20:35:38 +0000191A safe approach is to always use the generic operations (functions
Fred Drake659ebfa2000-04-03 15:42:13 +0000192whose name begins with \samp{PyObject_}, \samp{PyNumber_},
193\samp{PySequence_} or \samp{PyMapping_}). These operations always
194increment the reference count of the object they return. This leaves
195the caller with the responsibility to call
196\cfunction{Py_DECREF()} when they are done with the result; this soon
197becomes second nature.
Guido van Rossum59a61351997-08-14 20:34:33 +0000198
Fred Drakeefd146c1999-02-15 15:30:45 +0000199
200\subsubsection{Reference Count Details \label{refcountDetails}}
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000201
202The reference count behavior of functions in the Python/C API is best
Fred Drake659ebfa2000-04-03 15:42:13 +0000203explained in terms of \emph{ownership of references}. Note that we
Guido van Rossum580aa8d1997-11-25 15:34:51 +0000204talk of owning references, never of owning objects; objects are always
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000205shared! When a function owns a reference, it has to dispose of it
Fred Drakee058b4f1998-02-16 06:15:35 +0000206properly --- either by passing ownership on (usually to its caller) or
207by calling \cfunction{Py_DECREF()} or \cfunction{Py_XDECREF()}. When
208a function passes ownership of a reference on to its caller, the
209caller is said to receive a \emph{new} reference. When no ownership
210is transferred, the caller is said to \emph{borrow} the reference.
211Nothing needs to be done for a borrowed reference.
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000212
Guido van Rossum580aa8d1997-11-25 15:34:51 +0000213Conversely, when calling a function passes it a reference to an
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000214object, there are two possibilities: the function \emph{steals} a
215reference to the object, or it does not. Few functions steal
Fred Drakee058b4f1998-02-16 06:15:35 +0000216references; the two notable exceptions are
Fred Drake659ebfa2000-04-03 15:42:13 +0000217\cfunction{PyList_SetItem()}\ttindex{PyList_SetItem()} and
218\cfunction{PyTuple_SetItem()}\ttindex{PyTuple_SetItem()}, which
Fred Drakee058b4f1998-02-16 06:15:35 +0000219steal a reference to the item (but not to the tuple or list into which
Fred Drake003d8da1998-04-13 00:53:42 +0000220the item is put!). These functions were designed to steal a reference
Fred Drakee058b4f1998-02-16 06:15:35 +0000221because of a common idiom for populating a tuple or list with newly
222created objects; for example, the code to create the tuple \code{(1,
2232, "three")} could look like this (forgetting about error handling for
Fred Drake659ebfa2000-04-03 15:42:13 +0000224the moment; a better way to code this is shown below):
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000225
226\begin{verbatim}
227PyObject *t;
Fred Drakec6fa34e1998-04-02 06:47:24 +0000228
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000229t = PyTuple_New(3);
230PyTuple_SetItem(t, 0, PyInt_FromLong(1L));
231PyTuple_SetItem(t, 1, PyInt_FromLong(2L));
232PyTuple_SetItem(t, 2, PyString_FromString("three"));
233\end{verbatim}
234
Fred Drakee058b4f1998-02-16 06:15:35 +0000235Incidentally, \cfunction{PyTuple_SetItem()} is the \emph{only} way to
236set tuple items; \cfunction{PySequence_SetItem()} and
237\cfunction{PyObject_SetItem()} refuse to do this since tuples are an
238immutable data type. You should only use
239\cfunction{PyTuple_SetItem()} for tuples that you are creating
Guido van Rossum5b8a5231997-12-30 04:38:44 +0000240yourself.
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000241
242Equivalent code for populating a list can be written using
Fred Drakee058b4f1998-02-16 06:15:35 +0000243\cfunction{PyList_New()} and \cfunction{PyList_SetItem()}. Such code
244can also use \cfunction{PySequence_SetItem()}; this illustrates the
245difference between the two (the extra \cfunction{Py_DECREF()} calls):
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000246
247\begin{verbatim}
248PyObject *l, *x;
Fred Drakec6fa34e1998-04-02 06:47:24 +0000249
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000250l = PyList_New(3);
251x = PyInt_FromLong(1L);
Guido van Rossum5b8a5231997-12-30 04:38:44 +0000252PySequence_SetItem(l, 0, x); Py_DECREF(x);
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000253x = PyInt_FromLong(2L);
Guido van Rossum5b8a5231997-12-30 04:38:44 +0000254PySequence_SetItem(l, 1, x); Py_DECREF(x);
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000255x = PyString_FromString("three");
Guido van Rossum5b8a5231997-12-30 04:38:44 +0000256PySequence_SetItem(l, 2, x); Py_DECREF(x);
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000257\end{verbatim}
258
Guido van Rossum580aa8d1997-11-25 15:34:51 +0000259You might find it strange that the ``recommended'' approach takes more
260code. However, in practice, you will rarely use these ways of
261creating and populating a tuple or list. There's a generic function,
Fred Drakee058b4f1998-02-16 06:15:35 +0000262\cfunction{Py_BuildValue()}, that can create most common objects from
Fred Drake659ebfa2000-04-03 15:42:13 +0000263C values, directed by a \dfn{format string}. For example, the
Fred Drakee058b4f1998-02-16 06:15:35 +0000264above two blocks of code could be replaced by the following (which
265also takes care of the error checking):
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000266
267\begin{verbatim}
268PyObject *t, *l;
Fred Drakec6fa34e1998-04-02 06:47:24 +0000269
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000270t = Py_BuildValue("(iis)", 1, 2, "three");
271l = Py_BuildValue("[iis]", 1, 2, "three");
272\end{verbatim}
273
Fred Drakee058b4f1998-02-16 06:15:35 +0000274It is much more common to use \cfunction{PyObject_SetItem()} and
275friends with items whose references you are only borrowing, like
276arguments that were passed in to the function you are writing. In
277that case, their behaviour regarding reference counts is much saner,
278since you don't have to increment a reference count so you can give a
279reference away (``have it be stolen''). For example, this function
280sets all items of a list (actually, any mutable sequence) to a given
281item:
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000282
283\begin{verbatim}
284int set_all(PyObject *target, PyObject *item)
285{
286 int i, n;
Fred Drakec6fa34e1998-04-02 06:47:24 +0000287
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000288 n = PyObject_Length(target);
289 if (n < 0)
290 return -1;
291 for (i = 0; i < n; i++) {
292 if (PyObject_SetItem(target, i, item) < 0)
293 return -1;
294 }
295 return 0;
296}
297\end{verbatim}
Fred Drake659ebfa2000-04-03 15:42:13 +0000298\ttindex{set_all()}
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000299
300The situation is slightly different for function return values.
301While passing a reference to most functions does not change your
302ownership responsibilities for that reference, many functions that
303return a referece to an object give you ownership of the reference.
304The reason is simple: in many cases, the returned object is created
305on the fly, and the reference you get is the only reference to the
Fred Drakee058b4f1998-02-16 06:15:35 +0000306object. Therefore, the generic functions that return object
307references, like \cfunction{PyObject_GetItem()} and
308\cfunction{PySequence_GetItem()}, always return a new reference (i.e.,
309the caller becomes the owner of the reference).
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000310
311It is important to realize that whether you own a reference returned
Fred Drakee058b4f1998-02-16 06:15:35 +0000312by a function depends on which function you call only --- \emph{the
313plumage} (i.e., the type of the type of the object passed as an
314argument to the function) \emph{doesn't enter into it!} Thus, if you
315extract an item from a list using \cfunction{PyList_GetItem()}, you
316don't own the reference --- but if you obtain the same item from the
317same list using \cfunction{PySequence_GetItem()} (which happens to
318take exactly the same arguments), you do own a reference to the
319returned object.
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000320
Fred Drakee058b4f1998-02-16 06:15:35 +0000321Here is an example of how you could write a function that computes the
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000322sum of the items in a list of integers; once using
Fred Drake659ebfa2000-04-03 15:42:13 +0000323\cfunction{PyList_GetItem()}\ttindex{PyList_GetItem()}, and once using
324\cfunction{PySequence_GetItem()}\ttindex{PySequence_GetItem()}.
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000325
326\begin{verbatim}
327long sum_list(PyObject *list)
328{
329 int i, n;
330 long total = 0;
331 PyObject *item;
Fred Drakec6fa34e1998-04-02 06:47:24 +0000332
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000333 n = PyList_Size(list);
334 if (n < 0)
335 return -1; /* Not a list */
336 for (i = 0; i < n; i++) {
337 item = PyList_GetItem(list, i); /* Can't fail */
338 if (!PyInt_Check(item)) continue; /* Skip non-integers */
339 total += PyInt_AsLong(item);
340 }
341 return total;
342}
343\end{verbatim}
Fred Drake659ebfa2000-04-03 15:42:13 +0000344\ttindex{sum_list()}
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000345
346\begin{verbatim}
347long sum_sequence(PyObject *sequence)
348{
349 int i, n;
350 long total = 0;
351 PyObject *item;
Fred Drake659ebfa2000-04-03 15:42:13 +0000352 n = PySequence_Length(sequence);
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000353 if (n < 0)
354 return -1; /* Has no length */
355 for (i = 0; i < n; i++) {
Fred Drake659ebfa2000-04-03 15:42:13 +0000356 item = PySequence_GetItem(sequence, i);
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000357 if (item == NULL)
358 return -1; /* Not a sequence, or other failure */
359 if (PyInt_Check(item))
360 total += PyInt_AsLong(item);
Guido van Rossum5b8a5231997-12-30 04:38:44 +0000361 Py_DECREF(item); /* Discard reference ownership */
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000362 }
363 return total;
364}
365\end{verbatim}
Fred Drake659ebfa2000-04-03 15:42:13 +0000366\ttindex{sum_sequence()}
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000367
Fred Drakeefd146c1999-02-15 15:30:45 +0000368
369\subsection{Types \label{types}}
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000370
371There are few other data types that play a significant role in
Fred Drake659ebfa2000-04-03 15:42:13 +0000372the Python/C API; most are simple C types such as \ctype{int},
373\ctype{long}, \ctype{double} and \ctype{char*}. A few structure types
Guido van Rossum4a944d71997-08-14 20:35:38 +0000374are used to describe static tables used to list the functions exported
Fred Drake659ebfa2000-04-03 15:42:13 +0000375by a module or the data attributes of a new object type, and another
376is used to describe the value of a complex number. These will
Guido van Rossum59a61351997-08-14 20:34:33 +0000377be discussed together with the functions that use them.
378
Fred Drakeefd146c1999-02-15 15:30:45 +0000379
380\section{Exceptions \label{exceptions}}
Guido van Rossum59a61351997-08-14 20:34:33 +0000381
Guido van Rossum4a944d71997-08-14 20:35:38 +0000382The Python programmer only needs to deal with exceptions if specific
383error handling is required; unhandled exceptions are automatically
Fred Drake659ebfa2000-04-03 15:42:13 +0000384propagated to the caller, then to the caller's caller, and so on, until
Guido van Rossum4a944d71997-08-14 20:35:38 +0000385they reach the top-level interpreter, where they are reported to the
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000386user accompanied by a stack traceback.
Guido van Rossum59a61351997-08-14 20:34:33 +0000387
Fred Drake659ebfa2000-04-03 15:42:13 +0000388For C programmers, however, error checking always has to be explicit.
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000389All functions in the Python/C API can raise exceptions, unless an
390explicit claim is made otherwise in a function's documentation. In
391general, when a function encounters an error, it sets an exception,
392discards any object references that it owns, and returns an
Fred Drakee058b4f1998-02-16 06:15:35 +0000393error indicator --- usually \NULL{} or \code{-1}. A few functions
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000394return a Boolean true/false result, with false indicating an error.
395Very few functions return no explicit error indicator or have an
396ambiguous return value, and require explicit testing for errors with
Fred Drake659ebfa2000-04-03 15:42:13 +0000397\cfunction{PyErr_Occurred()}\ttindex{PyErr_Occurred()}.
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000398
399Exception state is maintained in per-thread storage (this is
400equivalent to using global storage in an unthreaded application). A
Fred Drakec6fa34e1998-04-02 06:47:24 +0000401thread can be in one of two states: an exception has occurred, or not.
Fred Drakee058b4f1998-02-16 06:15:35 +0000402The function \cfunction{PyErr_Occurred()} can be used to check for
403this: it returns a borrowed reference to the exception type object
404when an exception has occurred, and \NULL{} otherwise. There are a
405number of functions to set the exception state:
Fred Drake659ebfa2000-04-03 15:42:13 +0000406\cfunction{PyErr_SetString()}\ttindex{PyErr_SetString()} is the most
407common (though not the most general) function to set the exception
408state, and \cfunction{PyErr_Clear()}\ttindex{PyErr_Clear()} clears the
409exception state.
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000410
411The full exception state consists of three objects (all of which can
Fred Drakee058b4f1998-02-16 06:15:35 +0000412be \NULL{}): the exception type, the corresponding exception
Fred Drake659ebfa2000-04-03 15:42:13 +0000413value, and the traceback. These have the same meanings as the Python
414\withsubitem{(in module sys)}{
415 \ttindex{exc_type}\ttindex{exc_value}\ttindex{exc_traceback}}
416objects \code{sys.exc_type}, \code{sys.exc_value}, and
417\code{sys.exc_traceback}; however, they are not the same: the Python
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000418objects represent the last exception being handled by a Python
Fred Drake659ebfa2000-04-03 15:42:13 +0000419\keyword{try} \ldots\ \keyword{except} statement, while the C level
Fred Drakee058b4f1998-02-16 06:15:35 +0000420exception state only exists while an exception is being passed on
Fred Drake659ebfa2000-04-03 15:42:13 +0000421between C functions until it reaches the Python bytecode interpreter's
422main loop, which takes care of transferring it to \code{sys.exc_type}
423and friends.
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000424
Fred Drakec6fa34e1998-04-02 06:47:24 +0000425Note that starting with Python 1.5, the preferred, thread-safe way to
Fred Drake659ebfa2000-04-03 15:42:13 +0000426access the exception state from Python code is to call the function
427\withsubitem{(in module sys)}{\ttindex{exc_info()}}
Fred Drakee058b4f1998-02-16 06:15:35 +0000428\function{sys.exc_info()}, which returns the per-thread exception state
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000429for Python code. Also, the semantics of both ways to access the
430exception state have changed so that a function which catches an
431exception will save and restore its thread's exception state so as to
432preserve the exception state of its caller. This prevents common bugs
433in exception handling code caused by an innocent-looking function
434overwriting the exception being handled; it also reduces the often
435unwanted lifetime extension for objects that are referenced by the
Fred Drakec6fa34e1998-04-02 06:47:24 +0000436stack frames in the traceback.
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000437
438As a general principle, a function that calls another function to
439perform some task should check whether the called function raised an
440exception, and if so, pass the exception state on to its caller. It
Fred Drake659ebfa2000-04-03 15:42:13 +0000441should discard any object references that it owns, and return an
Fred Drakee058b4f1998-02-16 06:15:35 +0000442error indicator, but it should \emph{not} set another exception ---
443that would overwrite the exception that was just raised, and lose
444important information about the exact cause of the error.
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000445
Fred Drake659ebfa2000-04-03 15:42:13 +0000446A simple example of detecting exceptions and passing them on is shown
447in the \cfunction{sum_sequence()}\ttindex{sum_sequence()} example
448above. It so happens that that example doesn't need to clean up any
449owned references when it detects an error. The following example
450function shows some error cleanup. First, to remind you why you like
451Python, we show the equivalent Python code:
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000452
453\begin{verbatim}
Guido van Rossum580aa8d1997-11-25 15:34:51 +0000454def incr_item(dict, key):
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000455 try:
Guido van Rossum580aa8d1997-11-25 15:34:51 +0000456 item = dict[key]
457 except KeyError:
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000458 item = 0
Guido van Rossum580aa8d1997-11-25 15:34:51 +0000459 return item + 1
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000460\end{verbatim}
Fred Drake659ebfa2000-04-03 15:42:13 +0000461\ttindex{incr_item()}
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000462
Fred Drake659ebfa2000-04-03 15:42:13 +0000463Here is the corresponding C code, in all its glory:
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000464
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000465\begin{verbatim}
Guido van Rossum580aa8d1997-11-25 15:34:51 +0000466int incr_item(PyObject *dict, PyObject *key)
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000467{
468 /* Objects all initialized to NULL for Py_XDECREF */
469 PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
Guido van Rossum5b8a5231997-12-30 04:38:44 +0000470 int rv = -1; /* Return value initialized to -1 (failure) */
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000471
Guido van Rossum580aa8d1997-11-25 15:34:51 +0000472 item = PyObject_GetItem(dict, key);
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000473 if (item == NULL) {
Fred Drakec6fa34e1998-04-02 06:47:24 +0000474 /* Handle KeyError only: */
475 if (!PyErr_ExceptionMatches(PyExc_KeyError)) goto error;
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000476
477 /* Clear the error and use zero: */
478 PyErr_Clear();
Guido van Rossum580aa8d1997-11-25 15:34:51 +0000479 item = PyInt_FromLong(0L);
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000480 if (item == NULL) goto error;
481 }
482
483 const_one = PyInt_FromLong(1L);
484 if (const_one == NULL) goto error;
485
486 incremented_item = PyNumber_Add(item, const_one);
487 if (incremented_item == NULL) goto error;
488
Guido van Rossum580aa8d1997-11-25 15:34:51 +0000489 if (PyObject_SetItem(dict, key, incremented_item) < 0) goto error;
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000490 rv = 0; /* Success */
491 /* Continue with cleanup code */
492
493 error:
494 /* Cleanup code, shared by success and failure path */
495
496 /* Use Py_XDECREF() to ignore NULL references */
497 Py_XDECREF(item);
498 Py_XDECREF(const_one);
499 Py_XDECREF(incremented_item);
500
501 return rv; /* -1 for error, 0 for success */
502}
503\end{verbatim}
Fred Drake659ebfa2000-04-03 15:42:13 +0000504\ttindex{incr_item()}
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000505
Fred Drakef8830d11998-04-23 14:06:01 +0000506This example represents an endorsed use of the \keyword{goto} statement
Fred Drake659ebfa2000-04-03 15:42:13 +0000507in C! It illustrates the use of
508\cfunction{PyErr_ExceptionMatches()}\ttindex{PyErr_ExceptionMatches()} and
509\cfunction{PyErr_Clear()}\ttindex{PyErr_Clear()} to
510handle specific exceptions, and the use of
511\cfunction{Py_XDECREF()}\ttindex{Py_XDECREF()} to
512dispose of owned references that may be \NULL{} (note the
513\character{X} in the name; \cfunction{Py_DECREF()} would crash when
514confronted with a \NULL{} reference). It is important that the
515variables used to hold owned references are initialized to \NULL{} for
516this to work; likewise, the proposed return value is initialized to
517\code{-1} (failure) and only set to success after the final call made
518is successful.
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000519
Guido van Rossum59a61351997-08-14 20:34:33 +0000520
Fred Drakeefd146c1999-02-15 15:30:45 +0000521\section{Embedding Python \label{embedding}}
Guido van Rossum59a61351997-08-14 20:34:33 +0000522
Guido van Rossum580aa8d1997-11-25 15:34:51 +0000523The one important task that only embedders (as opposed to extension
524writers) of the Python interpreter have to worry about is the
525initialization, and possibly the finalization, of the Python
526interpreter. Most functionality of the interpreter can only be used
527after the interpreter has been initialized.
Guido van Rossum59a61351997-08-14 20:34:33 +0000528
Fred Drake659ebfa2000-04-03 15:42:13 +0000529The basic initialization function is
530\cfunction{Py_Initialize()}\ttindex{Py_Initialize()}.
Fred Drakee058b4f1998-02-16 06:15:35 +0000531This initializes the table of loaded modules, and creates the
Fred Drake4de05a91998-02-16 14:25:26 +0000532fundamental modules \module{__builtin__}\refbimodindex{__builtin__},
533\module{__main__}\refbimodindex{__main__} and
534\module{sys}\refbimodindex{sys}. It also initializes the module
Fred Drakec6fa34e1998-04-02 06:47:24 +0000535search path (\code{sys.path}).%
536\indexiii{module}{search}{path}
Fred Drake659ebfa2000-04-03 15:42:13 +0000537\withsubitem{(in module sys)}{\ttindex{path}}
Guido van Rossum59a61351997-08-14 20:34:33 +0000538
Fred Drakee058b4f1998-02-16 06:15:35 +0000539\cfunction{Py_Initialize()} does not set the ``script argument list''
Guido van Rossum4a944d71997-08-14 20:35:38 +0000540(\code{sys.argv}). If this variable is needed by Python code that
541will be executed later, it must be set explicitly with a call to
Fred Drake659ebfa2000-04-03 15:42:13 +0000542\code{PySys_SetArgv(\var{argc},
543\var{argv})}\ttindex{PySys_SetArgv()} subsequent to the call to
544\cfunction{Py_Initialize()}.
Guido van Rossum59a61351997-08-14 20:34:33 +0000545
Fred Drakeb0a78731998-01-13 18:51:10 +0000546On most systems (in particular, on \UNIX{} and Windows, although the
Fred Drake659ebfa2000-04-03 15:42:13 +0000547details are slightly different),
548\cfunction{Py_Initialize()} calculates the module search path based
549upon its best guess for the location of the standard Python
550interpreter executable, assuming that the Python library is found in a
551fixed location relative to the Python interpreter executable. In
552particular, it looks for a directory named
Fred Drake2de75ec1998-04-09 14:12:11 +0000553\file{lib/python1.5} (replacing \file{1.5} with the current
Guido van Rossum42cefd01997-10-05 15:27:29 +0000554interpreter version) relative to the parent directory where the
Fred Drakee058b4f1998-02-16 06:15:35 +0000555executable named \file{python} is found on the shell command search
Fred Drakec6fa34e1998-04-02 06:47:24 +0000556path (the environment variable \envvar{PATH}).
Guido van Rossum42cefd01997-10-05 15:27:29 +0000557
558For instance, if the Python executable is found in
Fred Drakee058b4f1998-02-16 06:15:35 +0000559\file{/usr/local/bin/python}, it will assume that the libraries are in
Fred Drake2de75ec1998-04-09 14:12:11 +0000560\file{/usr/local/lib/python1.5}. (In fact, this particular path
Fred Drakee058b4f1998-02-16 06:15:35 +0000561is also the ``fallback'' location, used when no executable file named
Fred Drakec6fa34e1998-04-02 06:47:24 +0000562\file{python} is found along \envvar{PATH}.) The user can override
563this behavior by setting the environment variable \envvar{PYTHONHOME},
Guido van Rossum580aa8d1997-11-25 15:34:51 +0000564or insert additional directories in front of the standard path by
Fred Drakec6fa34e1998-04-02 06:47:24 +0000565setting \envvar{PYTHONPATH}.
Guido van Rossum59a61351997-08-14 20:34:33 +0000566
Guido van Rossum4a944d71997-08-14 20:35:38 +0000567The embedding application can steer the search by calling
Fred Drake659ebfa2000-04-03 15:42:13 +0000568\code{Py_SetProgramName(\var{file})}\ttindex{Py_SetProgramName()} \emph{before} calling
Fred Drakec6fa34e1998-04-02 06:47:24 +0000569\cfunction{Py_Initialize()}. Note that \envvar{PYTHONHOME} still
570overrides this and \envvar{PYTHONPATH} is still inserted in front of
Fred Drakee058b4f1998-02-16 06:15:35 +0000571the standard path. An application that requires total control has to
Fred Drake659ebfa2000-04-03 15:42:13 +0000572provide its own implementation of
573\cfunction{Py_GetPath()}\ttindex{Py_GetPath()},
574\cfunction{Py_GetPrefix()}\ttindex{Py_GetPrefix()},
575\cfunction{Py_GetExecPrefix()}\ttindex{Py_GetExecPrefix()}, and
576\cfunction{Py_GetProgramFullPath()}\ttindex{Py_GetProgramFullPath()} (all
577defined in \file{Modules/getpath.c}).
Guido van Rossum59a61351997-08-14 20:34:33 +0000578
Guido van Rossum4a944d71997-08-14 20:35:38 +0000579Sometimes, it is desirable to ``uninitialize'' Python. For instance,
580the application may want to start over (make another call to
Fred Drakee058b4f1998-02-16 06:15:35 +0000581\cfunction{Py_Initialize()}) or the application is simply done with its
Guido van Rossum580aa8d1997-11-25 15:34:51 +0000582use of Python and wants to free all memory allocated by Python. This
Fred Drakee058b4f1998-02-16 06:15:35 +0000583can be accomplished by calling \cfunction{Py_Finalize()}. The function
Fred Drake659ebfa2000-04-03 15:42:13 +0000584\cfunction{Py_IsInitialized()}\ttindex{Py_IsInitialized()} returns
585true if Python is currently in the initialized state. More
586information about these functions is given in a later chapter.
Guido van Rossum59a61351997-08-14 20:34:33 +0000587
Guido van Rossum4a944d71997-08-14 20:35:38 +0000588
Fred Drakeefd146c1999-02-15 15:30:45 +0000589\chapter{The Very High Level Layer \label{veryhigh}}
Guido van Rossum4a944d71997-08-14 20:35:38 +0000590
Fred Drakee5bf8b21998-02-12 21:22:28 +0000591The functions in this chapter will let you execute Python source code
592given in a file or a buffer, but they will not let you interact in a
593more detailed way with the interpreter.
Guido van Rossum4a944d71997-08-14 20:35:38 +0000594
Fred Drake659ebfa2000-04-03 15:42:13 +0000595Several of these functions accept a start symbol from the grammar as a
596parameter. The available start symbols are \constant{Py_eval_input},
597\constant{Py_file_input}, and \constant{Py_single_input}. These are
598described following the functions which accept them as parameters.
599
Fred Drakec6fa34e1998-04-02 06:47:24 +0000600\begin{cfuncdesc}{int}{PyRun_AnyFile}{FILE *fp, char *filename}
Fred Drake0041a941999-04-29 04:20:46 +0000601 If \var{fp} refers to a file associated with an interactive device
602 (console or terminal input or \UNIX{} pseudo-terminal), return the
603 value of \cfunction{PyRun_InteractiveLoop()}, otherwise return the
604 result of \cfunction{PyRun_SimpleFile()}. If \var{filename} is
Fred Drake659ebfa2000-04-03 15:42:13 +0000605 \NULL{}, this function uses \code{"???"} as the filename.
Guido van Rossum9231c8f1997-05-15 21:43:21 +0000606\end{cfuncdesc}
607
Fred Drakec6fa34e1998-04-02 06:47:24 +0000608\begin{cfuncdesc}{int}{PyRun_SimpleString}{char *command}
Fred Drake0041a941999-04-29 04:20:46 +0000609 Executes the Python source code from \var{command} in the
610 \module{__main__} module. If \module{__main__} does not already
611 exist, it is created. Returns \code{0} on success or \code{-1} if
612 an exception was raised. If there was an error, there is no way to
613 get the exception information.
Guido van Rossum9231c8f1997-05-15 21:43:21 +0000614\end{cfuncdesc}
615
Fred Drakec6fa34e1998-04-02 06:47:24 +0000616\begin{cfuncdesc}{int}{PyRun_SimpleFile}{FILE *fp, char *filename}
Fred Drake0041a941999-04-29 04:20:46 +0000617 Similar to \cfunction{PyRun_SimpleString()}, but the Python source
618 code is read from \var{fp} instead of an in-memory string.
619 \var{filename} should be the name of the file.
Fred Drakee5bf8b21998-02-12 21:22:28 +0000620\end{cfuncdesc}
621
Fred Drakec6fa34e1998-04-02 06:47:24 +0000622\begin{cfuncdesc}{int}{PyRun_InteractiveOne}{FILE *fp, char *filename}
Fred Drakee5bf8b21998-02-12 21:22:28 +0000623\end{cfuncdesc}
624
Fred Drakec6fa34e1998-04-02 06:47:24 +0000625\begin{cfuncdesc}{int}{PyRun_InteractiveLoop}{FILE *fp, char *filename}
Fred Drakee5bf8b21998-02-12 21:22:28 +0000626\end{cfuncdesc}
627
Fred Drakec6fa34e1998-04-02 06:47:24 +0000628\begin{cfuncdesc}{struct _node*}{PyParser_SimpleParseString}{char *str,
629 int start}
Fred Drake0041a941999-04-29 04:20:46 +0000630 Parse Python source code from \var{str} using the start token
631 \var{start}. The result can be used to create a code object which
632 can be evaluated efficiently. This is useful if a code fragment
633 must be evaluated many times.
Fred Drakee5bf8b21998-02-12 21:22:28 +0000634\end{cfuncdesc}
635
Fred Drakec6fa34e1998-04-02 06:47:24 +0000636\begin{cfuncdesc}{struct _node*}{PyParser_SimpleParseFile}{FILE *fp,
637 char *filename, int start}
Fred Drake0041a941999-04-29 04:20:46 +0000638 Similar to \cfunction{PyParser_SimpleParseString()}, but the Python
639 source code is read from \var{fp} instead of an in-memory string.
640 \var{filename} should be the name of the file.
Fred Drakee5bf8b21998-02-12 21:22:28 +0000641\end{cfuncdesc}
642
Fred Drakec6fa34e1998-04-02 06:47:24 +0000643\begin{cfuncdesc}{PyObject*}{PyRun_String}{char *str, int start,
644 PyObject *globals,
645 PyObject *locals}
Fred Drake0041a941999-04-29 04:20:46 +0000646 Execute Python source code from \var{str} in the context specified
647 by the dictionaries \var{globals} and \var{locals}. The parameter
648 \var{start} specifies the start token that should be used to parse
649 the source code.
650
651 Returns the result of executing the code as a Python object, or
652 \NULL{} if an exception was raised.
Fred Drakee5bf8b21998-02-12 21:22:28 +0000653\end{cfuncdesc}
654
Fred Drakec6fa34e1998-04-02 06:47:24 +0000655\begin{cfuncdesc}{PyObject*}{PyRun_File}{FILE *fp, char *filename,
656 int start, PyObject *globals,
657 PyObject *locals}
Fred Drake0041a941999-04-29 04:20:46 +0000658 Similar to \cfunction{PyRun_String()}, but the Python source code is
Fred Drake659ebfa2000-04-03 15:42:13 +0000659 read from \var{fp} instead of an in-memory string.
660 \var{filename} should be the name of the file.
Fred Drakee5bf8b21998-02-12 21:22:28 +0000661\end{cfuncdesc}
662
Fred Drakec6fa34e1998-04-02 06:47:24 +0000663\begin{cfuncdesc}{PyObject*}{Py_CompileString}{char *str, char *filename,
664 int start}
Fred Drake0041a941999-04-29 04:20:46 +0000665 Parse and compile the Python source code in \var{str}, returning the
666 resulting code object. The start token is given by \var{start};
Fred Drakec924b8d1999-08-23 18:57:25 +0000667 this can be used to constrain the code which can be compiled and should
668 be \constant{Py_eval_input}, \constant{Py_file_input}, or
669 \constant{Py_single_input}. The filename specified by
670 \var{filename} is used to construct the code object and may appear
671 in tracebacks or \exception{SyntaxError} exception messages. This
672 returns \NULL{} if the code cannot be parsed or compiled.
Guido van Rossum9231c8f1997-05-15 21:43:21 +0000673\end{cfuncdesc}
674
Fred Drakec924b8d1999-08-23 18:57:25 +0000675\begin{cvardesc}{int}{Py_eval_input}
676 The start symbol from the Python grammar for isolated expressions;
Fred Drake659ebfa2000-04-03 15:42:13 +0000677 for use with \cfunction{Py_CompileString()}\ttindex{Py_CompileString()}.
Fred Drakec924b8d1999-08-23 18:57:25 +0000678\end{cvardesc}
679
680\begin{cvardesc}{int}{Py_file_input}
681 The start symbol from the Python grammar for sequences of statements
682 as read from a file or other source; for use with
Fred Drake659ebfa2000-04-03 15:42:13 +0000683 \cfunction{Py_CompileString()}\ttindex{Py_CompileString()}. This is
684 the symbol to use when compiling arbitrarily long Python source code.
Fred Drakec924b8d1999-08-23 18:57:25 +0000685\end{cvardesc}
686
687\begin{cvardesc}{int}{Py_single_input}
688 The start symbol from the Python grammar for a single statement; for
Fred Drake659ebfa2000-04-03 15:42:13 +0000689 use with \cfunction{Py_CompileString()}\ttindex{Py_CompileString()}.
690 This is the symbol used for the interactive interpreter loop.
Fred Drakec924b8d1999-08-23 18:57:25 +0000691\end{cvardesc}
692
Guido van Rossum9231c8f1997-05-15 21:43:21 +0000693
Fred Drakeefd146c1999-02-15 15:30:45 +0000694\chapter{Reference Counting \label{countingRefs}}
Guido van Rossum9231c8f1997-05-15 21:43:21 +0000695
Guido van Rossum580aa8d1997-11-25 15:34:51 +0000696The macros in this section are used for managing reference counts
Guido van Rossum9231c8f1997-05-15 21:43:21 +0000697of Python objects.
698
699\begin{cfuncdesc}{void}{Py_INCREF}{PyObject *o}
Fred Drakec6fa34e1998-04-02 06:47:24 +0000700Increment the reference count for object \var{o}. The object must
Guido van Rossum9231c8f1997-05-15 21:43:21 +0000701not be \NULL{}; if you aren't sure that it isn't \NULL{}, use
Fred Drakee058b4f1998-02-16 06:15:35 +0000702\cfunction{Py_XINCREF()}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +0000703\end{cfuncdesc}
704
705\begin{cfuncdesc}{void}{Py_XINCREF}{PyObject *o}
Fred Drakee058b4f1998-02-16 06:15:35 +0000706Increment the reference count for object \var{o}. The object may be
Guido van Rossum580aa8d1997-11-25 15:34:51 +0000707\NULL{}, in which case the macro has no effect.
Guido van Rossum9231c8f1997-05-15 21:43:21 +0000708\end{cfuncdesc}
709
710\begin{cfuncdesc}{void}{Py_DECREF}{PyObject *o}
Fred Drakee058b4f1998-02-16 06:15:35 +0000711Decrement the reference count for object \var{o}. The object must
Guido van Rossum9231c8f1997-05-15 21:43:21 +0000712not be \NULL{}; if you aren't sure that it isn't \NULL{}, use
Fred Drakee058b4f1998-02-16 06:15:35 +0000713\cfunction{Py_XDECREF()}. If the reference count reaches zero, the
714object's type's deallocation function (which must not be \NULL{}) is
715invoked.
Guido van Rossum9231c8f1997-05-15 21:43:21 +0000716
717\strong{Warning:} The deallocation function can cause arbitrary Python
Fred Drake659ebfa2000-04-03 15:42:13 +0000718code to be invoked (e.g. when a class instance with a
719\method{__del__()} method is deallocated). While exceptions in such
720code are not propagated, the executed code has free access to all
721Python global variables. This means that any object that is reachable
722from a global variable should be in a consistent state before
723\cfunction{Py_DECREF()} is invoked. For example, code to delete an
724object from a list should copy a reference to the deleted object in a
725temporary variable, update the list data structure, and then call
726\cfunction{Py_DECREF()} for the temporary variable.
Guido van Rossum9231c8f1997-05-15 21:43:21 +0000727\end{cfuncdesc}
728
729\begin{cfuncdesc}{void}{Py_XDECREF}{PyObject *o}
Fred Drakee058b4f1998-02-16 06:15:35 +0000730Decrement the reference count for object \var{o}. The object may be
731\NULL{}, in which case the macro has no effect; otherwise the effect
732is the same as for \cfunction{Py_DECREF()}, and the same warning
Guido van Rossum9231c8f1997-05-15 21:43:21 +0000733applies.
734\end{cfuncdesc}
735
Fred Drake659ebfa2000-04-03 15:42:13 +0000736The following functions or macros are only for use within the
737interpreter core: \cfunction{_Py_Dealloc()},
738\cfunction{_Py_ForgetReference()}, \cfunction{_Py_NewReference()}, as
739well as the global variable \cdata{_Py_RefTotal}.
Guido van Rossum580aa8d1997-11-25 15:34:51 +0000740
Guido van Rossum9231c8f1997-05-15 21:43:21 +0000741
Fred Drakeefd146c1999-02-15 15:30:45 +0000742\chapter{Exception Handling \label{exceptionHandling}}
Guido van Rossum9231c8f1997-05-15 21:43:21 +0000743
Fred Drake659ebfa2000-04-03 15:42:13 +0000744The functions described in this chapter will let you handle and raise Python
Guido van Rossumae110af1997-05-22 20:11:52 +0000745exceptions. It is important to understand some of the basics of
Fred Drake659ebfa2000-04-03 15:42:13 +0000746Python exception handling. It works somewhat like the
747\UNIX{} \cdata{errno} variable: there is a global indicator (per
748thread) of the last error that occurred. Most functions don't clear
749this on success, but will set it to indicate the cause of the error on
750failure. Most functions also return an error indicator, usually
751\NULL{} if they are supposed to return a pointer, or \code{-1} if they
752return an integer (exception: the \cfunction{PyArg_Parse*()} functions
753return \code{1} for success and \code{0} for failure). When a
754function must fail because some function it called failed, it
755generally doesn't set the error indicator; the function it called
756already set it.
Guido van Rossumae110af1997-05-22 20:11:52 +0000757
758The error indicator consists of three Python objects corresponding to
Fred Drake659ebfa2000-04-03 15:42:13 +0000759\withsubitem{(in module sys)}{
760 \ttindex{exc_type}\ttindex{exc_value}\ttindex{exc_traceback}}
Guido van Rossumae110af1997-05-22 20:11:52 +0000761the Python variables \code{sys.exc_type}, \code{sys.exc_value} and
762\code{sys.exc_traceback}. API functions exist to interact with the
763error indicator in various ways. There is a separate error indicator
764for each thread.
765
766% XXX Order of these should be more thoughtful.
767% Either alphabetical or some kind of structure.
Guido van Rossum9231c8f1997-05-15 21:43:21 +0000768
769\begin{cfuncdesc}{void}{PyErr_Print}{}
Guido van Rossumae110af1997-05-22 20:11:52 +0000770Print a standard traceback to \code{sys.stderr} and clear the error
771indicator. Call this function only when the error indicator is set.
772(Otherwise it will cause a fatal error!)
Guido van Rossum9231c8f1997-05-15 21:43:21 +0000773\end{cfuncdesc}
774
Fred Drakec6fa34e1998-04-02 06:47:24 +0000775\begin{cfuncdesc}{PyObject*}{PyErr_Occurred}{}
Guido van Rossumae110af1997-05-22 20:11:52 +0000776Test whether the error indicator is set. If set, return the exception
Fred Drakee058b4f1998-02-16 06:15:35 +0000777\emph{type} (the first argument to the last call to one of the
Fred Drakef8830d11998-04-23 14:06:01 +0000778\cfunction{PyErr_Set*()} functions or to \cfunction{PyErr_Restore()}). If
Fred Drakee058b4f1998-02-16 06:15:35 +0000779not set, return \NULL{}. You do not own a reference to the return
780value, so you do not need to \cfunction{Py_DECREF()} it.
Fred Drake659ebfa2000-04-03 15:42:13 +0000781\strong{Note:} Do not compare the return value to a specific
Fred Drakee058b4f1998-02-16 06:15:35 +0000782exception; use \cfunction{PyErr_ExceptionMatches()} instead, shown
Fred Drake659ebfa2000-04-03 15:42:13 +0000783below. (The comparison could easily fail since the exception may be
784an instance instead of a class, in the case of a class exception, or
785it may the a subclass of the expected exception.)
Guido van Rossum42cefd01997-10-05 15:27:29 +0000786\end{cfuncdesc}
787
788\begin{cfuncdesc}{int}{PyErr_ExceptionMatches}{PyObject *exc}
Guido van Rossum42cefd01997-10-05 15:27:29 +0000789Equivalent to
Fred Drakee058b4f1998-02-16 06:15:35 +0000790\samp{PyErr_GivenExceptionMatches(PyErr_Occurred(), \var{exc})}.
Fred Drake659ebfa2000-04-03 15:42:13 +0000791This should only be called when an exception is actually set; a memory
792access violation will occur if no exception has been raised.
Guido van Rossum42cefd01997-10-05 15:27:29 +0000793\end{cfuncdesc}
794
795\begin{cfuncdesc}{int}{PyErr_GivenExceptionMatches}{PyObject *given, PyObject *exc}
Guido van Rossum42cefd01997-10-05 15:27:29 +0000796Return true if the \var{given} exception matches the exception in
797\var{exc}. If \var{exc} is a class object, this also returns true
Fred Drake659ebfa2000-04-03 15:42:13 +0000798when \var{given} is an instance of a subclass. If \var{exc} is a tuple, all
Guido van Rossum42cefd01997-10-05 15:27:29 +0000799exceptions in the tuple (and recursively in subtuples) are searched
Fred Drake659ebfa2000-04-03 15:42:13 +0000800for a match. If \var{given} is \NULL, a memory access violation will
801occur.
Guido van Rossum42cefd01997-10-05 15:27:29 +0000802\end{cfuncdesc}
803
804\begin{cfuncdesc}{void}{PyErr_NormalizeException}{PyObject**exc, PyObject**val, PyObject**tb}
Guido van Rossum42cefd01997-10-05 15:27:29 +0000805Under certain circumstances, the values returned by
Fred Drakee058b4f1998-02-16 06:15:35 +0000806\cfunction{PyErr_Fetch()} below can be ``unnormalized'', meaning that
807\code{*\var{exc}} is a class object but \code{*\var{val}} is not an
808instance of the same class. This function can be used to instantiate
809the class in that case. If the values are already normalized, nothing
Fred Drake659ebfa2000-04-03 15:42:13 +0000810happens. The delayed normalization is implemented to improve
811performance.
Guido van Rossumae110af1997-05-22 20:11:52 +0000812\end{cfuncdesc}
813
814\begin{cfuncdesc}{void}{PyErr_Clear}{}
815Clear the error indicator. If the error indicator is not set, there
816is no effect.
817\end{cfuncdesc}
818
Fred Drake659ebfa2000-04-03 15:42:13 +0000819\begin{cfuncdesc}{void}{PyErr_Fetch}{PyObject **ptype, PyObject **pvalue,
820 PyObject **ptraceback}
Guido van Rossumae110af1997-05-22 20:11:52 +0000821Retrieve the error indicator into three variables whose addresses are
822passed. If the error indicator is not set, set all three variables to
823\NULL{}. If it is set, it will be cleared and you own a reference to
Fred Drake659ebfa2000-04-03 15:42:13 +0000824each object retrieved. The value and traceback object may be
825\NULL{} even when the type object is not. \strong{Note:} This
826function is normally only used by code that needs to handle exceptions
827or by code that needs to save and restore the error indicator
828temporarily.
Guido van Rossumae110af1997-05-22 20:11:52 +0000829\end{cfuncdesc}
830
831\begin{cfuncdesc}{void}{PyErr_Restore}{PyObject *type, PyObject *value, PyObject *traceback}
832Set the error indicator from the three objects. If the error
833indicator is already set, it is cleared first. If the objects are
834\NULL{}, the error indicator is cleared. Do not pass a \NULL{} type
835and non-\NULL{} value or traceback. The exception type should be a
836string or class; if it is a class, the value should be an instance of
837that class. Do not pass an invalid exception type or value.
838(Violating these rules will cause subtle problems later.) This call
839takes away a reference to each object, i.e. you must own a reference
840to each object before the call and after the call you no longer own
841these references. (If you don't understand this, don't use this
Fred Drake659ebfa2000-04-03 15:42:13 +0000842function. I warned you.) \strong{Note:} This function is normally
Guido van Rossumae110af1997-05-22 20:11:52 +0000843only used by code that needs to save and restore the error indicator
844temporarily.
845\end{cfuncdesc}
846
847\begin{cfuncdesc}{void}{PyErr_SetString}{PyObject *type, char *message}
848This is the most common way to set the error indicator. The first
849argument specifies the exception type; it is normally one of the
Fred Drakef8830d11998-04-23 14:06:01 +0000850standard exceptions, e.g. \cdata{PyExc_RuntimeError}. You need not
Guido van Rossumae110af1997-05-22 20:11:52 +0000851increment its reference count. The second argument is an error
852message; it is converted to a string object.
853\end{cfuncdesc}
854
855\begin{cfuncdesc}{void}{PyErr_SetObject}{PyObject *type, PyObject *value}
Fred Drakee058b4f1998-02-16 06:15:35 +0000856This function is similar to \cfunction{PyErr_SetString()} but lets you
Guido van Rossumae110af1997-05-22 20:11:52 +0000857specify an arbitrary Python object for the ``value'' of the exception.
858You need not increment its reference count.
859\end{cfuncdesc}
860
Fred Drake73577702000-04-10 18:50:14 +0000861\begin{cfuncdesc}{PyObject*}{PyErr_Format}{PyObject *exception,
862 const char *format, ...}
Jeremy Hylton98605b52000-04-10 18:40:57 +0000863This function sets the error indicator using a printf-style format
864string. The first argument specifies the exception type and the
865second argument specifies the format string for the exception. Any
866subsequent arguments are converted to output by the C library's
867\cfunction{vsprintf()} function. The buffer used internally by
Fred Drake73577702000-04-10 18:50:14 +0000868\cfunction{PyErr_Format()} is 500 bytes long. The caller is
869responsible for guaranteeing that the formatted output does not
870overflow the buffer.
Jeremy Hylton98605b52000-04-10 18:40:57 +0000871\end{cfuncdesc}
872
Guido van Rossumae110af1997-05-22 20:11:52 +0000873\begin{cfuncdesc}{void}{PyErr_SetNone}{PyObject *type}
Fred Drakee058b4f1998-02-16 06:15:35 +0000874This is a shorthand for \samp{PyErr_SetObject(\var{type}, Py_None)}.
Guido van Rossumae110af1997-05-22 20:11:52 +0000875\end{cfuncdesc}
876
877\begin{cfuncdesc}{int}{PyErr_BadArgument}{}
Fred Drakee058b4f1998-02-16 06:15:35 +0000878This is a shorthand for \samp{PyErr_SetString(PyExc_TypeError,
Guido van Rossumae110af1997-05-22 20:11:52 +0000879\var{message})}, where \var{message} indicates that a built-in operation
880was invoked with an illegal argument. It is mostly for internal use.
881\end{cfuncdesc}
882
Fred Drakec6fa34e1998-04-02 06:47:24 +0000883\begin{cfuncdesc}{PyObject*}{PyErr_NoMemory}{}
Fred Drakee058b4f1998-02-16 06:15:35 +0000884This is a shorthand for \samp{PyErr_SetNone(PyExc_MemoryError)}; it
Guido van Rossumae110af1997-05-22 20:11:52 +0000885returns \NULL{} so an object allocation function can write
Fred Drakee058b4f1998-02-16 06:15:35 +0000886\samp{return PyErr_NoMemory();} when it runs out of memory.
Guido van Rossumae110af1997-05-22 20:11:52 +0000887\end{cfuncdesc}
888
Fred Drakec6fa34e1998-04-02 06:47:24 +0000889\begin{cfuncdesc}{PyObject*}{PyErr_SetFromErrno}{PyObject *type}
Fred Drake659ebfa2000-04-03 15:42:13 +0000890This is a convenience function to raise an exception when a C library
891function has returned an error and set the C variable \cdata{errno}.
Guido van Rossumae110af1997-05-22 20:11:52 +0000892It constructs a tuple object whose first item is the integer
Fred Drakef8830d11998-04-23 14:06:01 +0000893\cdata{errno} value and whose second item is the corresponding error
Fred Drake659ebfa2000-04-03 15:42:13 +0000894message (gotten from \cfunction{strerror()}\ttindex{strerror()}), and
895then calls
Fred Drakee058b4f1998-02-16 06:15:35 +0000896\samp{PyErr_SetObject(\var{type}, \var{object})}. On \UNIX{}, when
Fred Drakef8830d11998-04-23 14:06:01 +0000897the \cdata{errno} value is \constant{EINTR}, indicating an interrupted
Fred Drakee058b4f1998-02-16 06:15:35 +0000898system call, this calls \cfunction{PyErr_CheckSignals()}, and if that set
Guido van Rossumae110af1997-05-22 20:11:52 +0000899the error indicator, leaves it set to that. The function always
900returns \NULL{}, so a wrapper function around a system call can write
Fred Drakee058b4f1998-02-16 06:15:35 +0000901\samp{return PyErr_SetFromErrno();} when the system call returns an
902error.
Guido van Rossumae110af1997-05-22 20:11:52 +0000903\end{cfuncdesc}
904
905\begin{cfuncdesc}{void}{PyErr_BadInternalCall}{}
Fred Drakee058b4f1998-02-16 06:15:35 +0000906This is a shorthand for \samp{PyErr_SetString(PyExc_TypeError,
Guido van Rossumae110af1997-05-22 20:11:52 +0000907\var{message})}, where \var{message} indicates that an internal
Guido van Rossum5060b3b1997-08-17 18:02:23 +0000908operation (e.g. a Python/C API function) was invoked with an illegal
Guido van Rossumae110af1997-05-22 20:11:52 +0000909argument. It is mostly for internal use.
910\end{cfuncdesc}
911
912\begin{cfuncdesc}{int}{PyErr_CheckSignals}{}
913This function interacts with Python's signal handling. It checks
914whether a signal has been sent to the processes and if so, invokes the
Fred Drake4de05a91998-02-16 14:25:26 +0000915corresponding signal handler. If the
916\module{signal}\refbimodindex{signal} module is supported, this can
917invoke a signal handler written in Python. In all cases, the default
Fred Drake659ebfa2000-04-03 15:42:13 +0000918effect for \constant{SIGINT}\ttindex{SIGINT} is to raise the
919\withsubitem{(built-in exception)}{\ttindex{KeyboardInterrupt}}
920\exception{KeyboardInterrupt} exception. If an exception is raised the
Fred Drakee058b4f1998-02-16 06:15:35 +0000921error indicator is set and the function returns \code{1}; otherwise
922the function returns \code{0}. The error indicator may or may not be
923cleared if it was previously set.
Guido van Rossumae110af1997-05-22 20:11:52 +0000924\end{cfuncdesc}
925
926\begin{cfuncdesc}{void}{PyErr_SetInterrupt}{}
Fred Drake659ebfa2000-04-03 15:42:13 +0000927This function is obsolete. It simulates the effect of a
928\constant{SIGINT}\ttindex{SIGINT} signal arriving --- the next time
Fred Drakee058b4f1998-02-16 06:15:35 +0000929\cfunction{PyErr_CheckSignals()} is called,
Fred Drake659ebfa2000-04-03 15:42:13 +0000930\withsubitem{(built-in exception)}{\ttindex{KeyboardInterrupt}}
931\exception{KeyboardInterrupt} will be raised.
932It may be called without holding the interpreter lock.
Guido van Rossumae110af1997-05-22 20:11:52 +0000933\end{cfuncdesc}
934
Fred Drakec6fa34e1998-04-02 06:47:24 +0000935\begin{cfuncdesc}{PyObject*}{PyErr_NewException}{char *name,
936 PyObject *base,
937 PyObject *dict}
Guido van Rossum42cefd01997-10-05 15:27:29 +0000938This utility function creates and returns a new exception object. The
Fred Drake659ebfa2000-04-03 15:42:13 +0000939\var{name} argument must be the name of the new exception, a C string
940of the form \code{module.class}. The \var{base} and
941\var{dict} arguments are normally \NULL{}. Normally, this creates a
942class object derived from the root for all exceptions, the built-in
943name \exception{Exception} (accessible in C as
944\cdata{PyExc_Exception}). In this case the \member{__module__}
945attribute of the new class is set to the first part (up to the last
946dot) of the \var{name} argument, and the class name is set to the last
947part (after the last dot). The
Guido van Rossum42cefd01997-10-05 15:27:29 +0000948\var{base} argument can be used to specify an alternate base class.
949The \var{dict} argument can be used to specify a dictionary of class
950variables and methods.
951\end{cfuncdesc}
952
953
Fred Drakeefd146c1999-02-15 15:30:45 +0000954\section{Standard Exceptions \label{standardExceptions}}
Guido van Rossumae110af1997-05-22 20:11:52 +0000955
956All standard Python exceptions are available as global variables whose
Fred Drake659ebfa2000-04-03 15:42:13 +0000957names are \samp{PyExc_} followed by the Python exception name. These
958have the type \ctype{PyObject*}; they are all class objects. For
959completeness, here are all the variables:
960
961\begin{tableiii}{l|l|c}{cdata}{C Name}{Python Name}{Notes}
962 \lineiii{PyExc_Exception}{\exception{Exception}}{(1)}
963 \lineiii{PyExc_StandardError}{\exception{StandardError}}{(1)}
964 \lineiii{PyExc_ArithmeticError}{\exception{ArithmeticError}}{(1)}
965 \lineiii{PyExc_LookupError}{\exception{LookupError}}{(1)}
966 \lineiii{PyExc_AssertionError}{\exception{AssertionError}}{}
967 \lineiii{PyExc_AttributeError}{\exception{AttributeError}}{}
968 \lineiii{PyExc_EOFError}{\exception{EOFError}}{}
969 \lineiii{PyExc_EnvironmentError}{\exception{EnvironmentError}}{(1)}
970 \lineiii{PyExc_FloatingPointError}{\exception{FloatingPointError}}{}
971 \lineiii{PyExc_IOError}{\exception{IOError}}{}
972 \lineiii{PyExc_ImportError}{\exception{ImportError}}{}
973 \lineiii{PyExc_IndexError}{\exception{IndexError}}{}
974 \lineiii{PyExc_KeyError}{\exception{KeyError}}{}
975 \lineiii{PyExc_KeyboardInterrupt}{\exception{KeyboardInterrupt}}{}
976 \lineiii{PyExc_MemoryError}{\exception{MemoryError}}{}
977 \lineiii{PyExc_NameError}{\exception{NameError}}{}
978 \lineiii{PyExc_NotImplementedError}{\exception{NotImplementedError}}{}
979 \lineiii{PyExc_OSError}{\exception{OSError}}{}
980 \lineiii{PyExc_OverflowError}{\exception{OverflowError}}{}
981 \lineiii{PyExc_RuntimeError}{\exception{RuntimeError}}{}
982 \lineiii{PyExc_SyntaxError}{\exception{SyntaxError}}{}
983 \lineiii{PyExc_SystemError}{\exception{SystemError}}{}
984 \lineiii{PyExc_SystemExit}{\exception{SystemExit}}{}
985 \lineiii{PyExc_TypeError}{\exception{TypeError}}{}
986 \lineiii{PyExc_ValueError}{\exception{ValueError}}{}
987 \lineiii{PyExc_ZeroDivisionError}{\exception{ZeroDivisionError}}{}
988\end{tableiii}
989
990\noindent
991Note:
992\begin{description}
993\item[(1)]
994 This is a base class for other standard exceptions. If the
995 \code{-X} interpreter option is used, these will be tuples
996 containing the string exceptions which would have otherwise been
997 subclasses.
998\end{description}
999
1000
1001\section{Deprecation of String Exceptions}
1002
1003The \code{-X} command-line option will be removed in Python 1.6. All
1004exceptions built into Python or provided in the standard library will
1005\withsubitem{(built-in exception)}{\ttindex{Exception}}
1006be classes derived from \exception{Exception}.
1007
1008String exceptions will still be supported in the interpreter to allow
1009existing code to run unmodified, but this will also change in a future
1010release.
Guido van Rossumae110af1997-05-22 20:11:52 +00001011
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001012
Fred Drakeefd146c1999-02-15 15:30:45 +00001013\chapter{Utilities \label{utilities}}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001014
1015The functions in this chapter perform various utility tasks, such as
Fred Drake659ebfa2000-04-03 15:42:13 +00001016parsing function arguments and constructing Python values from C
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001017values.
1018
Fred Drakeefd146c1999-02-15 15:30:45 +00001019\section{OS Utilities \label{os}}
Guido van Rossum42cefd01997-10-05 15:27:29 +00001020
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001021\begin{cfuncdesc}{int}{Py_FdIsInteractive}{FILE *fp, char *filename}
Fred Drakee058b4f1998-02-16 06:15:35 +00001022Return true (nonzero) if the standard I/O file \var{fp} with name
1023\var{filename} is deemed interactive. This is the case for files for
1024which \samp{isatty(fileno(\var{fp}))} is true. If the global flag
Fred Drakef8830d11998-04-23 14:06:01 +00001025\cdata{Py_InteractiveFlag} is true, this function also returns true if
Fred Drakee058b4f1998-02-16 06:15:35 +00001026the \var{name} pointer is \NULL{} or if the name is equal to one of
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001027the strings \code{"<stdin>"} or \code{"???"}.
1028\end{cfuncdesc}
1029
1030\begin{cfuncdesc}{long}{PyOS_GetLastModificationTime}{char *filename}
Fred Drakee058b4f1998-02-16 06:15:35 +00001031Return the time of last modification of the file \var{filename}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001032The result is encoded in the same way as the timestamp returned by
Fred Drake659ebfa2000-04-03 15:42:13 +00001033the standard C library function \cfunction{time()}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001034\end{cfuncdesc}
1035
1036
Fred Drakeefd146c1999-02-15 15:30:45 +00001037\section{Process Control \label{processControl}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00001038
1039\begin{cfuncdesc}{void}{Py_FatalError}{char *message}
1040Print a fatal error message and kill the process. No cleanup is
1041performed. This function should only be invoked when a condition is
1042detected that would make it dangerous to continue using the Python
1043interpreter; e.g., when the object administration appears to be
Fred Drake659ebfa2000-04-03 15:42:13 +00001044corrupted. On \UNIX{}, the standard C library function
1045\cfunction{abort()}\ttindex{abort()} is called which will attempt to
1046produce a \file{core} file.
Fred Drakee5bf8b21998-02-12 21:22:28 +00001047\end{cfuncdesc}
1048
1049\begin{cfuncdesc}{void}{Py_Exit}{int status}
Fred Drake659ebfa2000-04-03 15:42:13 +00001050Exit the current process. This calls
1051\cfunction{Py_Finalize()}\ttindex{Py_Finalize()} and
1052then calls the standard C library function
1053\code{exit(\var{status})}\ttindex{exit()}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00001054\end{cfuncdesc}
1055
1056\begin{cfuncdesc}{int}{Py_AtExit}{void (*func) ()}
Fred Drake659ebfa2000-04-03 15:42:13 +00001057Register a cleanup function to be called by
1058\cfunction{Py_Finalize()}\ttindex{Py_Finalize()}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00001059The cleanup function will be called with no arguments and should
Fred Drake659ebfa2000-04-03 15:42:13 +00001060return no value. At most 32 \index{cleanup functions}cleanup
1061functions can be registered.
Fred Drakee5bf8b21998-02-12 21:22:28 +00001062When the registration is successful, \cfunction{Py_AtExit()} returns
1063\code{0}; on failure, it returns \code{-1}. The cleanup function
1064registered last is called first. Each cleanup function will be called
1065at most once. Since Python's internal finallization will have
1066completed before the cleanup function, no Python APIs should be called
1067by \var{func}.
1068\end{cfuncdesc}
1069
1070
Fred Drakeefd146c1999-02-15 15:30:45 +00001071\section{Importing Modules \label{importing}}
Guido van Rossum42cefd01997-10-05 15:27:29 +00001072
Fred Drakec6fa34e1998-04-02 06:47:24 +00001073\begin{cfuncdesc}{PyObject*}{PyImport_ImportModule}{char *name}
Fred Drake659ebfa2000-04-03 15:42:13 +00001074This is a simplified interface to
1075\cfunction{PyImport_ImportModuleEx()} below, leaving the
1076\var{globals} and \var{locals} arguments set to \NULL{}. When the
1077\var{name} argument contains a dot (i.e., when it specifies a
1078submodule of a package), the \var{fromlist} argument is set to the
1079list \code{['*']} so that the return value is the named module rather
1080than the top-level package containing it as would otherwise be the
1081case. (Unfortunately, this has an additional side effect when
1082\var{name} in fact specifies a subpackage instead of a submodule: the
1083submodules specified in the package's \code{__all__} variable are
1084\index{package variable!\code{__all__}}
1085\withsubitem{(package variable)}{\ttindex{__all__}}loaded.) Return a
1086new reference to the imported module, or
1087\NULL{} with an exception set on failure (the module may still be
1088created in this case --- examine \code{sys.modules} to find out).
1089\withsubitem{(in module sys)}{\ttindex{modules}}
Guido van Rossum42cefd01997-10-05 15:27:29 +00001090\end{cfuncdesc}
1091
Fred Drakec6fa34e1998-04-02 06:47:24 +00001092\begin{cfuncdesc}{PyObject*}{PyImport_ImportModuleEx}{char *name, PyObject *globals, PyObject *locals, PyObject *fromlist}
Guido van Rossum42cefd01997-10-05 15:27:29 +00001093Import a module. This is best described by referring to the built-in
Fred Drake53fb7721998-02-16 06:23:20 +00001094Python function \function{__import__()}\bifuncindex{__import__}, as
1095the standard \function{__import__()} function calls this function
1096directly.
Guido van Rossum42cefd01997-10-05 15:27:29 +00001097
Guido van Rossum42cefd01997-10-05 15:27:29 +00001098The return value is a new reference to the imported module or
Guido van Rossum580aa8d1997-11-25 15:34:51 +00001099top-level package, or \NULL{} with an exception set on failure
Guido van Rossumc44d3d61997-10-06 05:10:47 +00001100(the module may still be created in this case). Like for
Fred Drakee058b4f1998-02-16 06:15:35 +00001101\function{__import__()}, the return value when a submodule of a
1102package was requested is normally the top-level package, unless a
1103non-empty \var{fromlist} was given.
Guido van Rossum42cefd01997-10-05 15:27:29 +00001104\end{cfuncdesc}
1105
Fred Drakec6fa34e1998-04-02 06:47:24 +00001106\begin{cfuncdesc}{PyObject*}{PyImport_Import}{PyObject *name}
Guido van Rossum42cefd01997-10-05 15:27:29 +00001107This is a higher-level interface that calls the current ``import hook
Fred Drakee058b4f1998-02-16 06:15:35 +00001108function''. It invokes the \function{__import__()} function from the
Guido van Rossum42cefd01997-10-05 15:27:29 +00001109\code{__builtins__} of the current globals. This means that the
1110import is done using whatever import hooks are installed in the
Fred Drake4de05a91998-02-16 14:25:26 +00001111current environment, e.g. by \module{rexec}\refstmodindex{rexec} or
1112\module{ihooks}\refstmodindex{ihooks}.
Guido van Rossum42cefd01997-10-05 15:27:29 +00001113\end{cfuncdesc}
1114
Fred Drakec6fa34e1998-04-02 06:47:24 +00001115\begin{cfuncdesc}{PyObject*}{PyImport_ReloadModule}{PyObject *m}
Guido van Rossum42cefd01997-10-05 15:27:29 +00001116Reload a module. This is best described by referring to the built-in
Fred Drake53fb7721998-02-16 06:23:20 +00001117Python function \function{reload()}\bifuncindex{reload}, as the standard
Fred Drakee058b4f1998-02-16 06:15:35 +00001118\function{reload()} function calls this function directly. Return a
1119new reference to the reloaded module, or \NULL{} with an exception set
1120on failure (the module still exists in this case).
Guido van Rossum42cefd01997-10-05 15:27:29 +00001121\end{cfuncdesc}
1122
Fred Drakec6fa34e1998-04-02 06:47:24 +00001123\begin{cfuncdesc}{PyObject*}{PyImport_AddModule}{char *name}
Guido van Rossum42cefd01997-10-05 15:27:29 +00001124Return the module object corresponding to a module name. The
1125\var{name} argument may be of the form \code{package.module}). First
1126check the modules dictionary if there's one there, and if not, create
Fred Drake659ebfa2000-04-03 15:42:13 +00001127a new one and insert in in the modules dictionary.
Guido van Rossuma096a2e1998-11-02 17:02:42 +00001128Warning: this function does not load or import the module; if the
1129module wasn't already loaded, you will get an empty module object.
1130Use \cfunction{PyImport_ImportModule()} or one of its variants to
1131import a module.
Fred Drake659ebfa2000-04-03 15:42:13 +00001132Return \NULL{} with an exception set on failure.
Guido van Rossum42cefd01997-10-05 15:27:29 +00001133\end{cfuncdesc}
1134
Fred Drakec6fa34e1998-04-02 06:47:24 +00001135\begin{cfuncdesc}{PyObject*}{PyImport_ExecCodeModule}{char *name, PyObject *co}
Guido van Rossum42cefd01997-10-05 15:27:29 +00001136Given a module name (possibly of the form \code{package.module}) and a
1137code object read from a Python bytecode file or obtained from the
Fred Drake53fb7721998-02-16 06:23:20 +00001138built-in function \function{compile()}\bifuncindex{compile}, load the
1139module. Return a new reference to the module object, or \NULL{} with
1140an exception set if an error occurred (the module may still be created
1141in this case). (This function would reload the module if it was
1142already imported.)
Guido van Rossum42cefd01997-10-05 15:27:29 +00001143\end{cfuncdesc}
1144
1145\begin{cfuncdesc}{long}{PyImport_GetMagicNumber}{}
Fred Drake659ebfa2000-04-03 15:42:13 +00001146Return the magic number for Python bytecode files (a.k.a.
1147\file{.pyc} and \file{.pyo} files). The magic number should be
1148present in the first four bytes of the bytecode file, in little-endian
1149byte order.
Guido van Rossum42cefd01997-10-05 15:27:29 +00001150\end{cfuncdesc}
1151
Fred Drakec6fa34e1998-04-02 06:47:24 +00001152\begin{cfuncdesc}{PyObject*}{PyImport_GetModuleDict}{}
Guido van Rossum42cefd01997-10-05 15:27:29 +00001153Return the dictionary used for the module administration
1154(a.k.a. \code{sys.modules}). Note that this is a per-interpreter
1155variable.
1156\end{cfuncdesc}
1157
1158\begin{cfuncdesc}{void}{_PyImport_Init}{}
1159Initialize the import mechanism. For internal use only.
1160\end{cfuncdesc}
1161
1162\begin{cfuncdesc}{void}{PyImport_Cleanup}{}
1163Empty the module table. For internal use only.
1164\end{cfuncdesc}
1165
1166\begin{cfuncdesc}{void}{_PyImport_Fini}{}
1167Finalize the import mechanism. For internal use only.
1168\end{cfuncdesc}
1169
Fred Drakec6fa34e1998-04-02 06:47:24 +00001170\begin{cfuncdesc}{PyObject*}{_PyImport_FindExtension}{char *, char *}
Guido van Rossum42cefd01997-10-05 15:27:29 +00001171For internal use only.
Guido van Rossum5b8a5231997-12-30 04:38:44 +00001172\end{cfuncdesc}
Guido van Rossum42cefd01997-10-05 15:27:29 +00001173
Fred Drakec6fa34e1998-04-02 06:47:24 +00001174\begin{cfuncdesc}{PyObject*}{_PyImport_FixupExtension}{char *, char *}
Guido van Rossum42cefd01997-10-05 15:27:29 +00001175For internal use only.
Guido van Rossum5b8a5231997-12-30 04:38:44 +00001176\end{cfuncdesc}
Guido van Rossum42cefd01997-10-05 15:27:29 +00001177
1178\begin{cfuncdesc}{int}{PyImport_ImportFrozenModule}{char *}
1179Load a frozen module. Return \code{1} for success, \code{0} if the
1180module is not found, and \code{-1} with an exception set if the
1181initialization failed. To access the imported module on a successful
Fred Drakee058b4f1998-02-16 06:15:35 +00001182load, use \cfunction{PyImport_ImportModule()}.
1183(Note the misnomer --- this function would reload the module if it was
Guido van Rossum42cefd01997-10-05 15:27:29 +00001184already imported.)
1185\end{cfuncdesc}
1186
Fred Drake659ebfa2000-04-03 15:42:13 +00001187\begin{ctypedesc}[_frozen]{struct _frozen}
Guido van Rossum42cefd01997-10-05 15:27:29 +00001188This is the structure type definition for frozen module descriptors,
Fred Drakec6fa34e1998-04-02 06:47:24 +00001189as generated by the \program{freeze}\index{freeze utility} utility
1190(see \file{Tools/freeze/} in the Python source distribution). Its
1191definition is:
1192
Guido van Rossum9faf4c51997-10-07 14:38:54 +00001193\begin{verbatim}
Guido van Rossum42cefd01997-10-05 15:27:29 +00001194struct _frozen {
Fred Drake36fbe761997-10-13 18:18:33 +00001195 char *name;
1196 unsigned char *code;
1197 int size;
Guido van Rossum42cefd01997-10-05 15:27:29 +00001198};
Guido van Rossum9faf4c51997-10-07 14:38:54 +00001199\end{verbatim}
Guido van Rossum42cefd01997-10-05 15:27:29 +00001200\end{ctypedesc}
1201
Fred Drakec6fa34e1998-04-02 06:47:24 +00001202\begin{cvardesc}{struct _frozen*}{PyImport_FrozenModules}
Fred Drakef8830d11998-04-23 14:06:01 +00001203This pointer is initialized to point to an array of \ctype{struct
Fred Drake659ebfa2000-04-03 15:42:13 +00001204_frozen} records, terminated by one whose members are all
1205\NULL{} or zero. When a frozen module is imported, it is searched in
1206this table. Third-party code could play tricks with this to provide a
Guido van Rossum42cefd01997-10-05 15:27:29 +00001207dynamically created collection of frozen modules.
1208\end{cvardesc}
1209
1210
Fred Drakeefd146c1999-02-15 15:30:45 +00001211\chapter{Abstract Objects Layer \label{abstract}}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001212
1213The functions in this chapter interact with Python objects regardless
1214of their type, or with wide classes of object types (e.g. all
1215numerical types, or all sequence types). When used on object types
Fred Drake659ebfa2000-04-03 15:42:13 +00001216for which they do not apply, they will raise a Python exception.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001217
Fred Drakeefd146c1999-02-15 15:30:45 +00001218\section{Object Protocol \label{object}}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001219
1220\begin{cfuncdesc}{int}{PyObject_Print}{PyObject *o, FILE *fp, int flags}
Fred Drake659ebfa2000-04-03 15:42:13 +00001221Print an object \var{o}, on file \var{fp}. Returns \code{-1} on error.
1222The flags argument is used to enable certain printing options. The
1223only option currently supported is \constant{Py_PRINT_RAW}; if given,
1224the \function{str()} of the object is written instead of the
1225\function{repr()}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001226\end{cfuncdesc}
1227
1228\begin{cfuncdesc}{int}{PyObject_HasAttrString}{PyObject *o, char *attr_name}
Fred Drakee058b4f1998-02-16 06:15:35 +00001229Returns \code{1} if \var{o} has the attribute \var{attr_name}, and
1230\code{0} otherwise. This is equivalent to the Python expression
1231\samp{hasattr(\var{o}, \var{attr_name})}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001232This function always succeeds.
1233\end{cfuncdesc}
1234
Fred Drake659ebfa2000-04-03 15:42:13 +00001235\begin{cfuncdesc}{PyObject*}{PyObject_GetAttrString}{PyObject *o,
1236 char *attr_name}
Fred Drakee058b4f1998-02-16 06:15:35 +00001237Retrieve an attribute named \var{attr_name} from object \var{o}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001238Returns the attribute value on success, or \NULL{} on failure.
Fred Drakee058b4f1998-02-16 06:15:35 +00001239This is the equivalent of the Python expression
1240\samp{\var{o}.\var{attr_name}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001241\end{cfuncdesc}
1242
1243
1244\begin{cfuncdesc}{int}{PyObject_HasAttr}{PyObject *o, PyObject *attr_name}
Fred Drakee058b4f1998-02-16 06:15:35 +00001245Returns \code{1} if \var{o} has the attribute \var{attr_name}, and
1246\code{0} otherwise. This is equivalent to the Python expression
1247\samp{hasattr(\var{o}, \var{attr_name})}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001248This function always succeeds.
1249\end{cfuncdesc}
1250
1251
Fred Drake659ebfa2000-04-03 15:42:13 +00001252\begin{cfuncdesc}{PyObject*}{PyObject_GetAttr}{PyObject *o,
1253 PyObject *attr_name}
Fred Drakee058b4f1998-02-16 06:15:35 +00001254Retrieve an attribute named \var{attr_name} from object \var{o}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001255Returns the attribute value on success, or \NULL{} on failure.
Fred Drakee058b4f1998-02-16 06:15:35 +00001256This is the equivalent of the Python expression
1257\samp{\var{o}.\var{attr_name}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001258\end{cfuncdesc}
1259
1260
1261\begin{cfuncdesc}{int}{PyObject_SetAttrString}{PyObject *o, char *attr_name, PyObject *v}
Fred Drakee058b4f1998-02-16 06:15:35 +00001262Set the value of the attribute named \var{attr_name}, for object
1263\var{o}, to the value \var{v}. Returns \code{-1} on failure. This is
1264the equivalent of the Python statement \samp{\var{o}.\var{attr_name} =
1265\var{v}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001266\end{cfuncdesc}
1267
1268
1269\begin{cfuncdesc}{int}{PyObject_SetAttr}{PyObject *o, PyObject *attr_name, PyObject *v}
Fred Drakee058b4f1998-02-16 06:15:35 +00001270Set the value of the attribute named \var{attr_name}, for
1271object \var{o},
1272to the value \var{v}. Returns \code{-1} on failure. This is
1273the equivalent of the Python statement \samp{\var{o}.\var{attr_name} =
1274\var{v}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001275\end{cfuncdesc}
1276
1277
1278\begin{cfuncdesc}{int}{PyObject_DelAttrString}{PyObject *o, char *attr_name}
Fred Drakee058b4f1998-02-16 06:15:35 +00001279Delete attribute named \var{attr_name}, for object \var{o}. Returns
1280\code{-1} on failure. This is the equivalent of the Python
1281statement: \samp{del \var{o}.\var{attr_name}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001282\end{cfuncdesc}
1283
1284
1285\begin{cfuncdesc}{int}{PyObject_DelAttr}{PyObject *o, PyObject *attr_name}
Fred Drakee058b4f1998-02-16 06:15:35 +00001286Delete attribute named \var{attr_name}, for object \var{o}. Returns
1287\code{-1} on failure. This is the equivalent of the Python
1288statement \samp{del \var{o}.\var{attr_name}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001289\end{cfuncdesc}
1290
1291
1292\begin{cfuncdesc}{int}{PyObject_Cmp}{PyObject *o1, PyObject *o2, int *result}
Fred Drakee058b4f1998-02-16 06:15:35 +00001293Compare the values of \var{o1} and \var{o2} using a routine provided
1294by \var{o1}, if one exists, otherwise with a routine provided by
1295\var{o2}. The result of the comparison is returned in \var{result}.
1296Returns \code{-1} on failure. This is the equivalent of the Python
Fred Drake659ebfa2000-04-03 15:42:13 +00001297statement\bifuncindex{cmp} \samp{\var{result} = cmp(\var{o1}, \var{o2})}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001298\end{cfuncdesc}
1299
1300
1301\begin{cfuncdesc}{int}{PyObject_Compare}{PyObject *o1, PyObject *o2}
Fred Drakee058b4f1998-02-16 06:15:35 +00001302Compare the values of \var{o1} and \var{o2} using a routine provided
1303by \var{o1}, if one exists, otherwise with a routine provided by
1304\var{o2}. Returns the result of the comparison on success. On error,
1305the value returned is undefined; use \cfunction{PyErr_Occurred()} to
Fred Drake659ebfa2000-04-03 15:42:13 +00001306detect an error. This is equivalent to the Python
1307expression\bifuncindex{cmp} \samp{cmp(\var{o1}, \var{o2})}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001308\end{cfuncdesc}
1309
1310
1311\begin{cfuncdesc}{PyObject*}{PyObject_Repr}{PyObject *o}
Fred Drake659ebfa2000-04-03 15:42:13 +00001312Compute a string representation of object \var{o}. Returns the
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001313string representation on success, \NULL{} on failure. This is
Fred Drakee058b4f1998-02-16 06:15:35 +00001314the equivalent of the Python expression \samp{repr(\var{o})}.
1315Called by the \function{repr()}\bifuncindex{repr} built-in function
1316and by reverse quotes.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001317\end{cfuncdesc}
1318
1319
1320\begin{cfuncdesc}{PyObject*}{PyObject_Str}{PyObject *o}
Fred Drake659ebfa2000-04-03 15:42:13 +00001321Compute a string representation of object \var{o}. Returns the
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001322string representation on success, \NULL{} on failure. This is
Fred Drakee058b4f1998-02-16 06:15:35 +00001323the equivalent of the Python expression \samp{str(\var{o})}.
1324Called by the \function{str()}\bifuncindex{str} built-in function and
1325by the \keyword{print} statement.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001326\end{cfuncdesc}
1327
1328
1329\begin{cfuncdesc}{int}{PyCallable_Check}{PyObject *o}
Fred Drake659ebfa2000-04-03 15:42:13 +00001330Determine if the object \var{o} is callable. Return \code{1} if the
Fred Drakee058b4f1998-02-16 06:15:35 +00001331object is callable and \code{0} otherwise.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001332This function always succeeds.
1333\end{cfuncdesc}
1334
1335
Fred Drake659ebfa2000-04-03 15:42:13 +00001336\begin{cfuncdesc}{PyObject*}{PyObject_CallObject}{PyObject *callable_object,
1337 PyObject *args}
Fred Drakee058b4f1998-02-16 06:15:35 +00001338Call a callable Python object \var{callable_object}, with
1339arguments given by the tuple \var{args}. If no arguments are
Fred Drake659ebfa2000-04-03 15:42:13 +00001340needed, then \var{args} may be \NULL{}. Returns the result of the
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001341call on success, or \NULL{} on failure. This is the equivalent
Fred Drakee058b4f1998-02-16 06:15:35 +00001342of the Python expression \samp{apply(\var{o}, \var{args})}.
Fred Drake659ebfa2000-04-03 15:42:13 +00001343\bifuncindex{apply}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001344\end{cfuncdesc}
1345
1346\begin{cfuncdesc}{PyObject*}{PyObject_CallFunction}{PyObject *callable_object, char *format, ...}
Fred Drakee058b4f1998-02-16 06:15:35 +00001347Call a callable Python object \var{callable_object}, with a
Fred Drake659ebfa2000-04-03 15:42:13 +00001348variable number of C arguments. The C arguments are described
Fred Drakee058b4f1998-02-16 06:15:35 +00001349using a \cfunction{Py_BuildValue()} style format string. The format may
1350be \NULL{}, indicating that no arguments are provided. Returns the
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001351result of the call on success, or \NULL{} on failure. This is
Fred Drakee058b4f1998-02-16 06:15:35 +00001352the equivalent of the Python expression \samp{apply(\var{o},
Fred Drake659ebfa2000-04-03 15:42:13 +00001353\var{args})}.\bifuncindex{apply}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001354\end{cfuncdesc}
1355
1356
1357\begin{cfuncdesc}{PyObject*}{PyObject_CallMethod}{PyObject *o, char *m, char *format, ...}
Fred Drakee058b4f1998-02-16 06:15:35 +00001358Call the method named \var{m} of object \var{o} with a variable number
Fred Drake659ebfa2000-04-03 15:42:13 +00001359of C arguments. The C arguments are described by a
Fred Drakee058b4f1998-02-16 06:15:35 +00001360\cfunction{Py_BuildValue()} format string. The format may be \NULL{},
1361indicating that no arguments are provided. Returns the result of the
1362call on success, or \NULL{} on failure. This is the equivalent of the
1363Python expression \samp{\var{o}.\var{method}(\var{args})}.
Fred Drake659ebfa2000-04-03 15:42:13 +00001364Note that special method names, such as \method{__add__()},
1365\method{__getitem__()}, and so on are not supported. The specific
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001366abstract-object routines for these must be used.
1367\end{cfuncdesc}
1368
1369
1370\begin{cfuncdesc}{int}{PyObject_Hash}{PyObject *o}
Fred Drakee058b4f1998-02-16 06:15:35 +00001371Compute and return the hash value of an object \var{o}. On
1372failure, return \code{-1}. This is the equivalent of the Python
Fred Drake659ebfa2000-04-03 15:42:13 +00001373expression \samp{hash(\var{o})}.\bifuncindex{hash}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001374\end{cfuncdesc}
1375
1376
1377\begin{cfuncdesc}{int}{PyObject_IsTrue}{PyObject *o}
Fred Drakee058b4f1998-02-16 06:15:35 +00001378Returns \code{1} if the object \var{o} is considered to be true, and
1379\code{0} otherwise. This is equivalent to the Python expression
1380\samp{not not \var{o}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001381This function always succeeds.
1382\end{cfuncdesc}
1383
1384
1385\begin{cfuncdesc}{PyObject*}{PyObject_Type}{PyObject *o}
1386On success, returns a type object corresponding to the object
Fred Drakee058b4f1998-02-16 06:15:35 +00001387type of object \var{o}. On failure, returns \NULL{}. This is
1388equivalent to the Python expression \samp{type(\var{o})}.
Fred Drake53fb7721998-02-16 06:23:20 +00001389\bifuncindex{type}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001390\end{cfuncdesc}
1391
1392\begin{cfuncdesc}{int}{PyObject_Length}{PyObject *o}
Fred Drakee058b4f1998-02-16 06:15:35 +00001393Return the length of object \var{o}. If the object \var{o} provides
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001394both sequence and mapping protocols, the sequence length is
Fred Drake659ebfa2000-04-03 15:42:13 +00001395returned. On error, \code{-1} is returned. This is the equivalent
1396to the Python expression \samp{len(\var{o})}.\bifuncindex{len}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001397\end{cfuncdesc}
1398
1399
1400\begin{cfuncdesc}{PyObject*}{PyObject_GetItem}{PyObject *o, PyObject *key}
Fred Drakee058b4f1998-02-16 06:15:35 +00001401Return element of \var{o} corresponding to the object \var{key} or
1402\NULL{} on failure. This is the equivalent of the Python expression
1403\samp{\var{o}[\var{key}]}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001404\end{cfuncdesc}
1405
1406
1407\begin{cfuncdesc}{int}{PyObject_SetItem}{PyObject *o, PyObject *key, PyObject *v}
Fred Drakee058b4f1998-02-16 06:15:35 +00001408Map the object \var{key} to the value \var{v}.
1409Returns \code{-1} on failure. This is the equivalent
1410of the Python statement \samp{\var{o}[\var{key}] = \var{v}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001411\end{cfuncdesc}
1412
1413
Guido van Rossumd1dbf631999-01-22 20:10:49 +00001414\begin{cfuncdesc}{int}{PyObject_DelItem}{PyObject *o, PyObject *key}
Fred Drakee058b4f1998-02-16 06:15:35 +00001415Delete the mapping for \var{key} from \var{o}. Returns \code{-1} on
1416failure. This is the equivalent of the Python statement \samp{del
1417\var{o}[\var{key}]}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001418\end{cfuncdesc}
1419
1420
Fred Drakeefd146c1999-02-15 15:30:45 +00001421\section{Number Protocol \label{number}}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001422
1423\begin{cfuncdesc}{int}{PyNumber_Check}{PyObject *o}
Fred Drakee058b4f1998-02-16 06:15:35 +00001424Returns \code{1} if the object \var{o} provides numeric protocols, and
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001425false otherwise.
1426This function always succeeds.
1427\end{cfuncdesc}
1428
1429
1430\begin{cfuncdesc}{PyObject*}{PyNumber_Add}{PyObject *o1, PyObject *o2}
Fred Drakee058b4f1998-02-16 06:15:35 +00001431Returns the result of adding \var{o1} and \var{o2}, or \NULL{} on
1432failure. This is the equivalent of the Python expression
1433\samp{\var{o1} + \var{o2}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001434\end{cfuncdesc}
1435
1436
1437\begin{cfuncdesc}{PyObject*}{PyNumber_Subtract}{PyObject *o1, PyObject *o2}
Fred Drake659ebfa2000-04-03 15:42:13 +00001438Returns the result of subtracting \var{o2} from \var{o1}, or
1439\NULL{} on failure. This is the equivalent of the Python expression
Fred Drakee058b4f1998-02-16 06:15:35 +00001440\samp{\var{o1} - \var{o2}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001441\end{cfuncdesc}
1442
1443
1444\begin{cfuncdesc}{PyObject*}{PyNumber_Multiply}{PyObject *o1, PyObject *o2}
Fred Drakee058b4f1998-02-16 06:15:35 +00001445Returns the result of multiplying \var{o1} and \var{o2}, or \NULL{} on
1446failure. This is the equivalent of the Python expression
1447\samp{\var{o1} * \var{o2}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001448\end{cfuncdesc}
1449
1450
1451\begin{cfuncdesc}{PyObject*}{PyNumber_Divide}{PyObject *o1, PyObject *o2}
Fred Drakee058b4f1998-02-16 06:15:35 +00001452Returns the result of dividing \var{o1} by \var{o2}, or \NULL{} on
1453failure.
1454This is the equivalent of the Python expression \samp{\var{o1} /
1455\var{o2}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001456\end{cfuncdesc}
1457
1458
1459\begin{cfuncdesc}{PyObject*}{PyNumber_Remainder}{PyObject *o1, PyObject *o2}
Fred Drakee058b4f1998-02-16 06:15:35 +00001460Returns the remainder of dividing \var{o1} by \var{o2}, or \NULL{} on
1461failure. This is the equivalent of the Python expression
Fred Drake659ebfa2000-04-03 15:42:13 +00001462\samp{\var{o1} \%\ \var{o2}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001463\end{cfuncdesc}
1464
1465
1466\begin{cfuncdesc}{PyObject*}{PyNumber_Divmod}{PyObject *o1, PyObject *o2}
Fred Drake53fb7721998-02-16 06:23:20 +00001467See the built-in function \function{divmod()}\bifuncindex{divmod}.
1468Returns \NULL{} on failure. This is the equivalent of the Python
1469expression \samp{divmod(\var{o1}, \var{o2})}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001470\end{cfuncdesc}
1471
1472
1473\begin{cfuncdesc}{PyObject*}{PyNumber_Power}{PyObject *o1, PyObject *o2, PyObject *o3}
Fred Drake53fb7721998-02-16 06:23:20 +00001474See the built-in function \function{pow()}\bifuncindex{pow}. Returns
1475\NULL{} on failure. This is the equivalent of the Python expression
Fred Drakee058b4f1998-02-16 06:15:35 +00001476\samp{pow(\var{o1}, \var{o2}, \var{o3})}, where \var{o3} is optional.
Fred Drake659ebfa2000-04-03 15:42:13 +00001477If \var{o3} is to be ignored, pass \cdata{Py_None} in its place
1478(passing \NULL{} for \var{o3} would cause an illegal memory access).
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001479\end{cfuncdesc}
1480
1481
1482\begin{cfuncdesc}{PyObject*}{PyNumber_Negative}{PyObject *o}
Fred Drakee058b4f1998-02-16 06:15:35 +00001483Returns the negation of \var{o} on success, or \NULL{} on failure.
1484This is the equivalent of the Python expression \samp{-\var{o}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001485\end{cfuncdesc}
1486
1487
1488\begin{cfuncdesc}{PyObject*}{PyNumber_Positive}{PyObject *o}
Fred Drakee058b4f1998-02-16 06:15:35 +00001489Returns \var{o} on success, or \NULL{} on failure.
1490This is the equivalent of the Python expression \samp{+\var{o}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001491\end{cfuncdesc}
1492
1493
1494\begin{cfuncdesc}{PyObject*}{PyNumber_Absolute}{PyObject *o}
Fred Drakee058b4f1998-02-16 06:15:35 +00001495Returns the absolute value of \var{o}, or \NULL{} on failure. This is
1496the equivalent of the Python expression \samp{abs(\var{o})}.
Fred Drake659ebfa2000-04-03 15:42:13 +00001497\bifuncindex{abs}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001498\end{cfuncdesc}
1499
1500
1501\begin{cfuncdesc}{PyObject*}{PyNumber_Invert}{PyObject *o}
Fred Drakee058b4f1998-02-16 06:15:35 +00001502Returns the bitwise negation of \var{o} on success, or \NULL{} on
1503failure. This is the equivalent of the Python expression
1504\samp{\~\var{o}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001505\end{cfuncdesc}
1506
1507
1508\begin{cfuncdesc}{PyObject*}{PyNumber_Lshift}{PyObject *o1, PyObject *o2}
Fred Drakee058b4f1998-02-16 06:15:35 +00001509Returns the result of left shifting \var{o1} by \var{o2} on success,
1510or \NULL{} on failure. This is the equivalent of the Python
1511expression \samp{\var{o1} << \var{o2}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001512\end{cfuncdesc}
1513
1514
1515\begin{cfuncdesc}{PyObject*}{PyNumber_Rshift}{PyObject *o1, PyObject *o2}
Fred Drakee058b4f1998-02-16 06:15:35 +00001516Returns the result of right shifting \var{o1} by \var{o2} on success,
1517or \NULL{} on failure. This is the equivalent of the Python
1518expression \samp{\var{o1} >> \var{o2}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001519\end{cfuncdesc}
1520
1521
1522\begin{cfuncdesc}{PyObject*}{PyNumber_And}{PyObject *o1, PyObject *o2}
Fred Drakee058b4f1998-02-16 06:15:35 +00001523Returns the result of ``anding'' \var{o2} and \var{o2} on success and
1524\NULL{} on failure. This is the equivalent of the Python
1525expression \samp{\var{o1} and \var{o2}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001526\end{cfuncdesc}
1527
1528
1529\begin{cfuncdesc}{PyObject*}{PyNumber_Xor}{PyObject *o1, PyObject *o2}
Fred Drakee058b4f1998-02-16 06:15:35 +00001530Returns the bitwise exclusive or of \var{o1} by \var{o2} on success,
1531or \NULL{} on failure. This is the equivalent of the Python
1532expression \samp{\var{o1} \^{ }\var{o2}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001533\end{cfuncdesc}
1534
1535\begin{cfuncdesc}{PyObject*}{PyNumber_Or}{PyObject *o1, PyObject *o2}
Fred Drakee058b4f1998-02-16 06:15:35 +00001536Returns the result of \var{o1} and \var{o2} on success, or \NULL{} on
1537failure. This is the equivalent of the Python expression
1538\samp{\var{o1} or \var{o2}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001539\end{cfuncdesc}
1540
Fred Drakee058b4f1998-02-16 06:15:35 +00001541\begin{cfuncdesc}{PyObject*}{PyNumber_Coerce}{PyObject **p1, PyObject **p2}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001542This function takes the addresses of two variables of type
Fred Drake659ebfa2000-04-03 15:42:13 +00001543\ctype{PyObject*}. If the objects pointed to by \code{*\var{p1}} and
1544\code{*\var{p2}} have the same type, increment their reference count
1545and return \code{0} (success). If the objects can be converted to a
1546common numeric type, replace \code{*p1} and \code{*p2} by their
1547converted value (with 'new' reference counts), and return \code{0}.
1548If no conversion is possible, or if some other error occurs, return
1549\code{-1} (failure) and don't increment the reference counts. The
1550call \code{PyNumber_Coerce(\&o1, \&o2)} is equivalent to the Python
1551statement \samp{\var{o1}, \var{o2} = coerce(\var{o1}, \var{o2})}.
1552\bifuncindex{coerce}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001553\end{cfuncdesc}
1554
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001555\begin{cfuncdesc}{PyObject*}{PyNumber_Int}{PyObject *o}
Fred Drakee058b4f1998-02-16 06:15:35 +00001556Returns the \var{o} converted to an integer object on success, or
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001557\NULL{} on failure. This is the equivalent of the Python
Fred Drake659ebfa2000-04-03 15:42:13 +00001558expression \samp{int(\var{o})}.\bifuncindex{int}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001559\end{cfuncdesc}
1560
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001561\begin{cfuncdesc}{PyObject*}{PyNumber_Long}{PyObject *o}
Fred Drakee058b4f1998-02-16 06:15:35 +00001562Returns the \var{o} converted to a long integer object on success,
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001563or \NULL{} on failure. This is the equivalent of the Python
Fred Drake659ebfa2000-04-03 15:42:13 +00001564expression \samp{long(\var{o})}.\bifuncindex{long}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001565\end{cfuncdesc}
1566
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001567\begin{cfuncdesc}{PyObject*}{PyNumber_Float}{PyObject *o}
Fred Drake659ebfa2000-04-03 15:42:13 +00001568Returns the \var{o} converted to a float object on success, or
1569\NULL{} on failure. This is the equivalent of the Python expression
1570\samp{float(\var{o})}.\bifuncindex{float}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001571\end{cfuncdesc}
1572
1573
Fred Drakeefd146c1999-02-15 15:30:45 +00001574\section{Sequence Protocol \label{sequence}}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001575
1576\begin{cfuncdesc}{int}{PySequence_Check}{PyObject *o}
Fred Drake659ebfa2000-04-03 15:42:13 +00001577Return \code{1} if the object provides sequence protocol, and
1578\code{0} otherwise. This function always succeeds.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001579\end{cfuncdesc}
1580
Fred Drake659ebfa2000-04-03 15:42:13 +00001581\begin{cfuncdesc}{int}{PySequence_Length}{PyObject *o}
1582Returns the number of objects in sequence \var{o} on success, and
1583\code{-1} on failure. For objects that do not provide sequence
1584protocol, this is equivalent to the Python expression
1585\samp{len(\var{o})}.\bifuncindex{len}
1586\end{cfuncdesc}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001587
1588\begin{cfuncdesc}{PyObject*}{PySequence_Concat}{PyObject *o1, PyObject *o2}
Fred Drakee058b4f1998-02-16 06:15:35 +00001589Return the concatenation of \var{o1} and \var{o2} on success, and \NULL{} on
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001590failure. This is the equivalent of the Python
Fred Drakee058b4f1998-02-16 06:15:35 +00001591expression \samp{\var{o1} + \var{o2}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001592\end{cfuncdesc}
1593
1594
1595\begin{cfuncdesc}{PyObject*}{PySequence_Repeat}{PyObject *o, int count}
Fred Drake659ebfa2000-04-03 15:42:13 +00001596Return the result of repeating sequence object
1597\var{o} \var{count} times, or \NULL{} on failure. This is the
1598equivalent of the Python expression \samp{\var{o} * \var{count}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001599\end{cfuncdesc}
1600
1601
1602\begin{cfuncdesc}{PyObject*}{PySequence_GetItem}{PyObject *o, int i}
Fred Drakee058b4f1998-02-16 06:15:35 +00001603Return the \var{i}th element of \var{o}, or \NULL{} on failure. This
1604is the equivalent of the Python expression \samp{\var{o}[\var{i}]}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001605\end{cfuncdesc}
1606
1607
1608\begin{cfuncdesc}{PyObject*}{PySequence_GetSlice}{PyObject *o, int i1, int i2}
Fred Drakee058b4f1998-02-16 06:15:35 +00001609Return the slice of sequence object \var{o} between \var{i1} and
1610\var{i2}, or \NULL{} on failure. This is the equivalent of the Python
1611expression \samp{\var{o}[\var{i1}:\var{i2}]}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001612\end{cfuncdesc}
1613
1614
1615\begin{cfuncdesc}{int}{PySequence_SetItem}{PyObject *o, int i, PyObject *v}
Fred Drakee058b4f1998-02-16 06:15:35 +00001616Assign object \var{v} to the \var{i}th element of \var{o}.
1617Returns \code{-1} on failure. This is the equivalent of the Python
1618statement \samp{\var{o}[\var{i}] = \var{v}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001619\end{cfuncdesc}
1620
1621\begin{cfuncdesc}{int}{PySequence_DelItem}{PyObject *o, int i}
Fred Drakee058b4f1998-02-16 06:15:35 +00001622Delete the \var{i}th element of object \var{v}. Returns
1623\code{-1} on failure. This is the equivalent of the Python
1624statement \samp{del \var{o}[\var{i}]}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001625\end{cfuncdesc}
1626
Fred Drake659ebfa2000-04-03 15:42:13 +00001627\begin{cfuncdesc}{int}{PySequence_SetSlice}{PyObject *o, int i1,
1628 int i2, PyObject *v}
Fred Drakee058b4f1998-02-16 06:15:35 +00001629Assign the sequence object \var{v} to the slice in sequence
1630object \var{o} from \var{i1} to \var{i2}. This is the equivalent of
1631the Python statement \samp{\var{o}[\var{i1}:\var{i2}] = \var{v}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001632\end{cfuncdesc}
1633
1634\begin{cfuncdesc}{int}{PySequence_DelSlice}{PyObject *o, int i1, int i2}
Fred Drakee058b4f1998-02-16 06:15:35 +00001635Delete the slice in sequence object \var{o} from \var{i1} to \var{i2}.
1636Returns \code{-1} on failure. This is the equivalent of the Python
1637statement \samp{del \var{o}[\var{i1}:\var{i2}]}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001638\end{cfuncdesc}
1639
1640\begin{cfuncdesc}{PyObject*}{PySequence_Tuple}{PyObject *o}
Fred Drakee058b4f1998-02-16 06:15:35 +00001641Returns the \var{o} as a tuple on success, and \NULL{} on failure.
Fred Drake659ebfa2000-04-03 15:42:13 +00001642This is equivalent to the Python expression \samp{tuple(\var{o})}.
1643\bifuncindex{tuple}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001644\end{cfuncdesc}
1645
1646\begin{cfuncdesc}{int}{PySequence_Count}{PyObject *o, PyObject *value}
Fred Drakee058b4f1998-02-16 06:15:35 +00001647Return the number of occurrences of \var{value} in \var{o}, that is,
1648return the number of keys for which \code{\var{o}[\var{key}] ==
1649\var{value}}. On failure, return \code{-1}. This is equivalent to
1650the Python expression \samp{\var{o}.count(\var{value})}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001651\end{cfuncdesc}
1652
Fred Drake659ebfa2000-04-03 15:42:13 +00001653\begin{cfuncdesc}{int}{PySequence_Contains}{PyObject *o, PyObject *value}
Fred Drakee058b4f1998-02-16 06:15:35 +00001654Determine if \var{o} contains \var{value}. If an item in \var{o} is
1655equal to \var{value}, return \code{1}, otherwise return \code{0}. On
1656error, return \code{-1}. This is equivalent to the Python expression
1657\samp{\var{value} in \var{o}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001658\end{cfuncdesc}
1659
1660\begin{cfuncdesc}{int}{PySequence_Index}{PyObject *o, PyObject *value}
Fred Drakee058b4f1998-02-16 06:15:35 +00001661Return the first index \var{i} for which \code{\var{o}[\var{i}] ==
1662\var{value}}. On error, return \code{-1}. This is equivalent to
1663the Python expression \samp{\var{o}.index(\var{value})}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001664\end{cfuncdesc}
1665
Fred Drakef39ed671998-02-26 22:01:23 +00001666
Fred Drakeefd146c1999-02-15 15:30:45 +00001667\section{Mapping Protocol \label{mapping}}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001668
1669\begin{cfuncdesc}{int}{PyMapping_Check}{PyObject *o}
Fred Drake659ebfa2000-04-03 15:42:13 +00001670Return \code{1} if the object provides mapping protocol, and
1671\code{0} otherwise. This function always succeeds.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001672\end{cfuncdesc}
1673
1674
1675\begin{cfuncdesc}{int}{PyMapping_Length}{PyObject *o}
Fred Drake659ebfa2000-04-03 15:42:13 +00001676Returns the number of keys in object \var{o} on success, and
1677\code{-1} on failure. For objects that do not provide mapping
1678protocol, this is equivalent to the Python expression
1679\samp{len(\var{o})}.\bifuncindex{len}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001680\end{cfuncdesc}
1681
1682
1683\begin{cfuncdesc}{int}{PyMapping_DelItemString}{PyObject *o, char *key}
Fred Drakee058b4f1998-02-16 06:15:35 +00001684Remove the mapping for object \var{key} from the object \var{o}.
1685Return \code{-1} on failure. This is equivalent to
1686the Python statement \samp{del \var{o}[\var{key}]}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001687\end{cfuncdesc}
1688
1689
1690\begin{cfuncdesc}{int}{PyMapping_DelItem}{PyObject *o, PyObject *key}
Fred Drakee058b4f1998-02-16 06:15:35 +00001691Remove the mapping for object \var{key} from the object \var{o}.
1692Return \code{-1} on failure. This is equivalent to
1693the Python statement \samp{del \var{o}[\var{key}]}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001694\end{cfuncdesc}
1695
1696
1697\begin{cfuncdesc}{int}{PyMapping_HasKeyString}{PyObject *o, char *key}
Fred Drake659ebfa2000-04-03 15:42:13 +00001698On success, return \code{1} if the mapping object has the key
1699\var{key} and \code{0} otherwise. This is equivalent to the Python
1700expression \samp{\var{o}.has_key(\var{key})}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001701This function always succeeds.
1702\end{cfuncdesc}
1703
1704
1705\begin{cfuncdesc}{int}{PyMapping_HasKey}{PyObject *o, PyObject *key}
Fred Drakee058b4f1998-02-16 06:15:35 +00001706Return \code{1} if the mapping object has the key \var{key} and
1707\code{0} otherwise. This is equivalent to the Python expression
1708\samp{\var{o}.has_key(\var{key})}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001709This function always succeeds.
1710\end{cfuncdesc}
1711
1712
1713\begin{cfuncdesc}{PyObject*}{PyMapping_Keys}{PyObject *o}
Fred Drakee058b4f1998-02-16 06:15:35 +00001714On success, return a list of the keys in object \var{o}. On
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001715failure, return \NULL{}. This is equivalent to the Python
Fred Drakee058b4f1998-02-16 06:15:35 +00001716expression \samp{\var{o}.keys()}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001717\end{cfuncdesc}
1718
1719
1720\begin{cfuncdesc}{PyObject*}{PyMapping_Values}{PyObject *o}
Fred Drakee058b4f1998-02-16 06:15:35 +00001721On success, return a list of the values in object \var{o}. On
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001722failure, return \NULL{}. This is equivalent to the Python
Fred Drakee058b4f1998-02-16 06:15:35 +00001723expression \samp{\var{o}.values()}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001724\end{cfuncdesc}
1725
1726
1727\begin{cfuncdesc}{PyObject*}{PyMapping_Items}{PyObject *o}
Fred Drakee058b4f1998-02-16 06:15:35 +00001728On success, return a list of the items in object \var{o}, where
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001729each item is a tuple containing a key-value pair. On
1730failure, return \NULL{}. This is equivalent to the Python
Fred Drakee058b4f1998-02-16 06:15:35 +00001731expression \samp{\var{o}.items()}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001732\end{cfuncdesc}
1733
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001734
1735\begin{cfuncdesc}{PyObject*}{PyMapping_GetItemString}{PyObject *o, char *key}
Fred Drakee058b4f1998-02-16 06:15:35 +00001736Return element of \var{o} corresponding to the object \var{key} or
1737\NULL{} on failure. This is the equivalent of the Python expression
1738\samp{\var{o}[\var{key}]}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001739\end{cfuncdesc}
1740
Guido van Rossum0a0f11b1998-10-16 17:43:53 +00001741\begin{cfuncdesc}{int}{PyMapping_SetItemString}{PyObject *o, char *key, PyObject *v}
Fred Drakee058b4f1998-02-16 06:15:35 +00001742Map the object \var{key} to the value \var{v} in object \var{o}.
1743Returns \code{-1} on failure. This is the equivalent of the Python
1744statement \samp{\var{o}[\var{key}] = \var{v}}.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001745\end{cfuncdesc}
1746
1747
Fred Drakeefd146c1999-02-15 15:30:45 +00001748\chapter{Concrete Objects Layer \label{concrete}}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001749
1750The functions in this chapter are specific to certain Python object
1751types. Passing them an object of the wrong type is not a good idea;
1752if you receive an object from a Python program and you are not sure
1753that it has the right type, you must perform a type check first;
Fred Drake659ebfa2000-04-03 15:42:13 +00001754for example. to check that an object is a dictionary, use
Fred Drakee5bf8b21998-02-12 21:22:28 +00001755\cfunction{PyDict_Check()}. The chapter is structured like the
1756``family tree'' of Python object types.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001757
1758
Fred Drakeefd146c1999-02-15 15:30:45 +00001759\section{Fundamental Objects \label{fundamental}}
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001760
Fred Drakee5bf8b21998-02-12 21:22:28 +00001761This section describes Python type objects and the singleton object
1762\code{None}.
1763
1764
Fred Drakeefd146c1999-02-15 15:30:45 +00001765\subsection{Type Objects \label{typeObjects}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00001766
Fred Drake659ebfa2000-04-03 15:42:13 +00001767\obindex{type}
Fred Drakee5bf8b21998-02-12 21:22:28 +00001768\begin{ctypedesc}{PyTypeObject}
Fred Drake659ebfa2000-04-03 15:42:13 +00001769The C structure of the objects used to describe built-in types.
Fred Drakee5bf8b21998-02-12 21:22:28 +00001770\end{ctypedesc}
1771
Fred Drake659ebfa2000-04-03 15:42:13 +00001772\begin{cvardesc}{PyObject*}{PyType_Type}
Fred Drakeefd146c1999-02-15 15:30:45 +00001773This is the type object for type objects; it is the same object as
1774\code{types.TypeType} in the Python layer.
Fred Drake659ebfa2000-04-03 15:42:13 +00001775\withsubitem{(in module types)}{\ttindex{TypeType}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00001776\end{cvardesc}
1777
Fred Drake659ebfa2000-04-03 15:42:13 +00001778\begin{cfuncdesc}{int}{PyType_Check}{PyObject *o}
1779Returns true is the object \var{o} is a type object.
1780\end{cfuncdesc}
1781
1782\begin{cfuncdesc}{int}{PyType_HasFeature}{PyObject *o, int feature}
1783Returns true if the type object \var{o} sets the feature
1784\var{feature}. Type features are denoted by single bit flags. The
1785only defined feature flag is \constant{Py_TPFLAGS_HAVE_GETCHARBUFFER},
1786described in section \ref{buffer-structs}.
1787\end{cfuncdesc}
1788
Fred Drakee5bf8b21998-02-12 21:22:28 +00001789
Fred Drakeefd146c1999-02-15 15:30:45 +00001790\subsection{The None Object \label{noneObject}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00001791
Fred Drake659ebfa2000-04-03 15:42:13 +00001792\obindex{None@\texttt{None}}
1793Note that the \ctype{PyTypeObject} for \code{None} is not directly
1794exposed in the Python/C API. Since \code{None} is a singleton,
1795testing for object identity (using \samp{==} in C) is sufficient.
1796There is no \cfunction{PyNone_Check()} function for the same reason.
1797
1798\begin{cvardesc}{PyObject*}{Py_None}
Guido van Rossum44475131998-04-21 15:30:01 +00001799The Python \code{None} object, denoting lack of value. This object has
1800no methods.
Fred Drakee5bf8b21998-02-12 21:22:28 +00001801\end{cvardesc}
1802
1803
Fred Drakeefd146c1999-02-15 15:30:45 +00001804\section{Sequence Objects \label{sequenceObjects}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00001805
Fred Drake659ebfa2000-04-03 15:42:13 +00001806\obindex{sequence}
Fred Drakee5bf8b21998-02-12 21:22:28 +00001807Generic operations on sequence objects were discussed in the previous
1808chapter; this section deals with the specific kinds of sequence
1809objects that are intrinsic to the Python language.
1810
1811
Fred Drakeefd146c1999-02-15 15:30:45 +00001812\subsection{String Objects \label{stringObjects}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00001813
Fred Drake659ebfa2000-04-03 15:42:13 +00001814\obindex{string}
Fred Drakee5bf8b21998-02-12 21:22:28 +00001815\begin{ctypedesc}{PyStringObject}
Fred Drakef8830d11998-04-23 14:06:01 +00001816This subtype of \ctype{PyObject} represents a Python string object.
Fred Drakee5bf8b21998-02-12 21:22:28 +00001817\end{ctypedesc}
1818
1819\begin{cvardesc}{PyTypeObject}{PyString_Type}
Fred Drake659ebfa2000-04-03 15:42:13 +00001820This instance of \ctype{PyTypeObject} represents the Python string
1821type; it is the same object as \code{types.TypeType} in the Python
1822layer.\withsubitem{(in module types)}{\ttindex{StringType}}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00001823\end{cvardesc}
1824
1825\begin{cfuncdesc}{int}{PyString_Check}{PyObject *o}
Guido van Rossum3c4378b1998-04-14 20:21:10 +00001826Returns true if the object \var{o} is a string object.
Guido van Rossum9231c8f1997-05-15 21:43:21 +00001827\end{cfuncdesc}
1828
Fred Drakec6fa34e1998-04-02 06:47:24 +00001829\begin{cfuncdesc}{PyObject*}{PyString_FromString}{const char *v}
Guido van Rossum3c4378b1998-04-14 20:21:10 +00001830Returns a new string object with the value \var{v} on success, and
1831\NULL{} on failure.
Fred Drakec6fa34e1998-04-02 06:47:24 +00001832\end{cfuncdesc}
1833
Fred Drake659ebfa2000-04-03 15:42:13 +00001834\begin{cfuncdesc}{PyObject*}{PyString_FromStringAndSize}{const char *v,
1835 int len}
1836Returns a new string object with the value \var{v} and length
1837\var{len} on success, and \NULL{} on failure. If \var{v} is \NULL{},
1838the contents of the string are uninitialized.
1839\end{cfuncdesc}
1840
Fred Drakec6fa34e1998-04-02 06:47:24 +00001841\begin{cfuncdesc}{int}{PyString_Size}{PyObject *string}
Guido van Rossum3c4378b1998-04-14 20:21:10 +00001842Returns the length of the string in string object \var{string}.
Fred Drakec6fa34e1998-04-02 06:47:24 +00001843\end{cfuncdesc}
1844
Fred Drake659ebfa2000-04-03 15:42:13 +00001845\begin{cfuncdesc}{int}{PyString_GET_SIZE}{PyObject *string}
1846Macro form of \cfunction{PyString_GetSize()} but without error
1847checking.
1848\end{cfuncdesc}
1849
Fred Drakec6fa34e1998-04-02 06:47:24 +00001850\begin{cfuncdesc}{char*}{PyString_AsString}{PyObject *string}
Fred Drake659ebfa2000-04-03 15:42:13 +00001851Returns a null-terminated representation of the contents of
1852\var{string}. The pointer refers to the internal buffer of
1853\var{string}, not a copy. The data must not be modified in any way.
1854It must not be de-allocated.
1855\end{cfuncdesc}
1856
1857\begin{cfuncdesc}{char*}{PyString_AS_STRING}{PyObject *string}
1858Macro form of \cfunction{PyString_AsString()} but without error
1859checking.
Fred Drakec6fa34e1998-04-02 06:47:24 +00001860\end{cfuncdesc}
1861
1862\begin{cfuncdesc}{void}{PyString_Concat}{PyObject **string,
1863 PyObject *newpart}
Fred Drake66b989c1999-02-15 20:15:39 +00001864Creates a new string object in \var{*string} containing the
Fred Drakeddc6c272000-03-31 18:22:38 +00001865contents of \var{newpart} appended to \var{string}; the caller will
1866own the new reference. The reference to the old value of \var{string}
1867will be stolen. If the new string
Fred Drake66b989c1999-02-15 20:15:39 +00001868cannot be created, the old reference to \var{string} will still be
1869discarded and the value of \var{*string} will be set to
1870\NULL{}; the appropriate exception will be set.
Fred Drakec6fa34e1998-04-02 06:47:24 +00001871\end{cfuncdesc}
1872
1873\begin{cfuncdesc}{void}{PyString_ConcatAndDel}{PyObject **string,
1874 PyObject *newpart}
Guido van Rossum3c4378b1998-04-14 20:21:10 +00001875Creates a new string object in \var{*string} containing the contents
Guido van Rossum44475131998-04-21 15:30:01 +00001876of \var{newpart} appended to \var{string}. This version decrements
1877the reference count of \var{newpart}.
Fred Drakec6fa34e1998-04-02 06:47:24 +00001878\end{cfuncdesc}
1879
1880\begin{cfuncdesc}{int}{_PyString_Resize}{PyObject **string, int newsize}
Guido van Rossum44475131998-04-21 15:30:01 +00001881A way to resize a string object even though it is ``immutable''.
1882Only use this to build up a brand new string object; don't use this if
1883the string may already be known in other parts of the code.
Fred Drakec6fa34e1998-04-02 06:47:24 +00001884\end{cfuncdesc}
1885
1886\begin{cfuncdesc}{PyObject*}{PyString_Format}{PyObject *format,
1887 PyObject *args}
Guido van Rossum44475131998-04-21 15:30:01 +00001888Returns a new string object from \var{format} and \var{args}. Analogous
Fred Drake659ebfa2000-04-03 15:42:13 +00001889to \code{\var{format} \%\ \var{args}}. The \var{args} argument must be
Guido van Rossum44475131998-04-21 15:30:01 +00001890a tuple.
Fred Drakec6fa34e1998-04-02 06:47:24 +00001891\end{cfuncdesc}
1892
1893\begin{cfuncdesc}{void}{PyString_InternInPlace}{PyObject **string}
Guido van Rossum44475131998-04-21 15:30:01 +00001894Intern the argument \var{*string} in place. The argument must be the
1895address of a pointer variable pointing to a Python string object.
1896If there is an existing interned string that is the same as
1897\var{*string}, it sets \var{*string} to it (decrementing the reference
1898count of the old string object and incrementing the reference count of
1899the interned string object), otherwise it leaves \var{*string} alone
1900and interns it (incrementing its reference count). (Clarification:
1901even though there is a lot of talk about reference counts, think of
Fred Drakef8830d11998-04-23 14:06:01 +00001902this function as reference-count-neutral; you own the object after
1903the call if and only if you owned it before the call.)
Fred Drakec6fa34e1998-04-02 06:47:24 +00001904\end{cfuncdesc}
1905
1906\begin{cfuncdesc}{PyObject*}{PyString_InternFromString}{const char *v}
Fred Drakef8830d11998-04-23 14:06:01 +00001907A combination of \cfunction{PyString_FromString()} and
1908\cfunction{PyString_InternInPlace()}, returning either a new string object
Guido van Rossum44475131998-04-21 15:30:01 +00001909that has been interned, or a new (``owned'') reference to an earlier
1910interned string object with the same value.
Fred Drakec6fa34e1998-04-02 06:47:24 +00001911\end{cfuncdesc}
1912
Fred Drakee5bf8b21998-02-12 21:22:28 +00001913
Fred Drakea4cd2612000-04-06 14:10:29 +00001914\subsection{Unicode Objects \label{unicodeObjects}}
1915\sectionauthor{Marc-Andre Lemburg}{mal@lemburg.com}
1916
1917%--- Unicode Type -------------------------------------------------------
1918
1919These are the basic Unicode object types used for the Unicode
1920implementation in Python:
1921
1922\begin{ctypedesc}{Py_UNICODE}
1923This type represents a 16-bit unsigned storage type which is used by
1924Python internally as basis for holding Unicode ordinals. On platforms
1925where \ctype{wchar_t} is available and also has 16-bits,
1926\ctype{Py_UNICODE} is a typedef alias for \ctype{wchar_t} to enhance
1927native platform compatibility. On all other platforms,
1928\ctype{Py_UNICODE} is a typedef alias for \ctype{unsigned short}.
1929\end{ctypedesc}
1930
1931\begin{ctypedesc}{PyUnicodeObject}
1932This subtype of \ctype{PyObject} represents a Python Unicode object.
1933\end{ctypedesc}
1934
1935\begin{cvardesc}{PyTypeObject}{PyUnicode_Type}
1936This instance of \ctype{PyTypeObject} represents the Python Unicode type.
1937\end{cvardesc}
1938
1939%--- These are really C macros... is there a macrodesc TeX macro ?
1940
1941The following APIs are really C macros and can be used to do fast
1942checks and to access internal read-only data of Unicode objects:
1943
1944\begin{cfuncdesc}{int}{PyUnicode_Check}{PyObject *o}
1945Returns true if the object \var{o} is a Unicode object.
1946\end{cfuncdesc}
1947
1948\begin{cfuncdesc}{int}{PyUnicode_GET_SIZE}{PyObject *o}
1949Returns the size of the object. o has to be a
1950PyUnicodeObject (not checked).
1951\end{cfuncdesc}
1952
1953\begin{cfuncdesc}{int}{PyUnicode_GET_DATA_SIZE}{PyObject *o}
1954Returns the size of the object's internal buffer in bytes. o has to be
1955a PyUnicodeObject (not checked).
1956\end{cfuncdesc}
1957
1958\begin{cfuncdesc}{int}{PyUnicode_AS_UNICODE}{PyObject *o}
1959Returns a pointer to the internal Py_UNICODE buffer of the object. o
1960has to be a PyUnicodeObject (not checked).
1961\end{cfuncdesc}
1962
1963\begin{cfuncdesc}{int}{PyUnicode_AS_DATA}{PyObject *o}
1964Returns a (const char *) pointer to the internal buffer of the object.
1965o has to be a PyUnicodeObject (not checked).
1966\end{cfuncdesc}
1967
1968% --- Unicode character properties ---------------------------------------
1969
1970Unicode provides many different character properties. The most often
1971needed ones are available through these macros which are mapped to C
1972functions depending on the Python configuration.
1973
1974\begin{cfuncdesc}{int}{Py_UNICODE_ISSPACE}{Py_UNICODE ch}
1975Returns 1/0 depending on whether \var{ch} is a whitespace character.
1976\end{cfuncdesc}
1977
1978\begin{cfuncdesc}{int}{Py_UNICODE_ISLOWER}{Py_UNICODE ch}
1979Returns 1/0 depending on whether \var{ch} is a lowercase character.
1980\end{cfuncdesc}
1981
1982\begin{cfuncdesc}{int}{Py_UNICODE_ISUPPER}{Py_UNICODE ch}
1983Returns 1/0 depending on whether \var{ch} is a uppercase character.
1984\end{cfuncdesc}
1985
1986\begin{cfuncdesc}{int}{Py_UNICODE_ISTITLE}{Py_UNICODE ch}
1987Returns 1/0 depending on whether \var{ch} is a titlecase character.
1988\end{cfuncdesc}
1989
1990\begin{cfuncdesc}{int}{Py_UNICODE_ISLINEBREAK}{Py_UNICODE ch}
1991Returns 1/0 depending on whether \var{ch} is a linebreak character.
1992\end{cfuncdesc}
1993
1994\begin{cfuncdesc}{int}{Py_UNICODE_ISDECIMAL}{Py_UNICODE ch}
1995Returns 1/0 depending on whether \var{ch} is a decimal character.
1996\end{cfuncdesc}
1997
1998\begin{cfuncdesc}{int}{Py_UNICODE_ISDIGIT}{Py_UNICODE ch}
1999Returns 1/0 depending on whether \var{ch} is a digit character.
2000\end{cfuncdesc}
2001
2002\begin{cfuncdesc}{int}{Py_UNICODE_ISNUMERIC}{Py_UNICODE ch}
2003Returns 1/0 depending on whether \var{ch} is a numeric character.
2004\end{cfuncdesc}
2005
2006These APIs can be used for fast direct character conversions:
2007
2008\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOLOWER}{Py_UNICODE ch}
2009Returns the character \var{ch} converted to lower case.
2010\end{cfuncdesc}
2011
2012\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOUPPER}{Py_UNICODE ch}
2013Returns the character \var{ch} converted to upper case.
2014\end{cfuncdesc}
2015
2016\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOTITLE}{Py_UNICODE ch}
2017Returns the character \var{ch} converted to title case.
2018\end{cfuncdesc}
2019
2020\begin{cfuncdesc}{int}{Py_UNICODE_TODECIMAL}{Py_UNICODE ch}
2021Returns the character \var{ch} converted to a decimal positive integer.
2022Returns -1 in case this is not possible. Does not raise exceptions.
2023\end{cfuncdesc}
2024
2025\begin{cfuncdesc}{int}{Py_UNICODE_TODIGIT}{Py_UNICODE ch}
2026Returns the character \var{ch} converted to a single digit integer.
2027Returns -1 in case this is not possible. Does not raise exceptions.
2028\end{cfuncdesc}
2029
2030\begin{cfuncdesc}{double}{Py_UNICODE_TONUMERIC}{Py_UNICODE ch}
2031Returns the character \var{ch} converted to a (positive) double.
2032Returns -1.0 in case this is not possible. Does not raise exceptions.
2033\end{cfuncdesc}
2034
2035% --- Plain Py_UNICODE ---------------------------------------------------
2036
2037To create Unicode objects and access their basic sequence properties,
2038use these APIs:
2039
2040\begin{cfuncdesc}{PyObject*}{PyUnicode_FromUnicode}{const Py_UNICODE *u,
2041 int size}
2042
2043Create a Unicode Object from the Py_UNICODE buffer \var{u} of the
2044given size. \var{u} may be \NULL{} which causes the contents to be
2045undefined. It is the user's responsibility to fill in the needed data.
2046The buffer is copied into the new object.
2047\end{cfuncdesc}
2048
2049\begin{cfuncdesc}{Py_UNICODE *}{PyUnicode_AsUnicode}{PyObject *unicode}
2050Return a read-only pointer to the Unicode object's internal
2051\ctype{Py_UNICODE} buffer.
2052\end{cfuncdesc}
2053
2054\begin{cfuncdesc}{int}{PyUnicode_GetSize}{PyObject *unicode}
2055Return the length of the Unicode object.
2056\end{cfuncdesc}
2057
2058\begin{cfuncdesc}{PyObject*}{PyUnicode_FromObject}{PyObject *obj}
2059
2060Coerce obj to an Unicode object and return a reference with
2061incremented refcount.
2062
2063Coercion is done in the following way:
2064\begin{enumerate}
2065\item Unicode objects are passed back as-is with incremented
2066 refcount.
2067
2068\item String and other char buffer compatible objects are decoded
2069 under the assumptions that they contain UTF-8 data. Decoding
2070 is done in "strict" mode.
2071
2072\item All other objects raise an exception.
2073\end{enumerate}
2074The API returns NULL in case of an error. The caller is responsible
2075for decref'ing the returned objects.
2076\end{cfuncdesc}
2077
2078% --- wchar_t support for platforms which support it ---------------------
2079
2080If the platform supports \ctype{wchar_t} and provides a header file
2081wchar.h, Python can interface directly to this type using the
2082following functions. Support is optimized if Python's own
2083\ctype{Py_UNICODE} type is identical to the system's \ctype{wchar_t}.
2084
2085\begin{cfuncdesc}{PyObject*}{PyUnicode_FromWideChar}{const wchar_t *w,
2086 int size}
2087Create a Unicode Object from the \ctype{whcar_t} buffer \var{w} of the
2088given size. Returns \NULL{} on failure.
2089\end{cfuncdesc}
2090
2091\begin{cfuncdesc}{int}{PyUnicode_AsWideChar}{PyUnicodeObject *unicode,
2092 wchar_t *w,
2093 int size}
2094
2095Copies the Unicode Object contents into the \ctype{whcar_t} buffer
2096\var{w}. At most \var{size} \ctype{whcar_t} characters are copied.
2097Returns the number of \ctype{whcar_t} characters copied or -1 in case
2098of an error.
2099\end{cfuncdesc}
2100
2101
2102\subsubsection{Builtin Codecs \label{builtinCodecs}}
2103
2104Python provides a set of builtin codecs which are written in C
2105for speed. All of these codecs are directly usable via the
2106following functions.
2107
2108Many of the following APIs take two arguments encoding and
2109errors. These parameters encoding and errors have the same semantics
2110as the ones of the builtin unicode() Unicode object constructor.
2111
2112Setting encoding to NULL causes the default encoding to be used which
2113is UTF-8.
2114
2115Error handling is set by errors which may also be set to NULL meaning
2116to use the default handling defined for the codec. Default error
2117handling for all builtin codecs is ``strict'' (ValueErrors are raised).
2118
2119The codecs all use a similar interface. Only deviation from the
2120following generic ones are documented for simplicity.
2121
2122% --- Generic Codecs -----------------------------------------------------
2123
2124These are the generic codec APIs:
2125
2126\begin{cfuncdesc}{PyObject*}{PyUnicode_Decode}{const char *s,
2127 int size,
2128 const char *encoding,
2129 const char *errors}
2130
2131Create a Unicode object by decoding \var{size} bytes of the encoded
2132string \var{s}. \var{encoding} and \var{errors} have the same meaning
2133as the parameters of the same name in the unicode() builtin
2134function. The codec to be used is looked up using the Python codec
2135registry. Returns \NULL{} in case an exception was raised by the
2136codec.
2137\end{cfuncdesc}
2138
2139\begin{cfuncdesc}{PyObject*}{PyUnicode_Encode}{const Py_UNICODE *s,
2140 int size,
2141 const char *encoding,
2142 const char *errors}
2143
2144Encodes the \ctype{Py_UNICODE} buffer of the given size and returns a
2145Python string object. \var{encoding} and \var{errors} have the same
2146meaning as the parameters of the same name in the Unicode .encode()
2147method. The codec to be used is looked up using the Python codec
2148registry. Returns \NULL{} in case an exception was raised by the
2149codec.
2150\end{cfuncdesc}
2151
2152\begin{cfuncdesc}{PyObject*}{PyUnicode_AsEncodedString}{PyObject *unicode,
2153 const char *encoding,
2154 const char *errors}
2155
2156Encodes a Unicode object and returns the result as Python string
2157object. \var{encoding} and \var{errors} have the same meaning as the
2158parameters of the same name in the Unicode .encode() method. The codec
2159to be used is looked up using the Python codec registry. Returns
2160\NULL{} in case an exception was raised by the codec.
2161\end{cfuncdesc}
2162
2163% --- UTF-8 Codecs -------------------------------------------------------
2164
2165These are the UTF-8 codec APIs:
2166
2167\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF8}{const char *s,
2168 int size,
2169 const char *errors}
2170
2171Creates a Unicode object by decoding \var{size} bytes of the UTF-8
2172encoded string \var{s}. Returns \NULL{} in case an exception was
2173raised by the codec.
2174\end{cfuncdesc}
2175
2176\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUTF8}{const Py_UNICODE *s,
2177 int size,
2178 const char *errors}
2179
2180Encodes the \ctype{Py_UNICODE} buffer of the given size using UTF-8
2181and returns a Python string object. Returns \NULL{} in case an
2182exception was raised by the codec.
2183\end{cfuncdesc}
2184
2185\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUTF8String}{PyObject *unicode}
2186
2187Encodes a Unicode objects using UTF-8 and returns the result as Python
2188string object. Error handling is ``strict''. Returns
2189\NULL{} in case an exception was raised by the codec.
2190\end{cfuncdesc}
2191
2192% --- UTF-16 Codecs ------------------------------------------------------ */
2193
2194These are the UTF-16 codec APIs:
2195
2196\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF16}{const char *s,
2197 int size,
2198 const char *errors,
2199 int *byteorder}
2200
2201Decodes \var{length} bytes from a UTF-16 encoded buffer string and
2202returns the corresponding Unicode object.
2203
2204\var{errors} (if non-NULL) defines the error handling. It defaults
2205to ``strict''.
2206
2207If \var{byteorder} is non-\NULL{}, the decoder starts decoding using
2208the given byte order:
2209
2210\begin{verbatim}
2211 *byteorder == -1: little endian
2212 *byteorder == 0: native order
2213 *byteorder == 1: big endian
2214\end{verbatim}
2215
2216and then switches according to all byte order marks (BOM) it finds in
2217the input data. BOM marks are not copied into the resulting Unicode
2218string. After completion, \var{*byteorder} is set to the current byte
2219order at the end of input data.
2220
2221If \var{byteorder} is \NULL{}, the codec starts in native order mode.
2222
2223Returns \NULL{} in case an exception was raised by the codec.
2224\end{cfuncdesc}
2225
2226\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUTF16}{const Py_UNICODE *s,
2227 int size,
2228 const char *errors,
2229 int byteorder}
2230
2231Returns a Python string object holding the UTF-16 encoded value of the
2232Unicode data in \var{s}.
2233
2234If \var{byteorder} is not 0, output is written according to the
2235following byte order:
2236
2237\begin{verbatim}
2238 byteorder == -1: little endian
2239 byteorder == 0: native byte order (writes a BOM mark)
2240 byteorder == 1: big endian
2241\end{verbatim}
2242
2243If byteorder is 0, the output string will always start with the
2244Unicode BOM mark (U+FEFF). In the other two modes, no BOM mark is
2245prepended.
2246
2247Note that \ctype{Py_UNICODE} data is being interpreted as UTF-16
2248reduced to UCS-2. This trick makes it possible to add full UTF-16
2249capabilities at a later point without comprimising the APIs.
2250
2251Returns \NULL{} in case an exception was raised by the codec.
2252\end{cfuncdesc}
2253
2254\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUTF16String}{PyObject *unicode}
2255
2256Returns a Python string using the UTF-16 encoding in native byte
2257order. The string always starts with a BOM mark. Error handling is
2258``strict''. Returns \NULL{} in case an exception was raised by the
2259codec.
2260\end{cfuncdesc}
2261
2262% --- Unicode-Escape Codecs ----------------------------------------------
2263
2264These are the ``Unicode Esacpe'' codec APIs:
2265
2266\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUnicodeEscape}{const char *s,
2267 int size,
2268 const char *errors}
2269
2270Creates a Unicode object by decoding \var{size} bytes of the Unicode-Esacpe
2271encoded string \var{s}. Returns \NULL{} in case an exception was
2272raised by the codec.
2273\end{cfuncdesc}
2274
2275\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUnicodeEscape}{const Py_UNICODE *s,
2276 int size,
2277 const char *errors}
2278
2279Encodes the \ctype{Py_UNICODE} buffer of the given size using Unicode-Escape
2280and returns a Python string object. Returns \NULL{} in case an
2281exception was raised by the codec.
2282\end{cfuncdesc}
2283
2284\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUnicodeEscapeString}{PyObject *unicode}
2285
2286Encodes a Unicode objects using Unicode-Escape and returns the result
2287as Python string object. Error handling is ``strict''. Returns
2288\NULL{} in case an exception was raised by the codec.
2289\end{cfuncdesc}
2290
2291% --- Raw-Unicode-Escape Codecs ------------------------------------------
2292
2293These are the ``Raw Unicode Esacpe'' codec APIs:
2294
2295\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeRawUnicodeEscape}{const char *s,
2296 int size,
2297 const char *errors}
2298
2299Creates a Unicode object by decoding \var{size} bytes of the Raw-Unicode-Esacpe
2300encoded string \var{s}. Returns \NULL{} in case an exception was
2301raised by the codec.
2302\end{cfuncdesc}
2303
2304\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeRawUnicodeEscape}{const Py_UNICODE *s,
2305 int size,
2306 const char *errors}
2307
2308Encodes the \ctype{Py_UNICODE} buffer of the given size using Raw-Unicode-Escape
2309and returns a Python string object. Returns \NULL{} in case an
2310exception was raised by the codec.
2311\end{cfuncdesc}
2312
2313\begin{cfuncdesc}{PyObject*}{PyUnicode_AsRawUnicodeEscapeString}{PyObject *unicode}
2314
2315Encodes a Unicode objects using Raw-Unicode-Escape and returns the result
2316as Python string object. Error handling is ``strict''. Returns
2317\NULL{} in case an exception was raised by the codec.
2318\end{cfuncdesc}
2319
2320% --- Latin-1 Codecs -----------------------------------------------------
2321
2322These are the Latin-1 codec APIs:
2323
2324Latin-1 corresponds to the first 256 Unicode ordinals and only these
2325are accepted by the codecs during encoding.
2326
2327\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeLatin1}{const char *s,
2328 int size,
2329 const char *errors}
2330
2331Creates a Unicode object by decoding \var{size} bytes of the Latin-1
2332encoded string \var{s}. Returns \NULL{} in case an exception was
2333raised by the codec.
2334\end{cfuncdesc}
2335
2336\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeLatin1}{const Py_UNICODE *s,
2337 int size,
2338 const char *errors}
2339
2340Encodes the \ctype{Py_UNICODE} buffer of the given size using Latin-1
2341and returns a Python string object. Returns \NULL{} in case an
2342exception was raised by the codec.
2343\end{cfuncdesc}
2344
2345\begin{cfuncdesc}{PyObject*}{PyUnicode_AsLatin1String}{PyObject *unicode}
2346
2347Encodes a Unicode objects using Latin-1 and returns the result as
2348Python string object. Error handling is ``strict''. Returns
2349\NULL{} in case an exception was raised by the codec.
2350\end{cfuncdesc}
2351
2352% --- ASCII Codecs -------------------------------------------------------
2353
2354These are the ASCII codec APIs:
2355
2356Only 7-bit ASCII data is excepted. All other codes generate errors.
2357
2358\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeASCII}{const char *s,
2359 int size,
2360 const char *errors}
2361
2362Creates a Unicode object by decoding \var{size} bytes of the ASCII
2363encoded string \var{s}. Returns \NULL{} in case an exception was
2364raised by the codec.
2365\end{cfuncdesc}
2366
2367\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeASCII}{const Py_UNICODE *s,
2368 int size,
2369 const char *errors}
2370
2371Encodes the \ctype{Py_UNICODE} buffer of the given size using ASCII
2372and returns a Python string object. Returns \NULL{} in case an
2373exception was raised by the codec.
2374\end{cfuncdesc}
2375
2376\begin{cfuncdesc}{PyObject*}{PyUnicode_AsASCIIString}{PyObject *unicode}
2377
2378Encodes a Unicode objects using ASCII and returns the result as Python
2379string object. Error handling is ``strict''. Returns
2380\NULL{} in case an exception was raised by the codec.
2381\end{cfuncdesc}
2382
2383% --- Character Map Codecs -----------------------------------------------
2384
2385These are the mapping codec APIs:
2386
2387This codec is special in that it can be used to implement many
2388different codecs (and this is in fact what was done to obtain most of
2389the standard codecs included in the \module{encodings} package). The
2390codec uses mapping to encode and decode characters.
2391
2392Decoding mappings must map single string characters to single Unicode
2393characters, integers (which are then interpreted as Unicode ordinals)
2394or None (meaning "undefined mapping" and causing an error).
2395
2396Encoding mappings must map single Unicode characters to single string
2397characters, integers (which are then interpreted as Latin-1 ordinals)
2398or None (meaning "undefined mapping" and causing an error).
2399
2400The mapping objects provided must only support the __getitem__ mapping
2401interface.
2402
2403If a character lookup fails with a LookupError, the character is
2404copied as-is meaning that its ordinal value will be interpreted as
2405Unicode or Latin-1 ordinal resp. Because of this, mappings only need
2406to contain those mappings which map characters to different code
2407points.
2408
2409\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeCharmap}{const char *s,
2410 int size,
2411 PyObject *mapping,
2412 const char *errors}
2413
2414Creates a Unicode object by decoding \var{size} bytes of the encoded
2415string \var{s} using the given \var{mapping} object. Returns \NULL{}
2416in case an exception was raised by the codec.
2417\end{cfuncdesc}
2418
2419\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeCharmap}{const Py_UNICODE *s,
2420 int size,
2421 PyObject *mapping,
2422 const char *errors}
2423
2424Encodes the \ctype{Py_UNICODE} buffer of the given size using the
2425given \var{mapping} object and returns a Python string object.
2426Returns \NULL{} in case an exception was raised by the codec.
2427\end{cfuncdesc}
2428
2429\begin{cfuncdesc}{PyObject*}{PyUnicode_AsCharmapString}{PyObject *unicode,
2430 PyObject *mapping}
2431
2432Encodes a Unicode objects using the given \var{mapping} object and
2433returns the result as Python string object. Error handling is
2434``strict''. Returns \NULL{} in case an exception was raised by the
2435codec.
2436\end{cfuncdesc}
2437
2438The following codec API is special in that maps Unicode to Unicode.
2439
2440\begin{cfuncdesc}{PyObject*}{PyUnicode_TranslateCharmap}{const Py_UNICODE *s,
2441 int size,
2442 PyObject *table,
2443 const char *errors}
2444
2445Translates a \ctype{Py_UNICODE} buffer of the given length by applying
2446a character mapping \var{table} to it and returns the resulting
2447Unicode object.
2448
2449The \var{mapping} table must map Unicode ordinal integers to Unicode
2450ordinal integers or None (causing deletion of the character).
2451
2452Mapping tables must only provide the __getitem__ interface,
2453e.g. dictionaries or sequences. Unmapped character ordinals (ones
2454which cause a LookupError) are left untouched and are copied as-is.
2455
2456Returns \NULL{} in case an exception was raised by the codec.
2457\end{cfuncdesc}
2458
2459% --- MBCS codecs for Windows --------------------------------------------
2460
2461These are the MBCS codec APIs. They are currently only available
2462Windows and use the Win32 MBCS converters to implement the
2463conversions.
2464
2465Note that MBCS (or DBCS) is a class of encodings, not just one. The
2466target encoding is defined by the user settings on the machine running
2467the codec.
2468
2469\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeMBCS}{const char *s,
2470 int size,
2471 const char *errors}
2472
2473Creates a Unicode object by decoding \var{size} bytes of the MBCS
2474encoded string \var{s}. Returns \NULL{} in case an exception was
2475raised by the codec.
2476\end{cfuncdesc}
2477
2478\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeMBCS}{const Py_UNICODE *s,
2479 int size,
2480 const char *errors}
2481
2482Encodes the \ctype{Py_UNICODE} buffer of the given size using MBCS
2483and returns a Python string object. Returns \NULL{} in case an
2484exception was raised by the codec.
2485\end{cfuncdesc}
2486
2487\begin{cfuncdesc}{PyObject*}{PyUnicode_AsMBCSString}{PyObject *unicode}
2488
2489Encodes a Unicode objects using MBCS and returns the result as Python
2490string object. Error handling is ``strict''. Returns
2491\NULL{} in case an exception was raised by the codec.
2492\end{cfuncdesc}
2493
2494% --- Methods & Slots ----------------------------------------------------
2495
2496\subsubsection{Methods and Slot Functions \label{unicodeMethodsAndSlots}}
2497
2498The following APIs are capable of handling Unicode objects and strings
2499on input (we refer to them as strings in the descriptions) and return
2500Unicode objects or integers as apporpriate.
2501
2502They all return \NULL{} or -1 in case an exception occurrs.
2503
2504\begin{cfuncdesc}{PyObject*}{PyUnicode_Concat}{PyObject *left,
2505 PyObject *right}
2506
2507Concat two strings giving a new Unicode string.
2508\end{cfuncdesc}
2509
2510\begin{cfuncdesc}{PyObject*}{PyUnicode_Split}{PyObject *s,
2511 PyObject *sep,
2512 int maxsplit}
2513
2514Split a string giving a list of Unicode strings.
2515
2516If sep is NULL, splitting will be done at all whitespace
2517substrings. Otherwise, splits occur at the given separator.
2518
2519At most maxsplit splits will be done. If negative, no limit is set.
2520
2521Separators are not included in the resulting list.
2522\end{cfuncdesc}
2523
2524\begin{cfuncdesc}{PyObject*}{PyUnicode_Splitlines}{PyObject *s,
2525 int maxsplit}
2526
2527Dito, but split at line breaks.
2528
2529CRLF is considered to be one line break. Line breaks are not
2530included in the resulting list.
2531\end{cfuncdesc}
2532
2533\begin{cfuncdesc}{PyObject*}{PyUnicode_Translate}{PyObject *str,
2534 PyObject *table,
2535 const char *errors}
2536
2537Translate a string by applying a character mapping table to it and
2538return the resulting Unicode object.
2539
2540The mapping table must map Unicode ordinal integers to Unicode ordinal
2541integers or None (causing deletion of the character).
2542
2543Mapping tables must only provide the __getitem__ interface,
2544e.g. dictionaries or sequences. Unmapped character ordinals (ones
2545which cause a LookupError) are left untouched and are copied as-is.
2546
2547\var{errors} has the usual meaning for codecs. It may be \NULL{}
2548which indicates to use the default error handling.
2549
2550\end{cfuncdesc}
2551
2552\begin{cfuncdesc}{PyObject*}{PyUnicode_Join}{PyObject *separator,
2553 PyObject *seq}
2554
2555Join a sequence of strings using the given separator and return
2556the resulting Unicode string.
2557\end{cfuncdesc}
2558
2559\begin{cfuncdesc}{PyObject*}{PyUnicode_Tailmatch}{PyObject *str,
2560 PyObject *substr,
2561 int start,
2562 int end,
2563 int direction}
2564
2565Return 1 if \var{substr} matches \var{str}[\var{start}:\var{end}] at
2566the given tail end (\var{direction} == -1 means to do a prefix match,
2567\var{direction} == 1 a suffix match), 0 otherwise.
2568\end{cfuncdesc}
2569
2570\begin{cfuncdesc}{PyObject*}{PyUnicode_Find}{PyObject *str,
2571 PyObject *substr,
2572 int start,
2573 int end,
2574 int direction}
2575
2576Return the first position of \var{substr} in
2577\var{str}[\var{start}:\var{end}] using the given \var{direction}
2578(\var{direction} == 1 means to do a forward search,
2579\var{direction} == -1 a backward search), 0 otherwise.
2580\end{cfuncdesc}
2581
2582\begin{cfuncdesc}{PyObject*}{PyUnicode_Count}{PyObject *str,
2583 PyObject *substr,
2584 int start,
2585 int end}
2586
2587Count the number of occurrences of \var{substr} in
2588\var{str}[\var{start}:\var{end}]
2589\end{cfuncdesc}
2590
2591\begin{cfuncdesc}{PyObject*}{PyUnicode_Replace}{PyObject *str,
2592 PyObject *substr,
2593 PyObject *replstr,
2594 int maxcount}
2595
2596Replace at most \var{maxcount} occurrences of \var{substr} in
2597\var{str} with \var{replstr} and return the resulting Unicode object.
2598\var{maxcount} == -1 means: replace all occurrences.
2599\end{cfuncdesc}
2600
2601\begin{cfuncdesc}{int}{PyUnicode_Compare}{PyObject *left,
2602 PyObject *right}
2603
2604Compare two strings and return -1, 0, 1 for less than, equal,
2605greater than resp.
2606\end{cfuncdesc}
2607
2608\begin{cfuncdesc}{PyObject*}{PyUnicode_Format}{PyObject *format,
2609 PyObject *args}
2610Returns a new string object from \var{format} and \var{args}. Analogous
2611to \code{\var{format} \% \var{args}}. The \var{args} argument must be
2612a tuple.
2613\end{cfuncdesc}
2614
2615\begin{cfuncdesc}{int}{PyUnicode_Contains}{PyObject *container,
2616 PyObject *element}
2617
2618Checks whether \var{element} is contained in \var{container} and
2619returns 1/0 accordingly.
2620
2621\var{element} has to coerce to an one element Unicode string. -1 is
2622returned in case of an error.
2623\end{cfuncdesc}
2624
2625
Fred Drake58c5a2a1999-08-04 13:13:24 +00002626\subsection{Buffer Objects \label{bufferObjects}}
Fred Drake659ebfa2000-04-03 15:42:13 +00002627\sectionauthor{Greg Stein}{gstein@lyra.org}
Fred Drake58c5a2a1999-08-04 13:13:24 +00002628
Fred Drake659ebfa2000-04-03 15:42:13 +00002629\obindex{buffer}
2630Python objects implemented in C can export a group of functions called
2631the ``buffer\index{buffer interface} interface.'' These functions can
2632be used by an object to expose its data in a raw, byte-oriented
2633format. Clients of the object can use the buffer interface to access
2634the object data directly, without needing to copy it first.
2635
2636Two examples of objects that support
2637the buffer interface are strings and arrays. The string object exposes
2638the character contents in the buffer interface's byte-oriented
2639form. An array can also expose its contents, but it should be noted
2640that array elements may be multi-byte values.
2641
2642An example user of the buffer interface is the file object's
2643\method{write()} method. Any object that can export a series of bytes
2644through the buffer interface can be written to a file. There are a
2645number of format codes to \cfunction{PyArgs_ParseTuple()} that operate
2646against an object's buffer interface, returning data from the target
2647object.
2648
2649More information on the buffer interface is provided in the section
2650``Buffer Object Structures'' (section \ref{buffer-structs}), under
2651the description for \ctype{PyBufferProcs}\ttindex{PyBufferProcs}.
2652
2653A ``buffer object'' is defined in the \file{bufferobject.h} header
2654(included by \file{Python.h}). These objects look very similar to
2655string objects at the Python programming level: they support slicing,
2656indexing, concatenation, and some other standard string
2657operations. However, their data can come from one of two sources: from
2658a block of memory, or from another object which exports the buffer
2659interface.
2660
2661Buffer objects are useful as a way to expose the data from another
2662object's buffer interface to the Python programmer. They can also be
2663used as a zero-copy slicing mechanism. Using their ability to
2664reference a block of memory, it is possible to expose any data to the
2665Python programmer quite easily. The memory could be a large, constant
2666array in a C extension, it could be a raw block of memory for
2667manipulation before passing to an operating system library, or it
2668could be used to pass around structured data in its native, in-memory
2669format.
2670
2671\begin{ctypedesc}{PyBufferObject}
2672This subtype of \ctype{PyObject} represents a buffer object.
2673\end{ctypedesc}
Fred Drake58c5a2a1999-08-04 13:13:24 +00002674
2675\begin{cvardesc}{PyTypeObject}{PyBuffer_Type}
2676The instance of \ctype{PyTypeObject} which represents the Python
Fred Drake659ebfa2000-04-03 15:42:13 +00002677buffer type; it is the same object as \code{types.BufferType} in the
2678Python layer.\withsubitem{(in module types)}{\ttindex{BufferType}}.
Fred Drake58c5a2a1999-08-04 13:13:24 +00002679\end{cvardesc}
2680
2681\begin{cvardesc}{int}{Py_END_OF_BUFFER}
Fred Drake659ebfa2000-04-03 15:42:13 +00002682This constant may be passed as the \var{size} parameter to
2683\cfunction{PyBuffer_FromObject()} or
2684\cfunction{PyBuffer_FromReadWriteObject()}. It indicates that the new
2685\ctype{PyBufferObject} should refer to \var{base} object from the
2686specified \var{offset} to the end of its exported buffer. Using this
2687enables the caller to avoid querying the \var{base} object for its
2688length.
Fred Drake58c5a2a1999-08-04 13:13:24 +00002689\end{cvardesc}
2690
2691\begin{cfuncdesc}{int}{PyBuffer_Check}{PyObject *p}
2692Return true if the argument has type \cdata{PyBuffer_Type}.
2693\end{cfuncdesc}
2694
2695\begin{cfuncdesc}{PyObject*}{PyBuffer_FromObject}{PyObject *base,
2696 int offset, int size}
Fred Drake659ebfa2000-04-03 15:42:13 +00002697Return a new read-only buffer object. This raises
2698\exception{TypeError} if \var{base} doesn't support the read-only
2699buffer protocol or doesn't provide exactly one buffer segment, or it
2700raises \exception{ValueError} if \var{offset} is less than zero. The
2701buffer will hold a reference to the \var{base} object, and the
2702buffer's contents will refer to the \var{base} object's buffer
2703interface, starting as position \var{offset} and extending for
2704\var{size} bytes. If \var{size} is \constant{Py_END_OF_BUFFER}, then
2705the new buffer's contents extend to the length of the
2706\var{base} object's exported buffer data.
Fred Drake58c5a2a1999-08-04 13:13:24 +00002707\end{cfuncdesc}
2708
2709\begin{cfuncdesc}{PyObject*}{PyBuffer_FromReadWriteObject}{PyObject *base,
2710 int offset,
2711 int size}
2712Return a new writable buffer object. Parameters and exceptions are
2713similar to those for \cfunction{PyBuffer_FromObject()}.
Fred Drake659ebfa2000-04-03 15:42:13 +00002714If the \var{base} object does not export the writeable buffer
2715protocol, then \exception{TypeError} is raised.
Fred Drake58c5a2a1999-08-04 13:13:24 +00002716\end{cfuncdesc}
2717
2718\begin{cfuncdesc}{PyObject*}{PyBuffer_FromMemory}{void *ptr, int size}
Fred Drake659ebfa2000-04-03 15:42:13 +00002719Return a new read-only buffer object that reads from a specified
2720location in memory, with a specified size.
Fred Drake58c5a2a1999-08-04 13:13:24 +00002721The caller is responsible for ensuring that the memory buffer, passed
2722in as \var{ptr}, is not deallocated while the returned buffer object
2723exists. Raises \exception{ValueError} if \var{size} is less than
Fred Drake659ebfa2000-04-03 15:42:13 +00002724zero. Note that \constant{Py_END_OF_BUFFER} may \emph{not} be passed
2725for the \var{size} parameter; \exception{ValueError} will be raised in
2726that case.
Fred Drake58c5a2a1999-08-04 13:13:24 +00002727\end{cfuncdesc}
2728
2729\begin{cfuncdesc}{PyObject*}{PyBuffer_FromReadWriteMemory}{void *ptr, int size}
Fred Drake659ebfa2000-04-03 15:42:13 +00002730Similar to \cfunction{PyBuffer_FromMemory()}, but the returned buffer
2731is writable.
Fred Drake58c5a2a1999-08-04 13:13:24 +00002732\end{cfuncdesc}
2733
2734\begin{cfuncdesc}{PyObject*}{PyBuffer_New}{int size}
2735Returns a new writable buffer object that maintains its own memory
Fred Drake659ebfa2000-04-03 15:42:13 +00002736buffer of \var{size} bytes. \exception{ValueError} is returned if
2737\var{size} is not zero or positive.
Fred Drake58c5a2a1999-08-04 13:13:24 +00002738\end{cfuncdesc}
2739
Guido van Rossum44475131998-04-21 15:30:01 +00002740
Fred Drakeefd146c1999-02-15 15:30:45 +00002741\subsection{Tuple Objects \label{tupleObjects}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00002742
Fred Drake659ebfa2000-04-03 15:42:13 +00002743\obindex{tuple}
Fred Drakee5bf8b21998-02-12 21:22:28 +00002744\begin{ctypedesc}{PyTupleObject}
Fred Drakef8830d11998-04-23 14:06:01 +00002745This subtype of \ctype{PyObject} represents a Python tuple object.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002746\end{ctypedesc}
2747
2748\begin{cvardesc}{PyTypeObject}{PyTuple_Type}
Fred Drake659ebfa2000-04-03 15:42:13 +00002749This instance of \ctype{PyTypeObject} represents the Python tuple
2750type; it is the same object as \code{types.TupleType} in the Python
2751layer.\withsubitem{(in module types)}{\ttindex{TupleType}}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002752\end{cvardesc}
2753
2754\begin{cfuncdesc}{int}{PyTuple_Check}{PyObject *p}
2755Return true if the argument is a tuple object.
2756\end{cfuncdesc}
2757
Fred Drake659ebfa2000-04-03 15:42:13 +00002758\begin{cfuncdesc}{PyObject*}{PyTuple_New}{int len}
2759Return a new tuple object of size \var{len}, or \NULL{} on failure.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002760\end{cfuncdesc}
2761
2762\begin{cfuncdesc}{int}{PyTuple_Size}{PyTupleObject *p}
Fred Drakee058b4f1998-02-16 06:15:35 +00002763Takes a pointer to a tuple object, and returns the size
Fred Drakee5bf8b21998-02-12 21:22:28 +00002764of that tuple.
2765\end{cfuncdesc}
2766
Fred Drakec6fa34e1998-04-02 06:47:24 +00002767\begin{cfuncdesc}{PyObject*}{PyTuple_GetItem}{PyTupleObject *p, int pos}
Fred Drakee058b4f1998-02-16 06:15:35 +00002768Returns the object at position \var{pos} in the tuple pointed
2769to by \var{p}. If \var{pos} is out of bounds, returns \NULL{} and
Fred Drake659ebfa2000-04-03 15:42:13 +00002770sets an \exception{IndexError} exception.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002771\end{cfuncdesc}
2772
Fred Drakec6fa34e1998-04-02 06:47:24 +00002773\begin{cfuncdesc}{PyObject*}{PyTuple_GET_ITEM}{PyTupleObject *p, int pos}
Fred Drakee058b4f1998-02-16 06:15:35 +00002774Does the same, but does no checking of its arguments.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002775\end{cfuncdesc}
2776
Fred Drakec6fa34e1998-04-02 06:47:24 +00002777\begin{cfuncdesc}{PyObject*}{PyTuple_GetSlice}{PyTupleObject *p,
Fred Drakee5bf8b21998-02-12 21:22:28 +00002778 int low,
2779 int high}
Fred Drakee058b4f1998-02-16 06:15:35 +00002780Takes a slice of the tuple pointed to by \var{p} from
2781\var{low} to \var{high} and returns it as a new tuple.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002782\end{cfuncdesc}
2783
Fred Drake659ebfa2000-04-03 15:42:13 +00002784\begin{cfuncdesc}{int}{PyTuple_SetItem}{PyObject *p,
2785 int pos, PyObject *o}
Fred Drakee058b4f1998-02-16 06:15:35 +00002786Inserts a reference to object \var{o} at position \var{pos} of
2787the tuple pointed to by \var{p}. It returns \code{0} on success.
Fred Drake659ebfa2000-04-03 15:42:13 +00002788\strong{Note:} This function ``steals'' a reference to \var{o}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002789\end{cfuncdesc}
2790
Fred Drake659ebfa2000-04-03 15:42:13 +00002791\begin{cfuncdesc}{void}{PyTuple_SET_ITEM}{PyObject *p,
2792 int pos, PyObject *o}
Fred Drakee058b4f1998-02-16 06:15:35 +00002793Does the same, but does no error checking, and
Fred Drakee5bf8b21998-02-12 21:22:28 +00002794should \emph{only} be used to fill in brand new tuples.
Fred Drake659ebfa2000-04-03 15:42:13 +00002795\strong{Note:} This function ``steals'' a reference to \var{o}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002796\end{cfuncdesc}
2797
Fred Drakec6fa34e1998-04-02 06:47:24 +00002798\begin{cfuncdesc}{int}{_PyTuple_Resize}{PyTupleObject *p,
Fred Drake659ebfa2000-04-03 15:42:13 +00002799 int newsize, int last_is_sticky}
2800Can be used to resize a tuple. \var{newsize} will be the new length
2801of the tuple. Because tuples are \emph{supposed} to be immutable,
2802this should only be used if there is only one reference to the object.
2803Do \emph{not} use this if the tuple may already be known to some other
2804part of the code. \var{last_is_sticky} is a flag --- if true, the
2805tuple will grow or shrink at the front, otherwise it will grow or
2806shrink at the end. Think of this as destroying the old tuple and
2807creating a new one, only more efficiently. Returns \code{0} on
2808success and \code{-1} on failure (in which case a
2809\exception{MemoryError} or \exception{SystemError} will be raised).
Fred Drakee5bf8b21998-02-12 21:22:28 +00002810\end{cfuncdesc}
2811
2812
Fred Drakeefd146c1999-02-15 15:30:45 +00002813\subsection{List Objects \label{listObjects}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00002814
Fred Drake659ebfa2000-04-03 15:42:13 +00002815\obindex{list}
Fred Drakee5bf8b21998-02-12 21:22:28 +00002816\begin{ctypedesc}{PyListObject}
Fred Drakef8830d11998-04-23 14:06:01 +00002817This subtype of \ctype{PyObject} represents a Python list object.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002818\end{ctypedesc}
2819
2820\begin{cvardesc}{PyTypeObject}{PyList_Type}
Fred Drake659ebfa2000-04-03 15:42:13 +00002821This instance of \ctype{PyTypeObject} represents the Python list
2822type. This is the same object as \code{types.ListType}.
2823\withsubitem{(in module types)}{\ttindex{ListType}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00002824\end{cvardesc}
2825
2826\begin{cfuncdesc}{int}{PyList_Check}{PyObject *p}
Fred Drakef8830d11998-04-23 14:06:01 +00002827Returns true if its argument is a \ctype{PyListObject}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002828\end{cfuncdesc}
2829
Fred Drake659ebfa2000-04-03 15:42:13 +00002830\begin{cfuncdesc}{PyObject*}{PyList_New}{int len}
2831Returns a new list of length \var{len} on success, or \NULL{} on
Guido van Rossum3c4378b1998-04-14 20:21:10 +00002832failure.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002833\end{cfuncdesc}
2834
Fred Drakec6fa34e1998-04-02 06:47:24 +00002835\begin{cfuncdesc}{int}{PyList_Size}{PyObject *list}
Fred Drake659ebfa2000-04-03 15:42:13 +00002836Returns the length of the list object in \var{list}; this is
2837equivalent to \samp{len(\var{list})} on a list object.
2838\bifuncindex{len}
2839\end{cfuncdesc}
2840
2841\begin{cfuncdesc}{int}{PyList_GET_SIZE}{PyObject *list}
2842Macro form of \cfunction{PyList_GetSize()} without error checking.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002843\end{cfuncdesc}
2844
Fred Drakec6fa34e1998-04-02 06:47:24 +00002845\begin{cfuncdesc}{PyObject*}{PyList_GetItem}{PyObject *list, int index}
Guido van Rossum44475131998-04-21 15:30:01 +00002846Returns the object at position \var{pos} in the list pointed
2847to by \var{p}. If \var{pos} is out of bounds, returns \NULL{} and
Fred Drake659ebfa2000-04-03 15:42:13 +00002848sets an \exception{IndexError} exception.
2849\end{cfuncdesc}
2850
2851\begin{cfuncdesc}{PyObject*}{PyList_GET_ITEM}{PyObject *list, int i}
2852Macro form of \cfunction{PyList_GetItem()} without error checking.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002853\end{cfuncdesc}
2854
Fred Drakec6fa34e1998-04-02 06:47:24 +00002855\begin{cfuncdesc}{int}{PyList_SetItem}{PyObject *list, int index,
2856 PyObject *item}
Guido van Rossum3c4378b1998-04-14 20:21:10 +00002857Sets the item at index \var{index} in list to \var{item}.
Fred Drake659ebfa2000-04-03 15:42:13 +00002858\strong{Note:} This function ``steals'' a reference to \var{item}.
2859\end{cfuncdesc}
2860
2861\begin{cfuncdesc}{PyObject*}{PyList_SET_ITEM}{PyObject *list, int i,
2862 PyObject *o}
2863Macro form of \cfunction{PyList_SetItem()} without error checking.
2864\strong{Note:} This function ``steals'' a reference to \var{item}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002865\end{cfuncdesc}
2866
Fred Drakec6fa34e1998-04-02 06:47:24 +00002867\begin{cfuncdesc}{int}{PyList_Insert}{PyObject *list, int index,
Guido van Rossum44475131998-04-21 15:30:01 +00002868 PyObject *item}
2869Inserts the item \var{item} into list \var{list} in front of index
Fred Drake659ebfa2000-04-03 15:42:13 +00002870\var{index}. Returns \code{0} if successful; returns \code{-1} and
2871raises an exception if unsuccessful. Analogous to
2872\code{\var{list}.insert(\var{index}, \var{item})}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002873\end{cfuncdesc}
2874
Fred Drakec6fa34e1998-04-02 06:47:24 +00002875\begin{cfuncdesc}{int}{PyList_Append}{PyObject *list, PyObject *item}
Guido van Rossum44475131998-04-21 15:30:01 +00002876Appends the object \var{item} at the end of list \var{list}. Returns
Fred Drake659ebfa2000-04-03 15:42:13 +00002877\code{0} if successful; returns \code{-1} and sets an exception if
2878unsuccessful. Analogous to \code{\var{list}.append(\var{item})}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002879\end{cfuncdesc}
2880
Fred Drakec6fa34e1998-04-02 06:47:24 +00002881\begin{cfuncdesc}{PyObject*}{PyList_GetSlice}{PyObject *list,
2882 int low, int high}
Guido van Rossum3c4378b1998-04-14 20:21:10 +00002883Returns a list of the objects in \var{list} containing the objects
Guido van Rossum44475131998-04-21 15:30:01 +00002884\emph{between} \var{low} and \var{high}. Returns NULL and sets an
2885exception if unsuccessful.
Fred Drake659ebfa2000-04-03 15:42:13 +00002886Analogous to \code{\var{list}[\var{low}:\var{high}]}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002887\end{cfuncdesc}
2888
Fred Drakec6fa34e1998-04-02 06:47:24 +00002889\begin{cfuncdesc}{int}{PyList_SetSlice}{PyObject *list,
2890 int low, int high,
2891 PyObject *itemlist}
Fred Drake659ebfa2000-04-03 15:42:13 +00002892Sets the slice of \var{list} between \var{low} and \var{high} to the
2893contents of \var{itemlist}. Analogous to
2894\code{\var{list}[\var{low}:\var{high}] = \var{itemlist}}. Returns
2895\code{0} on success, \code{-1} on failure.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002896\end{cfuncdesc}
2897
Fred Drakec6fa34e1998-04-02 06:47:24 +00002898\begin{cfuncdesc}{int}{PyList_Sort}{PyObject *list}
Fred Drake659ebfa2000-04-03 15:42:13 +00002899Sorts the items of \var{list} in place. Returns \code{0} on success,
2900\code{-1} on failure. This is equivalent to
2901\samp{\var{list}.sort()}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002902\end{cfuncdesc}
2903
Fred Drakec6fa34e1998-04-02 06:47:24 +00002904\begin{cfuncdesc}{int}{PyList_Reverse}{PyObject *list}
Fred Drake659ebfa2000-04-03 15:42:13 +00002905Reverses the items of \var{list} in place. Returns \code{0} on
2906success, \code{-1} on failure. This is the equivalent of
2907\samp{\var{list}.reverse()}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002908\end{cfuncdesc}
2909
Fred Drakec6fa34e1998-04-02 06:47:24 +00002910\begin{cfuncdesc}{PyObject*}{PyList_AsTuple}{PyObject *list}
Fred Drake659ebfa2000-04-03 15:42:13 +00002911Returns a new tuple object containing the contents of \var{list};
2912equivalent to \samp{tuple(\var{list})}.\bifuncindex{tuple}
Fred Drakee5bf8b21998-02-12 21:22:28 +00002913\end{cfuncdesc}
2914
2915
Fred Drakeefd146c1999-02-15 15:30:45 +00002916\section{Mapping Objects \label{mapObjects}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00002917
Fred Drake659ebfa2000-04-03 15:42:13 +00002918\obindex{mapping}
2919
2920
Fred Drakeefd146c1999-02-15 15:30:45 +00002921\subsection{Dictionary Objects \label{dictObjects}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00002922
Fred Drake659ebfa2000-04-03 15:42:13 +00002923\obindex{dictionary}
Fred Drakee5bf8b21998-02-12 21:22:28 +00002924\begin{ctypedesc}{PyDictObject}
Fred Drakef8830d11998-04-23 14:06:01 +00002925This subtype of \ctype{PyObject} represents a Python dictionary object.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002926\end{ctypedesc}
2927
2928\begin{cvardesc}{PyTypeObject}{PyDict_Type}
Fred Drake659ebfa2000-04-03 15:42:13 +00002929This instance of \ctype{PyTypeObject} represents the Python dictionary
2930type. This is exposed to Python programs as \code{types.DictType} and
2931\code{types.DictionaryType}.
2932\withsubitem{(in module types)}{\ttindex{DictType}\ttindex{DictionaryType}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00002933\end{cvardesc}
2934
2935\begin{cfuncdesc}{int}{PyDict_Check}{PyObject *p}
Fred Drakef8830d11998-04-23 14:06:01 +00002936Returns true if its argument is a \ctype{PyDictObject}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002937\end{cfuncdesc}
2938
Fred Drakec6fa34e1998-04-02 06:47:24 +00002939\begin{cfuncdesc}{PyObject*}{PyDict_New}{}
Fred Drake659ebfa2000-04-03 15:42:13 +00002940Returns a new empty dictionary, or \NULL{} on failure.
2941\end{cfuncdesc}
2942
2943\begin{cfuncdesc}{void}{PyDict_Clear}{PyObject *p}
2944Empties an existing dictionary of all key-value pairs.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002945\end{cfuncdesc}
2946
Jeremy Hyltona12c7a72000-03-30 22:27:31 +00002947\begin{cfuncdesc}{PyObject*}{PyDict_Copy}{PyObject *p}
Fred Drake659ebfa2000-04-03 15:42:13 +00002948Returns a new dictionary that contains the same key-value pairs as p.
2949Empties an existing dictionary of all key-value pairs.
Jeremy Hyltona12c7a72000-03-30 22:27:31 +00002950\end{cfuncdesc}
2951
Fred Drake659ebfa2000-04-03 15:42:13 +00002952\begin{cfuncdesc}{int}{PyDict_SetItem}{PyObject *p, PyObject *key,
2953 PyObject *val}
2954Inserts \var{value} into the dictionary with a key of \var{key}.
2955\var{key} must be hashable; if it isn't, \exception{TypeError} will be
2956raised.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002957\end{cfuncdesc}
2958
2959\begin{cfuncdesc}{int}{PyDict_SetItemString}{PyDictObject *p,
2960 char *key,
2961 PyObject *val}
Fred Drakee058b4f1998-02-16 06:15:35 +00002962Inserts \var{value} into the dictionary using \var{key}
Fred Drakef8830d11998-04-23 14:06:01 +00002963as a key. \var{key} should be a \ctype{char *}. The key object is
Fred Drakee058b4f1998-02-16 06:15:35 +00002964created using \code{PyString_FromString(\var{key})}.
Fred Drake659ebfa2000-04-03 15:42:13 +00002965\ttindex{PyString_FromString()}
Fred Drakee5bf8b21998-02-12 21:22:28 +00002966\end{cfuncdesc}
2967
Fred Drake659ebfa2000-04-03 15:42:13 +00002968\begin{cfuncdesc}{int}{PyDict_DelItem}{PyObject *p, PyObject *key}
Fred Drakee058b4f1998-02-16 06:15:35 +00002969Removes the entry in dictionary \var{p} with key \var{key}.
Fred Drake659ebfa2000-04-03 15:42:13 +00002970\var{key} must be hashable; if it isn't, \exception{TypeError} is
2971raised.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002972\end{cfuncdesc}
2973
Fred Drake659ebfa2000-04-03 15:42:13 +00002974\begin{cfuncdesc}{int}{PyDict_DelItemString}{PyObject *p, char *key}
Fred Drakee058b4f1998-02-16 06:15:35 +00002975Removes the entry in dictionary \var{p} which has a key
Fred Drake659ebfa2000-04-03 15:42:13 +00002976specified by the string \var{key}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002977\end{cfuncdesc}
2978
Fred Drake659ebfa2000-04-03 15:42:13 +00002979\begin{cfuncdesc}{PyObject*}{PyDict_GetItem}{PyObject *p, PyObject *key}
Fred Drakee058b4f1998-02-16 06:15:35 +00002980Returns the object from dictionary \var{p} which has a key
Guido van Rossum44475131998-04-21 15:30:01 +00002981\var{key}. Returns \NULL{} if the key \var{key} is not present, but
Fred Drake659ebfa2000-04-03 15:42:13 +00002982\emph{without} setting an exception.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002983\end{cfuncdesc}
2984
Fred Drake659ebfa2000-04-03 15:42:13 +00002985\begin{cfuncdesc}{PyObject*}{PyDict_GetItemString}{PyObject *p, char *key}
Fred Drakef8830d11998-04-23 14:06:01 +00002986This is the same as \cfunction{PyDict_GetItem()}, but \var{key} is
Fred Drake659ebfa2000-04-03 15:42:13 +00002987specified as a \ctype{char*}, rather than a \ctype{PyObject*}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00002988\end{cfuncdesc}
2989
Fred Drake659ebfa2000-04-03 15:42:13 +00002990\begin{cfuncdesc}{PyObject*}{PyDict_Items}{PyObject *p}
Fred Drakef8830d11998-04-23 14:06:01 +00002991Returns a \ctype{PyListObject} containing all the items
Guido van Rossum44475131998-04-21 15:30:01 +00002992from the dictionary, as in the dictinoary method \method{items()} (see
Fred Drakebe486461999-11-09 17:03:03 +00002993the \citetitle[../lib/lib.html]{Python Library Reference}).
Fred Drakee5bf8b21998-02-12 21:22:28 +00002994\end{cfuncdesc}
2995
Fred Drake659ebfa2000-04-03 15:42:13 +00002996\begin{cfuncdesc}{PyObject*}{PyDict_Keys}{PyObject *p}
Fred Drakef8830d11998-04-23 14:06:01 +00002997Returns a \ctype{PyListObject} containing all the keys
Guido van Rossum44475131998-04-21 15:30:01 +00002998from the dictionary, as in the dictionary method \method{keys()} (see the
Fred Drakebe486461999-11-09 17:03:03 +00002999\citetitle[../lib/lib.html]{Python Library Reference}).
Fred Drakee5bf8b21998-02-12 21:22:28 +00003000\end{cfuncdesc}
3001
Fred Drake659ebfa2000-04-03 15:42:13 +00003002\begin{cfuncdesc}{PyObject*}{PyDict_Values}{PyObject *p}
Fred Drakef8830d11998-04-23 14:06:01 +00003003Returns a \ctype{PyListObject} containing all the values
Guido van Rossum44475131998-04-21 15:30:01 +00003004from the dictionary \var{p}, as in the dictionary method
Fred Drakebe486461999-11-09 17:03:03 +00003005\method{values()} (see the \citetitle[../lib/lib.html]{Python Library
3006Reference}).
Fred Drakee5bf8b21998-02-12 21:22:28 +00003007\end{cfuncdesc}
3008
Fred Drake659ebfa2000-04-03 15:42:13 +00003009\begin{cfuncdesc}{int}{PyDict_Size}{PyObject *p}
3010Returns the number of items in the dictionary. This is equivalent to
3011\samp{len(\var{p})} on a dictionary.\bifuncindex{len}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003012\end{cfuncdesc}
3013
3014\begin{cfuncdesc}{int}{PyDict_Next}{PyDictObject *p,
3015 int ppos,
3016 PyObject **pkey,
3017 PyObject **pvalue}
3018
3019\end{cfuncdesc}
3020
3021
Fred Drakeefd146c1999-02-15 15:30:45 +00003022\section{Numeric Objects \label{numericObjects}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003023
Fred Drake659ebfa2000-04-03 15:42:13 +00003024\obindex{numeric}
3025
3026
Fred Drakeefd146c1999-02-15 15:30:45 +00003027\subsection{Plain Integer Objects \label{intObjects}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003028
Fred Drake659ebfa2000-04-03 15:42:13 +00003029\obindex{integer}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003030\begin{ctypedesc}{PyIntObject}
Fred Drakef8830d11998-04-23 14:06:01 +00003031This subtype of \ctype{PyObject} represents a Python integer object.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003032\end{ctypedesc}
3033
3034\begin{cvardesc}{PyTypeObject}{PyInt_Type}
Fred Drakef8830d11998-04-23 14:06:01 +00003035This instance of \ctype{PyTypeObject} represents the Python plain
Fred Drake659ebfa2000-04-03 15:42:13 +00003036integer type. This is the same object as \code{types.IntType}.
3037\withsubitem{(in modules types)}{\ttindex{IntType}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003038\end{cvardesc}
3039
Fred Drake659ebfa2000-04-03 15:42:13 +00003040\begin{cfuncdesc}{int}{PyInt_Check}{PyObject* o}
3041Returns true if \var{o} is of type \cdata{PyInt_Type}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003042\end{cfuncdesc}
3043
Fred Drakec6fa34e1998-04-02 06:47:24 +00003044\begin{cfuncdesc}{PyObject*}{PyInt_FromLong}{long ival}
Fred Drakee058b4f1998-02-16 06:15:35 +00003045Creates a new integer object with a value of \var{ival}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003046
3047The current implementation keeps an array of integer objects for all
Fred Drakee058b4f1998-02-16 06:15:35 +00003048integers between \code{-1} and \code{100}, when you create an int in
3049that range you actually just get back a reference to the existing
3050object. So it should be possible to change the value of \code{1}. I
Fred Drake7e9d3141998-04-03 05:02:28 +00003051suspect the behaviour of Python in this case is undefined. :-)
Fred Drakee5bf8b21998-02-12 21:22:28 +00003052\end{cfuncdesc}
3053
Fred Drakee5bf8b21998-02-12 21:22:28 +00003054\begin{cfuncdesc}{long}{PyInt_AsLong}{PyObject *io}
Fred Drakef8830d11998-04-23 14:06:01 +00003055Will first attempt to cast the object to a \ctype{PyIntObject}, if
Fred Drakee058b4f1998-02-16 06:15:35 +00003056it is not already one, and then return its value.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003057\end{cfuncdesc}
3058
Fred Drake659ebfa2000-04-03 15:42:13 +00003059\begin{cfuncdesc}{long}{PyInt_AS_LONG}{PyObject *io}
3060Returns the value of the object \var{io}. No error checking is
3061performed.
3062\end{cfuncdesc}
3063
Fred Drakee5bf8b21998-02-12 21:22:28 +00003064\begin{cfuncdesc}{long}{PyInt_GetMax}{}
Fred Drake659ebfa2000-04-03 15:42:13 +00003065Returns the system's idea of the largest integer it can handle
3066(\constant{LONG_MAX}\ttindex{LONG_MAX}, as defined in the system
3067header files).
Fred Drakee5bf8b21998-02-12 21:22:28 +00003068\end{cfuncdesc}
3069
3070
Fred Drakeefd146c1999-02-15 15:30:45 +00003071\subsection{Long Integer Objects \label{longObjects}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003072
Fred Drake659ebfa2000-04-03 15:42:13 +00003073\obindex{long integer}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003074\begin{ctypedesc}{PyLongObject}
Fred Drakef8830d11998-04-23 14:06:01 +00003075This subtype of \ctype{PyObject} represents a Python long integer
Fred Drakee058b4f1998-02-16 06:15:35 +00003076object.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003077\end{ctypedesc}
3078
3079\begin{cvardesc}{PyTypeObject}{PyLong_Type}
Fred Drakef8830d11998-04-23 14:06:01 +00003080This instance of \ctype{PyTypeObject} represents the Python long
Fred Drake659ebfa2000-04-03 15:42:13 +00003081integer type. This is the same object as \code{types.LongType}.
3082\withsubitem{(in modules types)}{\ttindex{LongType}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003083\end{cvardesc}
3084
3085\begin{cfuncdesc}{int}{PyLong_Check}{PyObject *p}
Fred Drakef8830d11998-04-23 14:06:01 +00003086Returns true if its argument is a \ctype{PyLongObject}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003087\end{cfuncdesc}
3088
Fred Drakec6fa34e1998-04-02 06:47:24 +00003089\begin{cfuncdesc}{PyObject*}{PyLong_FromLong}{long v}
Fred Drake659ebfa2000-04-03 15:42:13 +00003090Returns a new \ctype{PyLongObject} object from \var{v}, or \NULL{} on
3091failure.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003092\end{cfuncdesc}
3093
Fred Drakec6fa34e1998-04-02 06:47:24 +00003094\begin{cfuncdesc}{PyObject*}{PyLong_FromUnsignedLong}{unsigned long v}
Fred Drake659ebfa2000-04-03 15:42:13 +00003095Returns a new \ctype{PyLongObject} object from a C \ctype{unsigned
3096long}, or \NULL{} on failure.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003097\end{cfuncdesc}
3098
Fred Drakec6fa34e1998-04-02 06:47:24 +00003099\begin{cfuncdesc}{PyObject*}{PyLong_FromDouble}{double v}
Fred Drake659ebfa2000-04-03 15:42:13 +00003100Returns a new \ctype{PyLongObject} object from the integer part of
3101\var{v}, or \NULL{} on failure.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003102\end{cfuncdesc}
3103
Fred Drakec6fa34e1998-04-02 06:47:24 +00003104\begin{cfuncdesc}{long}{PyLong_AsLong}{PyObject *pylong}
Fred Drake659ebfa2000-04-03 15:42:13 +00003105Returns a C \ctype{long} representation of the contents of
3106\var{pylong}. If \var{pylong} is greater than
3107\constant{LONG_MAX}\ttindex{LONG_MAX}, an \exception{OverflowError} is
3108raised.\withsubitem{(built-in exception)}{OverflowError}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003109\end{cfuncdesc}
3110
Fred Drakec6fa34e1998-04-02 06:47:24 +00003111\begin{cfuncdesc}{unsigned long}{PyLong_AsUnsignedLong}{PyObject *pylong}
Fred Drake659ebfa2000-04-03 15:42:13 +00003112Returns a C \ctype{unsigned long} representation of the contents of
3113\var{pylong}. If \var{pylong} is greater than
3114\constant{ULONG_MAX}\ttindex{ULONG_MAX}, an \exception{OverflowError}
3115is raised.\withsubitem{(built-in exception)}{OverflowError}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003116\end{cfuncdesc}
3117
Fred Drakec6fa34e1998-04-02 06:47:24 +00003118\begin{cfuncdesc}{double}{PyLong_AsDouble}{PyObject *pylong}
Fred Drake659ebfa2000-04-03 15:42:13 +00003119Returns a C \ctype{double} representation of the contents of \var{pylong}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003120\end{cfuncdesc}
3121
Fred Drakec6fa34e1998-04-02 06:47:24 +00003122\begin{cfuncdesc}{PyObject*}{PyLong_FromString}{char *str, char **pend,
3123 int base}
Fred Drake659ebfa2000-04-03 15:42:13 +00003124Return a new \ctype{PyLongObject} based on the string value in
3125\var{str}, which is interpreted according to the radix in \var{base}.
3126If \var{pend} is non-\NULL, \code{*\var{pend}} will point to the first
3127character in \var{str} which follows the representation of the
3128number. If \var{base} is \code{0}, the radix will be determined base
3129on the leading characters of \var{str}: if \var{str} starts with
3130\code{'0x'} or \code{'0X'}, radix 16 will be used; if \var{str} starts
3131with \code{'0'}, radix 8 will be used; otherwise radix 10 will be
3132used. If \var{base} is not \code{0}, it must be between \code{2} and
3133\code{36}, inclusive. Leading spaces are ignored. If there are no
3134digits, \exception{ValueError} will be raised.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003135\end{cfuncdesc}
3136
3137
Fred Drakeefd146c1999-02-15 15:30:45 +00003138\subsection{Floating Point Objects \label{floatObjects}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003139
Fred Drake659ebfa2000-04-03 15:42:13 +00003140\obindex{floating point}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003141\begin{ctypedesc}{PyFloatObject}
Fred Drakef8830d11998-04-23 14:06:01 +00003142This subtype of \ctype{PyObject} represents a Python floating point
Fred Drakee058b4f1998-02-16 06:15:35 +00003143object.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003144\end{ctypedesc}
3145
3146\begin{cvardesc}{PyTypeObject}{PyFloat_Type}
Fred Drakef8830d11998-04-23 14:06:01 +00003147This instance of \ctype{PyTypeObject} represents the Python floating
Fred Drake659ebfa2000-04-03 15:42:13 +00003148point type. This is the same object as \code{types.FloatType}.
3149\withsubitem{(in modules types)}{\ttindex{FloatType}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003150\end{cvardesc}
3151
3152\begin{cfuncdesc}{int}{PyFloat_Check}{PyObject *p}
Fred Drakef8830d11998-04-23 14:06:01 +00003153Returns true if its argument is a \ctype{PyFloatObject}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003154\end{cfuncdesc}
3155
Fred Drakec6fa34e1998-04-02 06:47:24 +00003156\begin{cfuncdesc}{PyObject*}{PyFloat_FromDouble}{double v}
Fred Drake659ebfa2000-04-03 15:42:13 +00003157Creates a \ctype{PyFloatObject} object from \var{v}, or \NULL{} on
3158failure.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003159\end{cfuncdesc}
3160
Fred Drakec6fa34e1998-04-02 06:47:24 +00003161\begin{cfuncdesc}{double}{PyFloat_AsDouble}{PyObject *pyfloat}
Fred Drake659ebfa2000-04-03 15:42:13 +00003162Returns a C \ctype{double} representation of the contents of \var{pyfloat}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003163\end{cfuncdesc}
3164
Fred Drakec6fa34e1998-04-02 06:47:24 +00003165\begin{cfuncdesc}{double}{PyFloat_AS_DOUBLE}{PyObject *pyfloat}
Fred Drake659ebfa2000-04-03 15:42:13 +00003166Returns a C \ctype{double} representation of the contents of
Fred Drakef8830d11998-04-23 14:06:01 +00003167\var{pyfloat}, but without error checking.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003168\end{cfuncdesc}
3169
3170
Fred Drakeefd146c1999-02-15 15:30:45 +00003171\subsection{Complex Number Objects \label{complexObjects}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003172
Fred Drake659ebfa2000-04-03 15:42:13 +00003173\obindex{complex number}
3174Python's complex number objects are implemented as two distinct types
3175when viewed from the C API: one is the Python object exposed to
3176Python programs, and the other is a C structure which represents the
3177actual complex number value. The API provides functions for working
3178with both.
3179
3180\subsubsection{Complex Numbers as C Structures}
3181
3182Note that the functions which accept these structures as parameters
3183and return them as results do so \emph{by value} rather than
3184dereferencing them through pointers. This is consistent throughout
3185the API.
3186
Fred Drakee5bf8b21998-02-12 21:22:28 +00003187\begin{ctypedesc}{Py_complex}
Fred Drake659ebfa2000-04-03 15:42:13 +00003188The C structure which corresponds to the value portion of a Python
Fred Drake4de05a91998-02-16 14:25:26 +00003189complex number object. Most of the functions for dealing with complex
3190number objects use structures of this type as input or output values,
3191as appropriate. It is defined as:
3192
Fred Drakee058b4f1998-02-16 06:15:35 +00003193\begin{verbatim}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003194typedef struct {
3195 double real;
3196 double imag;
Fred Drake4de05a91998-02-16 14:25:26 +00003197} Py_complex;
Fred Drakee058b4f1998-02-16 06:15:35 +00003198\end{verbatim}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003199\end{ctypedesc}
3200
Fred Drake659ebfa2000-04-03 15:42:13 +00003201\begin{cfuncdesc}{Py_complex}{_Py_c_sum}{Py_complex left, Py_complex right}
3202Return the sum of two complex numbers, using the C
3203\ctype{Py_complex} representation.
3204\end{cfuncdesc}
3205
3206\begin{cfuncdesc}{Py_complex}{_Py_c_diff}{Py_complex left, Py_complex right}
3207Return the difference between two complex numbers, using the C
3208\ctype{Py_complex} representation.
3209\end{cfuncdesc}
3210
3211\begin{cfuncdesc}{Py_complex}{_Py_c_neg}{Py_complex complex}
3212Return the negation of the complex number \var{complex}, using the C
3213\ctype{Py_complex} representation.
3214\end{cfuncdesc}
3215
3216\begin{cfuncdesc}{Py_complex}{_Py_c_prod}{Py_complex left, Py_complex right}
3217Return the product of two complex numbers, using the C
3218\ctype{Py_complex} representation.
3219\end{cfuncdesc}
3220
3221\begin{cfuncdesc}{Py_complex}{_Py_c_quot}{Py_complex dividend,
3222 Py_complex divisor}
3223Return the quotient of two complex numbers, using the C
3224\ctype{Py_complex} representation.
3225\end{cfuncdesc}
3226
3227\begin{cfuncdesc}{Py_complex}{_Py_c_pow}{Py_complex num, Py_complex exp}
3228Return the exponentiation of \var{num} by \var{exp}, using the C
3229\ctype{Py_complex} representation.
3230\end{cfuncdesc}
3231
3232
3233\subsubsection{Complex Numbers as Python Objects}
3234
Fred Drakee5bf8b21998-02-12 21:22:28 +00003235\begin{ctypedesc}{PyComplexObject}
Fred Drakef8830d11998-04-23 14:06:01 +00003236This subtype of \ctype{PyObject} represents a Python complex number object.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003237\end{ctypedesc}
3238
3239\begin{cvardesc}{PyTypeObject}{PyComplex_Type}
Fred Drakef8830d11998-04-23 14:06:01 +00003240This instance of \ctype{PyTypeObject} represents the Python complex
Fred Drakee5bf8b21998-02-12 21:22:28 +00003241number type.
3242\end{cvardesc}
3243
3244\begin{cfuncdesc}{int}{PyComplex_Check}{PyObject *p}
Fred Drakef8830d11998-04-23 14:06:01 +00003245Returns true if its argument is a \ctype{PyComplexObject}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003246\end{cfuncdesc}
3247
Fred Drakec6fa34e1998-04-02 06:47:24 +00003248\begin{cfuncdesc}{PyObject*}{PyComplex_FromCComplex}{Py_complex v}
Fred Drake659ebfa2000-04-03 15:42:13 +00003249Create a new Python complex number object from a C
3250\ctype{Py_complex} value.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003251\end{cfuncdesc}
3252
Fred Drakec6fa34e1998-04-02 06:47:24 +00003253\begin{cfuncdesc}{PyObject*}{PyComplex_FromDoubles}{double real, double imag}
Fred Drakef8830d11998-04-23 14:06:01 +00003254Returns a new \ctype{PyComplexObject} object from \var{real} and \var{imag}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003255\end{cfuncdesc}
3256
3257\begin{cfuncdesc}{double}{PyComplex_RealAsDouble}{PyObject *op}
Fred Drake659ebfa2000-04-03 15:42:13 +00003258Returns the real part of \var{op} as a C \ctype{double}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003259\end{cfuncdesc}
3260
3261\begin{cfuncdesc}{double}{PyComplex_ImagAsDouble}{PyObject *op}
Fred Drake659ebfa2000-04-03 15:42:13 +00003262Returns the imaginary part of \var{op} as a C \ctype{double}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003263\end{cfuncdesc}
3264
3265\begin{cfuncdesc}{Py_complex}{PyComplex_AsCComplex}{PyObject *op}
Fred Drake659ebfa2000-04-03 15:42:13 +00003266Returns the \ctype{Py_complex} value of the complex number \var{op}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003267\end{cfuncdesc}
3268
3269
3270
Fred Drakeefd146c1999-02-15 15:30:45 +00003271\section{Other Objects \label{otherObjects}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003272
Fred Drakeefd146c1999-02-15 15:30:45 +00003273\subsection{File Objects \label{fileObjects}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003274
Fred Drake659ebfa2000-04-03 15:42:13 +00003275\obindex{file}
3276Python's built-in file objects are implemented entirely on the
3277\ctype{FILE*} support from the C standard library. This is an
3278implementation detail and may change in future releases of Python.
3279
Fred Drakee5bf8b21998-02-12 21:22:28 +00003280\begin{ctypedesc}{PyFileObject}
Fred Drakef8830d11998-04-23 14:06:01 +00003281This subtype of \ctype{PyObject} represents a Python file object.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003282\end{ctypedesc}
3283
3284\begin{cvardesc}{PyTypeObject}{PyFile_Type}
Fred Drake659ebfa2000-04-03 15:42:13 +00003285This instance of \ctype{PyTypeObject} represents the Python file
3286type. This is exposed to Python programs as \code{types.FileType}.
3287\withsubitem{(in module types)}{\ttindex{FileType}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003288\end{cvardesc}
3289
3290\begin{cfuncdesc}{int}{PyFile_Check}{PyObject *p}
Fred Drakef8830d11998-04-23 14:06:01 +00003291Returns true if its argument is a \ctype{PyFileObject}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003292\end{cfuncdesc}
3293
Fred Drake659ebfa2000-04-03 15:42:13 +00003294\begin{cfuncdesc}{PyObject*}{PyFile_FromString}{char *filename, char *mode}
3295On success, returns a new file object that is opened on the
3296file given by \var{filename}, with a file mode given by \var{mode},
3297where \var{mode} has the same semantics as the standard C routine
3298\cfunction{fopen()}\ttindex{fopen()}. On failure, returns \NULL.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003299\end{cfuncdesc}
3300
Fred Drakec6fa34e1998-04-02 06:47:24 +00003301\begin{cfuncdesc}{PyObject*}{PyFile_FromFile}{FILE *fp,
Fred Drake659ebfa2000-04-03 15:42:13 +00003302 char *name, char *mode,
3303 int (*close)(FILE*)}
3304Creates a new \ctype{PyFileObject} from the already-open standard C
3305file pointer, \var{fp}. The function \var{close} will be called when
3306the file should be closed. Returns \NULL{} on failure.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003307\end{cfuncdesc}
3308
Fred Drake659ebfa2000-04-03 15:42:13 +00003309\begin{cfuncdesc}{FILE*}{PyFile_AsFile}{PyFileObject *p}
3310Returns the file object associated with \var{p} as a \ctype{FILE*}.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003311\end{cfuncdesc}
3312
Fred Drakec6fa34e1998-04-02 06:47:24 +00003313\begin{cfuncdesc}{PyObject*}{PyFile_GetLine}{PyObject *p, int n}
Fred Drake659ebfa2000-04-03 15:42:13 +00003314Equivalent to \code{\var{p}.readline(\optional{\var{n}})}, this
3315function reads one line from the object \var{p}. \var{p} may be a
3316file object or any object with a \method{readline()} method. If
3317\var{n} is \code{0}, exactly one line is read, regardless of the
3318length of the line. If \var{n} is greater than \code{0}, no more than
3319\var{n} bytes will be read from the file; a partial line can be
3320returned. In both cases, an empty string is returned if the end of
3321the file is reached immediately. If \var{n} is less than \code{0},
3322however, one line is read regardless of length, but
3323\exception{EOFError} is raised if the end of the file is reached
3324immediately.
3325\withsubitem{(built-in exception)}{\ttindex{EOFError}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003326\end{cfuncdesc}
3327
Fred Drakec6fa34e1998-04-02 06:47:24 +00003328\begin{cfuncdesc}{PyObject*}{PyFile_Name}{PyObject *p}
Fred Drake659ebfa2000-04-03 15:42:13 +00003329Returns the name of the file specified by \var{p} as a string object.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003330\end{cfuncdesc}
3331
3332\begin{cfuncdesc}{void}{PyFile_SetBufSize}{PyFileObject *p, int n}
Fred Drake659ebfa2000-04-03 15:42:13 +00003333Available on systems with \cfunction{setvbuf()}\ttindex{setvbuf()}
3334only. This should only be called immediately after file object
3335creation.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003336\end{cfuncdesc}
3337
Fred Drake659ebfa2000-04-03 15:42:13 +00003338\begin{cfuncdesc}{int}{PyFile_SoftSpace}{PyObject *p, int newflag}
3339This function exists for internal use by the interpreter.
3340Sets the \member{softspace} attribute of \var{p} to \var{newflag} and
3341\withsubitem{(file attribute)}{\ttindex{softspace}}returns the
3342previous value. \var{p} does not have to be a file object
3343for this function to work properly; any object is supported (thought
3344its only interesting if the \member{softspace} attribute can be set).
3345This function clears any errors, and will return \code{0} as the
3346previous value if the attribute either does not exist or if there were
3347errors in retrieving it. There is no way to detect errors from this
3348function, but doing so should not be needed.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003349\end{cfuncdesc}
3350
Fred Drakec6fa34e1998-04-02 06:47:24 +00003351\begin{cfuncdesc}{int}{PyFile_WriteObject}{PyObject *obj, PyFileObject *p,
3352 int flags}
Fred Drake659ebfa2000-04-03 15:42:13 +00003353Writes object \var{obj} to file object \var{p}. The only supported
3354flag for \var{flags} is \constant{Py_PRINT_RAW}\ttindex{Py_PRINT_RAW};
3355if given, the \function{str()} of the object is written instead of the
3356\function{repr()}. Returns \code{0} on success or \code{-1} on
3357failure; the appropriate exception will be set.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003358\end{cfuncdesc}
3359
Fred Drakec6fa34e1998-04-02 06:47:24 +00003360\begin{cfuncdesc}{int}{PyFile_WriteString}{char *s, PyFileObject *p,
3361 int flags}
Fred Drake659ebfa2000-04-03 15:42:13 +00003362Writes string \var{s} to file object \var{p}. Returns \code{0} on
3363success or \code{-1} on failure; the appropriate exception will be
3364set.
Fred Drakee5bf8b21998-02-12 21:22:28 +00003365\end{cfuncdesc}
3366
3367
Fred Drakeefd146c1999-02-15 15:30:45 +00003368\subsection{Module Objects \label{moduleObjects}}
3369
3370\obindex{module}
3371There are only a few functions special to module objects.
3372
Fred Drake659ebfa2000-04-03 15:42:13 +00003373\begin{cvardesc}{PyTypeObject}{PyModule_Type}
3374This instance of \ctype{PyTypeObject} represents the Python module
3375type. This is exposed to Python programs as \code{types.ModuleType}.
3376\withsubitem{(in module types)}{\ttindex{ModuleType}}
3377\end{cvardesc}
3378
3379\begin{cfuncdesc}{int}{PyModule_Check}{PyObject *p}
3380Returns true if its argument is a module object.
Fred Drakeefd146c1999-02-15 15:30:45 +00003381\end{cfuncdesc}
3382
Fred Drake659ebfa2000-04-03 15:42:13 +00003383\begin{cfuncdesc}{PyObject*}{PyModule_New}{char *name}
3384Return a new module object with the \member{__name__} attribute set to
3385\var{name}. Only the module's \member{__doc__} and
3386\member{__name__} attributes are filled in; the caller is responsible
3387for providing a \member{__file__} attribute.
3388\withsubitem{(module attribute)}{
3389 \ttindex{__name__}\ttindex{__doc__}\ttindex{__file__}}
3390\end{cfuncdesc}
3391
3392\begin{cfuncdesc}{PyObject*}{PyModule_GetDict}{PyObject *module}
Fred Drakeefd146c1999-02-15 15:30:45 +00003393Return the dictionary object that implements \var{module}'s namespace;
3394this object is the same as the \member{__dict__} attribute of the
3395module object. This function never fails.
Fred Drake659ebfa2000-04-03 15:42:13 +00003396\withsubitem{(module attribute)}{\ttindex{__dict__}}
Fred Drakeefd146c1999-02-15 15:30:45 +00003397\end{cfuncdesc}
3398
Fred Drake659ebfa2000-04-03 15:42:13 +00003399\begin{cfuncdesc}{char*}{PyModule_GetName}{PyObject *module}
Fred Drakeefd146c1999-02-15 15:30:45 +00003400Return \var{module}'s \member{__name__} value. If the module does not
Fred Drake659ebfa2000-04-03 15:42:13 +00003401provide one, or if it is not a string, \exception{SystemError} is
3402raised and \NULL{} is returned.
3403\withsubitem{(module attribute)}{\ttindex{__name__}}
3404\withsubitem{(built-in exception)}{\ttindex{SystemError}}
Fred Drakeefd146c1999-02-15 15:30:45 +00003405\end{cfuncdesc}
3406
Fred Drake659ebfa2000-04-03 15:42:13 +00003407\begin{cfuncdesc}{char*}{PyModule_GetFilename}{PyObject *module}
Fred Drakeefd146c1999-02-15 15:30:45 +00003408Return the name of the file from which \var{module} was loaded using
3409\var{module}'s \member{__file__} attribute. If this is not defined,
Fred Drake659ebfa2000-04-03 15:42:13 +00003410or if it is not a string, raise \exception{SystemError} and return
3411\NULL.
3412\withsubitem{(module attribute)}{\ttindex{__file__}}
3413\withsubitem{(built-in exception)}{\ttindex{SystemError}}
Fred Drakeefd146c1999-02-15 15:30:45 +00003414\end{cfuncdesc}
3415
3416
3417\subsection{CObjects \label{cObjects}}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003418
Fred Drake659ebfa2000-04-03 15:42:13 +00003419\obindex{CObject}
3420Refer to \emph{Extending and Embedding the Python Interpreter},
3421section 1.12 (``Providing a C API for an Extension Module''), for more
3422information on using these objects.
3423
3424
Guido van Rossum44475131998-04-21 15:30:01 +00003425\begin{ctypedesc}{PyCObject}
Fred Drakef8830d11998-04-23 14:06:01 +00003426This subtype of \ctype{PyObject} represents an opaque value, useful for
Fred Drake659ebfa2000-04-03 15:42:13 +00003427C extension modules who need to pass an opaque value (as a
3428\ctype{void*} pointer) through Python code to other C code. It is
Guido van Rossum44475131998-04-21 15:30:01 +00003429often used to make a C function pointer defined in one module
3430available to other modules, so the regular import mechanism can be
3431used to access C APIs defined in dynamically loaded modules.
3432\end{ctypedesc}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003433
Fred Drake659ebfa2000-04-03 15:42:13 +00003434\begin{cfuncdesc}{int}{PyCObject_Check}{PyObject *p}
3435Returns true if its argument is a \ctype{PyCObject}.
3436\end{cfuncdesc}
3437
3438\begin{cfuncdesc}{PyObject*}{PyCObject_FromVoidPtr}{void* cobj,
Guido van Rossum44475131998-04-21 15:30:01 +00003439 void (*destr)(void *)}
Fred Drakef8830d11998-04-23 14:06:01 +00003440Creates a \ctype{PyCObject} from the \code{void *} \var{cobj}. The
Fred Drakedab44681999-05-13 18:41:14 +00003441\var{destr} function will be called when the object is reclaimed, unless
3442it is \NULL.
Guido van Rossum44475131998-04-21 15:30:01 +00003443\end{cfuncdesc}
3444
Fred Drake659ebfa2000-04-03 15:42:13 +00003445\begin{cfuncdesc}{PyObject*}{PyCObject_FromVoidPtrAndDesc}{void* cobj,
Guido van Rossum44475131998-04-21 15:30:01 +00003446 void* desc, void (*destr)(void *, void *) }
Fred Drakef8830d11998-04-23 14:06:01 +00003447Creates a \ctype{PyCObject} from the \ctype{void *}\var{cobj}. The
3448\var{destr} function will be called when the object is reclaimed. The
3449\var{desc} argument can be used to pass extra callback data for the
3450destructor function.
Guido van Rossum44475131998-04-21 15:30:01 +00003451\end{cfuncdesc}
3452
Fred Drake659ebfa2000-04-03 15:42:13 +00003453\begin{cfuncdesc}{void*}{PyCObject_AsVoidPtr}{PyObject* self}
3454Returns the object \ctype{void *} that the
3455\ctype{PyCObject} \var{self} was created with.
Guido van Rossum44475131998-04-21 15:30:01 +00003456\end{cfuncdesc}
3457
Fred Drake659ebfa2000-04-03 15:42:13 +00003458\begin{cfuncdesc}{void*}{PyCObject_GetDesc}{PyObject* self}
3459Returns the description \ctype{void *} that the
3460\ctype{PyCObject} \var{self} was created with.
Guido van Rossum44475131998-04-21 15:30:01 +00003461\end{cfuncdesc}
Fred Drakee5bf8b21998-02-12 21:22:28 +00003462
Fred Drake659ebfa2000-04-03 15:42:13 +00003463
Fred Drakeefd146c1999-02-15 15:30:45 +00003464\chapter{Initialization, Finalization, and Threads
3465 \label{initialization}}
Guido van Rossum4a944d71997-08-14 20:35:38 +00003466
Guido van Rossum4a944d71997-08-14 20:35:38 +00003467\begin{cfuncdesc}{void}{Py_Initialize}{}
3468Initialize the Python interpreter. In an application embedding
3469Python, this should be called before using any other Python/C API
Fred Drake659ebfa2000-04-03 15:42:13 +00003470functions; with the exception of
3471\cfunction{Py_SetProgramName()}\ttindex{Py_SetProgramName()},
3472\cfunction{PyEval_InitThreads()}\ttindex{PyEval_InitThreads()},
3473\cfunction{PyEval_ReleaseLock()}\ttindex{PyEval_ReleaseLock()},
3474and \cfunction{PyEval_AcquireLock()}\ttindex{PyEval_AcquireLock()}.
3475This initializes the table of loaded modules (\code{sys.modules}), and
3476\withsubitem{(in module sys)}{\ttindex{modules}\ttindex{path}}creates the
3477fundamental modules \module{__builtin__}\refbimodindex{__builtin__},
Fred Drake4de05a91998-02-16 14:25:26 +00003478\module{__main__}\refbimodindex{__main__} and
3479\module{sys}\refbimodindex{sys}. It also initializes the module
Fred Drake659ebfa2000-04-03 15:42:13 +00003480search\indexiii{module}{search}{path} path (\code{sys.path}).
3481It does not set \code{sys.argv}; use
3482\cfunction{PySys_SetArgv()}\ttindex{PySys_SetArgv()} for that. This
3483is a no-op when called for a second time (without calling
3484\cfunction{Py_Finalize()}\ttindex{Py_Finalize()} first). There is no
3485return value; it is a fatal error if the initialization fails.
Guido van Rossum42cefd01997-10-05 15:27:29 +00003486\end{cfuncdesc}
3487
3488\begin{cfuncdesc}{int}{Py_IsInitialized}{}
Guido van Rossum42cefd01997-10-05 15:27:29 +00003489Return true (nonzero) when the Python interpreter has been
Fred Drakee058b4f1998-02-16 06:15:35 +00003490initialized, false (zero) if not. After \cfunction{Py_Finalize()} is
3491called, this returns false until \cfunction{Py_Initialize()} is called
Guido van Rossum42cefd01997-10-05 15:27:29 +00003492again.
Guido van Rossum4a944d71997-08-14 20:35:38 +00003493\end{cfuncdesc}
3494
3495\begin{cfuncdesc}{void}{Py_Finalize}{}
Fred Drakee058b4f1998-02-16 06:15:35 +00003496Undo all initializations made by \cfunction{Py_Initialize()} and
3497subsequent use of Python/C API functions, and destroy all
3498sub-interpreters (see \cfunction{Py_NewInterpreter()} below) that were
3499created and not yet destroyed since the last call to
3500\cfunction{Py_Initialize()}. Ideally, this frees all memory allocated
3501by the Python interpreter. This is a no-op when called for a second
3502time (without calling \cfunction{Py_Initialize()} again first). There
3503is no return value; errors during finalization are ignored.
Guido van Rossum4a944d71997-08-14 20:35:38 +00003504
3505This function is provided for a number of reasons. An embedding
3506application might want to restart Python without having to restart the
3507application itself. An application that has loaded the Python
3508interpreter from a dynamically loadable library (or DLL) might want to
3509free all memory allocated by Python before unloading the DLL. During a
3510hunt for memory leaks in an application a developer might want to free
3511all memory allocated by Python before exiting from the application.
3512
Fred Drakee058b4f1998-02-16 06:15:35 +00003513\strong{Bugs and caveats:} The destruction of modules and objects in
Guido van Rossum4a944d71997-08-14 20:35:38 +00003514modules is done in random order; this may cause destructors
Fred Drakee058b4f1998-02-16 06:15:35 +00003515(\method{__del__()} methods) to fail when they depend on other objects
Guido van Rossum4a944d71997-08-14 20:35:38 +00003516(even functions) or modules. Dynamically loaded extension modules
3517loaded by Python are not unloaded. Small amounts of memory allocated
3518by the Python interpreter may not be freed (if you find a leak, please
3519report it). Memory tied up in circular references between objects is
3520not freed. Some memory allocated by extension modules may not be
3521freed. Some extension may not work properly if their initialization
3522routine is called more than once; this can happen if an applcation
Fred Drakee058b4f1998-02-16 06:15:35 +00003523calls \cfunction{Py_Initialize()} and \cfunction{Py_Finalize()} more
3524than once.
Guido van Rossum4a944d71997-08-14 20:35:38 +00003525\end{cfuncdesc}
3526
Fred Drakec6fa34e1998-04-02 06:47:24 +00003527\begin{cfuncdesc}{PyThreadState*}{Py_NewInterpreter}{}
Fred Drake4de05a91998-02-16 14:25:26 +00003528Create a new sub-interpreter. This is an (almost) totally separate
3529environment for the execution of Python code. In particular, the new
3530interpreter has separate, independent versions of all imported
3531modules, including the fundamental modules
3532\module{__builtin__}\refbimodindex{__builtin__},
3533\module{__main__}\refbimodindex{__main__} and
3534\module{sys}\refbimodindex{sys}. The table of loaded modules
3535(\code{sys.modules}) and the module search path (\code{sys.path}) are
3536also separate. The new environment has no \code{sys.argv} variable.
3537It has new standard I/O stream file objects \code{sys.stdin},
3538\code{sys.stdout} and \code{sys.stderr} (however these refer to the
Fred Drake659ebfa2000-04-03 15:42:13 +00003539same underlying \ctype{FILE} structures in the C library).
3540\withsubitem{(in module sys)}{
3541 \ttindex{stdout}\ttindex{stderr}\ttindex{stdin}}
Guido van Rossum4a944d71997-08-14 20:35:38 +00003542
3543The return value points to the first thread state created in the new
3544sub-interpreter. This thread state is made the current thread state.
3545Note that no actual thread is created; see the discussion of thread
3546states below. If creation of the new interpreter is unsuccessful,
Guido van Rossum580aa8d1997-11-25 15:34:51 +00003547\NULL{} is returned; no exception is set since the exception state
Guido van Rossum4a944d71997-08-14 20:35:38 +00003548is stored in the current thread state and there may not be a current
3549thread state. (Like all other Python/C API functions, the global
3550interpreter lock must be held before calling this function and is
3551still held when it returns; however, unlike most other Python/C API
3552functions, there needn't be a current thread state on entry.)
3553
3554Extension modules are shared between (sub-)interpreters as follows:
3555the first time a particular extension is imported, it is initialized
3556normally, and a (shallow) copy of its module's dictionary is
3557squirreled away. When the same extension is imported by another
3558(sub-)interpreter, a new module is initialized and filled with the
Fred Drakee058b4f1998-02-16 06:15:35 +00003559contents of this copy; the extension's \code{init} function is not
3560called. Note that this is different from what happens when an
3561extension is imported after the interpreter has been completely
Fred Drake659ebfa2000-04-03 15:42:13 +00003562re-initialized by calling
3563\cfunction{Py_Finalize()}\ttindex{Py_Finalize()} and
3564\cfunction{Py_Initialize()}\ttindex{Py_Initialize()}; in that case,
3565the extension's \code{init\var{module}} function \emph{is} called
3566again.
Guido van Rossum4a944d71997-08-14 20:35:38 +00003567
Fred Drakee058b4f1998-02-16 06:15:35 +00003568\strong{Bugs and caveats:} Because sub-interpreters (and the main
Guido van Rossum4a944d71997-08-14 20:35:38 +00003569interpreter) are part of the same process, the insulation between them
Fred Drakee058b4f1998-02-16 06:15:35 +00003570isn't perfect --- for example, using low-level file operations like
Fred Drake659ebfa2000-04-03 15:42:13 +00003571\withsubitem{(in module os)}{\ttindex{close()}}
Fred Drakef8830d11998-04-23 14:06:01 +00003572\function{os.close()} they can (accidentally or maliciously) affect each
Guido van Rossum4a944d71997-08-14 20:35:38 +00003573other's open files. Because of the way extensions are shared between
3574(sub-)interpreters, some extensions may not work properly; this is
3575especially likely when the extension makes use of (static) global
3576variables, or when the extension manipulates its module's dictionary
3577after its initialization. It is possible to insert objects created in
3578one sub-interpreter into a namespace of another sub-interpreter; this
3579should be done with great care to avoid sharing user-defined
3580functions, methods, instances or classes between sub-interpreters,
3581since import operations executed by such objects may affect the
3582wrong (sub-)interpreter's dictionary of loaded modules. (XXX This is
3583a hard-to-fix bug that will be addressed in a future release.)
3584\end{cfuncdesc}
3585
3586\begin{cfuncdesc}{void}{Py_EndInterpreter}{PyThreadState *tstate}
3587Destroy the (sub-)interpreter represented by the given thread state.
3588The given thread state must be the current thread state. See the
3589discussion of thread states below. When the call returns, the current
Guido van Rossum580aa8d1997-11-25 15:34:51 +00003590thread state is \NULL{}. All thread states associated with this
Guido van Rossum4a944d71997-08-14 20:35:38 +00003591interpreted are destroyed. (The global interpreter lock must be held
3592before calling this function and is still held when it returns.)
Fred Drake659ebfa2000-04-03 15:42:13 +00003593\cfunction{Py_Finalize()}\ttindex{Py_Finalize()} will destroy all
3594sub-interpreters that haven't been explicitly destroyed at that point.
Guido van Rossum4a944d71997-08-14 20:35:38 +00003595\end{cfuncdesc}
3596
3597\begin{cfuncdesc}{void}{Py_SetProgramName}{char *name}
Fred Drake659ebfa2000-04-03 15:42:13 +00003598This function should be called before
3599\cfunction{Py_Initialize()}\ttindex{Py_Initialize()} is called
Guido van Rossum4a944d71997-08-14 20:35:38 +00003600for the first time, if it is called at all. It tells the interpreter
Fred Drake659ebfa2000-04-03 15:42:13 +00003601the value of the \code{argv[0]} argument to the
3602\cfunction{main()}\ttindex{main()} function of the program. This is
3603used by \cfunction{Py_GetPath()}\ttindex{Py_GetPath()} and some other
Guido van Rossum4a944d71997-08-14 20:35:38 +00003604functions below to find the Python run-time libraries relative to the
3605interpreter executable. The default value is \code{"python"}. The
3606argument should point to a zero-terminated character string in static
3607storage whose contents will not change for the duration of the
3608program's execution. No code in the Python interpreter will change
3609the contents of this storage.
3610\end{cfuncdesc}
3611
Fred Drakec6fa34e1998-04-02 06:47:24 +00003612\begin{cfuncdesc}{char*}{Py_GetProgramName}{}
Fred Drake659ebfa2000-04-03 15:42:13 +00003613Return the program name set with
3614\cfunction{Py_SetProgramName()}\ttindex{Py_SetProgramName()}, or the
Guido van Rossum4a944d71997-08-14 20:35:38 +00003615default. The returned string points into static storage; the caller
3616should not modify its value.
3617\end{cfuncdesc}
3618
Fred Drakec6fa34e1998-04-02 06:47:24 +00003619\begin{cfuncdesc}{char*}{Py_GetPrefix}{}
Fred Drakee058b4f1998-02-16 06:15:35 +00003620Return the \emph{prefix} for installed platform-independent files. This
Guido van Rossum4a944d71997-08-14 20:35:38 +00003621is derived through a number of complicated rules from the program name
Fred Drakee058b4f1998-02-16 06:15:35 +00003622set with \cfunction{Py_SetProgramName()} and some environment variables;
Guido van Rossum4a944d71997-08-14 20:35:38 +00003623for example, if the program name is \code{"/usr/local/bin/python"},
3624the prefix is \code{"/usr/local"}. The returned string points into
3625static storage; the caller should not modify its value. This
Fred Drakec94d9341998-04-12 02:39:13 +00003626corresponds to the \makevar{prefix} variable in the top-level
Fred Drake310ee611999-11-09 17:31:42 +00003627\file{Makefile} and the \programopt{-}\programopt{-prefix} argument to the
Fred Drakee058b4f1998-02-16 06:15:35 +00003628\program{configure} script at build time. The value is available to
Fred Drakeb0a78731998-01-13 18:51:10 +00003629Python code as \code{sys.prefix}. It is only useful on \UNIX{}. See
Guido van Rossum4a944d71997-08-14 20:35:38 +00003630also the next function.
3631\end{cfuncdesc}
3632
Fred Drakec6fa34e1998-04-02 06:47:24 +00003633\begin{cfuncdesc}{char*}{Py_GetExecPrefix}{}
Fred Drakee058b4f1998-02-16 06:15:35 +00003634Return the \emph{exec-prefix} for installed platform-\emph{de}pendent
Guido van Rossum4a944d71997-08-14 20:35:38 +00003635files. This is derived through a number of complicated rules from the
Fred Drakee058b4f1998-02-16 06:15:35 +00003636program name set with \cfunction{Py_SetProgramName()} and some environment
Guido van Rossum4a944d71997-08-14 20:35:38 +00003637variables; for example, if the program name is
3638\code{"/usr/local/bin/python"}, the exec-prefix is
3639\code{"/usr/local"}. The returned string points into static storage;
3640the caller should not modify its value. This corresponds to the
Fred Drakec94d9341998-04-12 02:39:13 +00003641\makevar{exec_prefix} variable in the top-level \file{Makefile} and the
Fred Drake310ee611999-11-09 17:31:42 +00003642\programopt{-}\programopt{-exec_prefix} argument to the
3643\program{configure} script at build time. The value is available to
3644Python code as \code{sys.exec_prefix}. It is only useful on \UNIX{}.
Guido van Rossum4a944d71997-08-14 20:35:38 +00003645
3646Background: The exec-prefix differs from the prefix when platform
3647dependent files (such as executables and shared libraries) are
3648installed in a different directory tree. In a typical installation,
3649platform dependent files may be installed in the
3650\code{"/usr/local/plat"} subtree while platform independent may be
3651installed in \code{"/usr/local"}.
3652
3653Generally speaking, a platform is a combination of hardware and
3654software families, e.g. Sparc machines running the Solaris 2.x
3655operating system are considered the same platform, but Intel machines
3656running Solaris 2.x are another platform, and Intel machines running
3657Linux are yet another platform. Different major revisions of the same
Fred Drakeb0a78731998-01-13 18:51:10 +00003658operating system generally also form different platforms. Non-\UNIX{}
Guido van Rossum4a944d71997-08-14 20:35:38 +00003659operating systems are a different story; the installation strategies
3660on those systems are so different that the prefix and exec-prefix are
3661meaningless, and set to the empty string. Note that compiled Python
3662bytecode files are platform independent (but not independent from the
3663Python version by which they were compiled!).
3664
Fred Drakee058b4f1998-02-16 06:15:35 +00003665System administrators will know how to configure the \program{mount} or
3666\program{automount} programs to share \code{"/usr/local"} between platforms
Guido van Rossum4a944d71997-08-14 20:35:38 +00003667while having \code{"/usr/local/plat"} be a different filesystem for each
3668platform.
3669\end{cfuncdesc}
3670
Fred Drakec6fa34e1998-04-02 06:47:24 +00003671\begin{cfuncdesc}{char*}{Py_GetProgramFullPath}{}
Guido van Rossum4a944d71997-08-14 20:35:38 +00003672Return the full program name of the Python executable; this is
3673computed as a side-effect of deriving the default module search path
Fred Drake659ebfa2000-04-03 15:42:13 +00003674from the program name (set by
3675\cfunction{Py_SetProgramName()}\ttindex{Py_SetProgramName()} above).
3676The returned string points into static storage; the caller should not
Guido van Rossum4a944d71997-08-14 20:35:38 +00003677modify its value. The value is available to Python code as
Guido van Rossum42cefd01997-10-05 15:27:29 +00003678\code{sys.executable}.
Fred Drake659ebfa2000-04-03 15:42:13 +00003679\withsubitem{(in module sys)}{\ttindex{executable}}
Guido van Rossum4a944d71997-08-14 20:35:38 +00003680\end{cfuncdesc}
3681
Fred Drakec6fa34e1998-04-02 06:47:24 +00003682\begin{cfuncdesc}{char*}{Py_GetPath}{}
Fred Drake4de05a91998-02-16 14:25:26 +00003683\indexiii{module}{search}{path}
Guido van Rossum4a944d71997-08-14 20:35:38 +00003684Return the default module search path; this is computed from the
Fred Drakee058b4f1998-02-16 06:15:35 +00003685program name (set by \cfunction{Py_SetProgramName()} above) and some
Guido van Rossum4a944d71997-08-14 20:35:38 +00003686environment variables. The returned string consists of a series of
3687directory names separated by a platform dependent delimiter character.
Fred Drakef8830d11998-04-23 14:06:01 +00003688The delimiter character is \character{:} on \UNIX{}, \character{;} on
Fred Drake659ebfa2000-04-03 15:42:13 +00003689DOS/Windows, and \character{\e n} (the \ASCII{} newline character) on
Fred Drakee5bc4971998-02-12 23:36:49 +00003690Macintosh. The returned string points into static storage; the caller
Guido van Rossum4a944d71997-08-14 20:35:38 +00003691should not modify its value. The value is available to Python code
Fred Drake659ebfa2000-04-03 15:42:13 +00003692as the list \code{sys.path}\withsubitem{(in module sys)}{\ttindex{path}},
3693which may be modified to change the future search path for loaded
3694modules.
Guido van Rossum4a944d71997-08-14 20:35:38 +00003695
3696% XXX should give the exact rules
3697\end{cfuncdesc}
3698
Fred Drakec6fa34e1998-04-02 06:47:24 +00003699\begin{cfuncdesc}{const char*}{Py_GetVersion}{}
Guido van Rossum4a944d71997-08-14 20:35:38 +00003700Return the version of this Python interpreter. This is a string that
3701looks something like
3702
Guido van Rossum09270b51997-08-15 18:57:32 +00003703\begin{verbatim}
Fred Drakee058b4f1998-02-16 06:15:35 +00003704"1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2]"
Guido van Rossum09270b51997-08-15 18:57:32 +00003705\end{verbatim}
Guido van Rossum4a944d71997-08-14 20:35:38 +00003706
3707The first word (up to the first space character) is the current Python
3708version; the first three characters are the major and minor version
3709separated by a period. The returned string points into static storage;
3710the caller should not modify its value. The value is available to
3711Python code as the list \code{sys.version}.
Fred Drake659ebfa2000-04-03 15:42:13 +00003712\withsubitem{(in module sys)}{\ttindex{version}}
Guido van Rossum4a944d71997-08-14 20:35:38 +00003713\end{cfuncdesc}
3714
Fred Drakec6fa34e1998-04-02 06:47:24 +00003715\begin{cfuncdesc}{const char*}{Py_GetPlatform}{}
Fred Drakeb0a78731998-01-13 18:51:10 +00003716Return the platform identifier for the current platform. On \UNIX{},
Guido van Rossum4a944d71997-08-14 20:35:38 +00003717this is formed from the ``official'' name of the operating system,
3718converted to lower case, followed by the major revision number; e.g.,
3719for Solaris 2.x, which is also known as SunOS 5.x, the value is
3720\code{"sunos5"}. On Macintosh, it is \code{"mac"}. On Windows, it
3721is \code{"win"}. The returned string points into static storage;
3722the caller should not modify its value. The value is available to
3723Python code as \code{sys.platform}.
Fred Drake659ebfa2000-04-03 15:42:13 +00003724\withsubitem{(in module sys)}{\ttindex{platform}}
Guido van Rossum4a944d71997-08-14 20:35:38 +00003725\end{cfuncdesc}
3726
Fred Drakec6fa34e1998-04-02 06:47:24 +00003727\begin{cfuncdesc}{const char*}{Py_GetCopyright}{}
Guido van Rossum4a944d71997-08-14 20:35:38 +00003728Return the official copyright string for the current Python version,
3729for example
3730
3731\code{"Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam"}
3732
3733The returned string points into static storage; the caller should not
3734modify its value. The value is available to Python code as the list
3735\code{sys.copyright}.
Fred Drake659ebfa2000-04-03 15:42:13 +00003736\withsubitem{(in module sys)}{\ttindex{copyright}}
Guido van Rossum4a944d71997-08-14 20:35:38 +00003737\end{cfuncdesc}
3738
Fred Drakec6fa34e1998-04-02 06:47:24 +00003739\begin{cfuncdesc}{const char*}{Py_GetCompiler}{}
Guido van Rossum4a944d71997-08-14 20:35:38 +00003740Return an indication of the compiler used to build the current Python
Fred Drakee058b4f1998-02-16 06:15:35 +00003741version, in square brackets, for example:
Guido van Rossum4a944d71997-08-14 20:35:38 +00003742
Fred Drakee058b4f1998-02-16 06:15:35 +00003743\begin{verbatim}
3744"[GCC 2.7.2.2]"
3745\end{verbatim}
Guido van Rossum4a944d71997-08-14 20:35:38 +00003746
3747The returned string points into static storage; the caller should not
3748modify its value. The value is available to Python code as part of
3749the variable \code{sys.version}.
Fred Drake659ebfa2000-04-03 15:42:13 +00003750\withsubitem{(in module sys)}{\ttindex{version}}
Guido van Rossum4a944d71997-08-14 20:35:38 +00003751\end{cfuncdesc}
3752
Fred Drakec6fa34e1998-04-02 06:47:24 +00003753\begin{cfuncdesc}{const char*}{Py_GetBuildInfo}{}
Guido van Rossum4a944d71997-08-14 20:35:38 +00003754Return information about the sequence number and build date and time
3755of the current Python interpreter instance, for example
3756
Guido van Rossum09270b51997-08-15 18:57:32 +00003757\begin{verbatim}
3758"#67, Aug 1 1997, 22:34:28"
3759\end{verbatim}
Guido van Rossum4a944d71997-08-14 20:35:38 +00003760
3761The returned string points into static storage; the caller should not
3762modify its value. The value is available to Python code as part of
3763the variable \code{sys.version}.
Fred Drake659ebfa2000-04-03 15:42:13 +00003764\withsubitem{(in module sys)}{\ttindex{version}}
Guido van Rossum4a944d71997-08-14 20:35:38 +00003765\end{cfuncdesc}
3766
3767\begin{cfuncdesc}{int}{PySys_SetArgv}{int argc, char **argv}
Fred Drake659ebfa2000-04-03 15:42:13 +00003768Set \code{sys.argv} based on \var{argc} and \var{argv}. These
3769parameters are similar to those passed to the program's
3770\cfunction{main()}\ttindex{main()} function with the difference that
3771the first entry should refer to the script file to be executed rather
3772than the executable hosting the Python interpreter. If there isn't a
3773script that will be run, the first entry in \var{argv} can be an empty
3774string. If this function fails to initialize \code{sys.argv}, a fatal
3775condition is signalled using
3776\cfunction{Py_FatalError()}\ttindex{Py_FatalError()}.
3777\withsubitem{(in module sys)}{\ttindex{argv}}
3778% XXX impl. doesn't seem consistent in allowing 0/NULL for the params;
3779% check w/ Guido.
Guido van Rossum4a944d71997-08-14 20:35:38 +00003780\end{cfuncdesc}
3781
3782% XXX Other PySys thingies (doesn't really belong in this chapter)
3783
Fred Drakeefd146c1999-02-15 15:30:45 +00003784\section{Thread State and the Global Interpreter Lock
3785 \label{threads}}
Guido van Rossum4a944d71997-08-14 20:35:38 +00003786
Fred Drake659ebfa2000-04-03 15:42:13 +00003787\index{global interpreter lock}
3788\index{interpreter lock}
3789\index{lock, interpreter}
3790
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003791The Python interpreter is not fully thread safe. In order to support
3792multi-threaded Python programs, there's a global lock that must be
3793held by the current thread before it can safely access Python objects.
3794Without the lock, even the simplest operations could cause problems in
Fred Drake7baf3d41998-02-20 00:45:52 +00003795a multi-threaded program: for example, when two threads simultaneously
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003796increment the reference count of the same object, the reference count
3797could end up being incremented only once instead of twice.
3798
3799Therefore, the rule exists that only the thread that has acquired the
3800global interpreter lock may operate on Python objects or call Python/C
3801API functions. In order to support multi-threaded Python programs,
Fred Drake659ebfa2000-04-03 15:42:13 +00003802the interpreter regularly releases and reacquires the lock --- by
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003803default, every ten bytecode instructions (this can be changed with
Fred Drake659ebfa2000-04-03 15:42:13 +00003804\withsubitem{(in module sys)}{\ttindex{setcheckinterval()}}
Fred Drakee058b4f1998-02-16 06:15:35 +00003805\function{sys.setcheckinterval()}). The lock is also released and
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003806reacquired around potentially blocking I/O operations like reading or
3807writing a file, so that other threads can run while the thread that
3808requests the I/O is waiting for the I/O operation to complete.
3809
3810The Python interpreter needs to keep some bookkeeping information
Fred Drakee058b4f1998-02-16 06:15:35 +00003811separate per thread --- for this it uses a data structure called
Fred Drake659ebfa2000-04-03 15:42:13 +00003812\ctype{PyThreadState}\ttindex{PyThreadState}. This is new in Python
38131.5; in earlier versions, such state was stored in global variables,
3814and switching threads could cause problems. In particular, exception
3815handling is now thread safe, when the application uses
3816\withsubitem{(in module sys)}{\ttindex{exc_info()}}
3817\function{sys.exc_info()} to access the exception last raised in the
3818current thread.
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003819
3820There's one global variable left, however: the pointer to the current
Fred Drake659ebfa2000-04-03 15:42:13 +00003821\ctype{PyThreadState}\ttindex{PyThreadState} structure. While most
3822thread packages have a way to store ``per-thread global data,''
3823Python's internal platform independent thread abstraction doesn't
3824support this yet. Therefore, the current thread state must be
3825manipulated explicitly.
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003826
3827This is easy enough in most cases. Most code manipulating the global
3828interpreter lock has the following simple structure:
3829
Guido van Rossum9faf4c51997-10-07 14:38:54 +00003830\begin{verbatim}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003831Save the thread state in a local variable.
3832Release the interpreter lock.
3833...Do some blocking I/O operation...
3834Reacquire the interpreter lock.
3835Restore the thread state from the local variable.
Guido van Rossum9faf4c51997-10-07 14:38:54 +00003836\end{verbatim}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003837
3838This is so common that a pair of macros exists to simplify it:
3839
Guido van Rossum9faf4c51997-10-07 14:38:54 +00003840\begin{verbatim}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003841Py_BEGIN_ALLOW_THREADS
3842...Do some blocking I/O operation...
3843Py_END_ALLOW_THREADS
Guido van Rossum9faf4c51997-10-07 14:38:54 +00003844\end{verbatim}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003845
Fred Drake659ebfa2000-04-03 15:42:13 +00003846The \code{Py_BEGIN_ALLOW_THREADS}\ttindex{Py_BEGIN_ALLOW_THREADS} macro
3847opens a new block and declares a hidden local variable; the
3848\code{Py_END_ALLOW_THREADS}\ttindex{Py_END_ALLOW_THREADS} macro closes
Fred Drakee058b4f1998-02-16 06:15:35 +00003849the block. Another advantage of using these two macros is that when
3850Python is compiled without thread support, they are defined empty,
3851thus saving the thread state and lock manipulations.
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003852
3853When thread support is enabled, the block above expands to the
3854following code:
3855
Guido van Rossum9faf4c51997-10-07 14:38:54 +00003856\begin{verbatim}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003857 PyThreadState *_save;
Fred Drake659ebfa2000-04-03 15:42:13 +00003858
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003859 _save = PyEval_SaveThread();
3860 ...Do some blocking I/O operation...
3861 PyEval_RestoreThread(_save);
Guido van Rossum9faf4c51997-10-07 14:38:54 +00003862\end{verbatim}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003863
3864Using even lower level primitives, we can get roughly the same effect
3865as follows:
3866
Guido van Rossum9faf4c51997-10-07 14:38:54 +00003867\begin{verbatim}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003868 PyThreadState *_save;
Fred Drake659ebfa2000-04-03 15:42:13 +00003869
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003870 _save = PyThreadState_Swap(NULL);
3871 PyEval_ReleaseLock();
3872 ...Do some blocking I/O operation...
3873 PyEval_AcquireLock();
3874 PyThreadState_Swap(_save);
Guido van Rossum9faf4c51997-10-07 14:38:54 +00003875\end{verbatim}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003876
3877There are some subtle differences; in particular,
Fred Drake659ebfa2000-04-03 15:42:13 +00003878\cfunction{PyEval_RestoreThread()}\ttindex{PyEval_RestoreThread()} saves
3879and restores the value of the global variable
3880\cdata{errno}\ttindex{errno}, since the lock manipulation does not
Fred Drakef8830d11998-04-23 14:06:01 +00003881guarantee that \cdata{errno} is left alone. Also, when thread support
Fred Drake659ebfa2000-04-03 15:42:13 +00003882is disabled,
3883\cfunction{PyEval_SaveThread()}\ttindex{PyEval_SaveThread()} and
Fred Drakee058b4f1998-02-16 06:15:35 +00003884\cfunction{PyEval_RestoreThread()} don't manipulate the lock; in this
Fred Drake659ebfa2000-04-03 15:42:13 +00003885case, \cfunction{PyEval_ReleaseLock()}\ttindex{PyEval_ReleaseLock()} and
3886\cfunction{PyEval_AcquireLock()}\ttindex{PyEval_AcquireLock()} are not
3887available. This is done so that dynamically loaded extensions
3888compiled with thread support enabled can be loaded by an interpreter
3889that was compiled with disabled thread support.
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003890
3891The global interpreter lock is used to protect the pointer to the
3892current thread state. When releasing the lock and saving the thread
3893state, the current thread state pointer must be retrieved before the
3894lock is released (since another thread could immediately acquire the
3895lock and store its own thread state in the global variable).
3896Reversely, when acquiring the lock and restoring the thread state, the
3897lock must be acquired before storing the thread state pointer.
3898
3899Why am I going on with so much detail about this? Because when
Fred Drake659ebfa2000-04-03 15:42:13 +00003900threads are created from C, they don't have the global interpreter
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003901lock, nor is there a thread state data structure for them. Such
3902threads must bootstrap themselves into existence, by first creating a
3903thread state data structure, then acquiring the lock, and finally
3904storing their thread state pointer, before they can start using the
3905Python/C API. When they are done, they should reset the thread state
3906pointer, release the lock, and finally free their thread state data
3907structure.
3908
3909When creating a thread data structure, you need to provide an
3910interpreter state data structure. The interpreter state data
3911structure hold global data that is shared by all threads in an
3912interpreter, for example the module administration
3913(\code{sys.modules}). Depending on your needs, you can either create
3914a new interpreter state data structure, or share the interpreter state
3915data structure used by the Python main thread (to access the latter,
Fred Drakef8830d11998-04-23 14:06:01 +00003916you must obtain the thread state and access its \member{interp} member;
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003917this must be done by a thread that is created by Python or by the main
3918thread after Python is initialized).
3919
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003920
3921\begin{ctypedesc}{PyInterpreterState}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003922This data structure represents the state shared by a number of
3923cooperating threads. Threads belonging to the same interpreter
3924share their module administration and a few other internal items.
3925There are no public members in this structure.
3926
3927Threads belonging to different interpreters initially share nothing,
3928except process state like available memory, open file descriptors and
3929such. The global interpreter lock is also shared by all threads,
3930regardless of to which interpreter they belong.
3931\end{ctypedesc}
3932
3933\begin{ctypedesc}{PyThreadState}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003934This data structure represents the state of a single thread. The only
Fred Drakef8830d11998-04-23 14:06:01 +00003935public data member is \ctype{PyInterpreterState *}\member{interp},
3936which points to this thread's interpreter state.
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003937\end{ctypedesc}
3938
3939\begin{cfuncdesc}{void}{PyEval_InitThreads}{}
3940Initialize and acquire the global interpreter lock. It should be
3941called in the main thread before creating a second thread or engaging
Fred Drakee058b4f1998-02-16 06:15:35 +00003942in any other thread operations such as
Fred Drake659ebfa2000-04-03 15:42:13 +00003943\cfunction{PyEval_ReleaseLock()}\ttindex{PyEval_ReleaseLock()} or
3944\code{PyEval_ReleaseThread(\var{tstate})}\ttindex{PyEval_ReleaseThread()}.
3945It is not needed before calling
3946\cfunction{PyEval_SaveThread()}\ttindex{PyEval_SaveThread()} or
3947\cfunction{PyEval_RestoreThread()}\ttindex{PyEval_RestoreThread()}.
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003948
3949This is a no-op when called for a second time. It is safe to call
Fred Drake659ebfa2000-04-03 15:42:13 +00003950this function before calling
3951\cfunction{Py_Initialize()}\ttindex{Py_Initialize()}.
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003952
3953When only the main thread exists, no lock operations are needed. This
3954is a common situation (most Python programs do not use threads), and
3955the lock operations slow the interpreter down a bit. Therefore, the
3956lock is not created initially. This situation is equivalent to having
3957acquired the lock: when there is only a single thread, all object
3958accesses are safe. Therefore, when this function initializes the
Fred Drake4de05a91998-02-16 14:25:26 +00003959lock, it also acquires it. Before the Python
3960\module{thread}\refbimodindex{thread} module creates a new thread,
3961knowing that either it has the lock or the lock hasn't been created
3962yet, it calls \cfunction{PyEval_InitThreads()}. When this call
3963returns, it is guaranteed that the lock has been created and that it
3964has acquired it.
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003965
3966It is \strong{not} safe to call this function when it is unknown which
3967thread (if any) currently has the global interpreter lock.
3968
3969This function is not available when thread support is disabled at
3970compile time.
3971\end{cfuncdesc}
3972
Guido van Rossum4a944d71997-08-14 20:35:38 +00003973\begin{cfuncdesc}{void}{PyEval_AcquireLock}{}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003974Acquire the global interpreter lock. The lock must have been created
3975earlier. If this thread already has the lock, a deadlock ensues.
3976This function is not available when thread support is disabled at
3977compile time.
Guido van Rossum4a944d71997-08-14 20:35:38 +00003978\end{cfuncdesc}
3979
3980\begin{cfuncdesc}{void}{PyEval_ReleaseLock}{}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003981Release the global interpreter lock. The lock must have been created
3982earlier. This function is not available when thread support is
Fred Drakee058b4f1998-02-16 06:15:35 +00003983disabled at compile time.
Guido van Rossum4a944d71997-08-14 20:35:38 +00003984\end{cfuncdesc}
3985
3986\begin{cfuncdesc}{void}{PyEval_AcquireThread}{PyThreadState *tstate}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003987Acquire the global interpreter lock and then set the current thread
Guido van Rossum580aa8d1997-11-25 15:34:51 +00003988state to \var{tstate}, which should not be \NULL{}. The lock must
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003989have been created earlier. If this thread already has the lock,
3990deadlock ensues. This function is not available when thread support
Fred Drakee058b4f1998-02-16 06:15:35 +00003991is disabled at compile time.
Guido van Rossum4a944d71997-08-14 20:35:38 +00003992\end{cfuncdesc}
3993
3994\begin{cfuncdesc}{void}{PyEval_ReleaseThread}{PyThreadState *tstate}
Guido van Rossum580aa8d1997-11-25 15:34:51 +00003995Reset the current thread state to \NULL{} and release the global
Guido van Rossumc44d3d61997-10-06 05:10:47 +00003996interpreter lock. The lock must have been created earlier and must be
3997held by the current thread. The \var{tstate} argument, which must not
Guido van Rossum580aa8d1997-11-25 15:34:51 +00003998be \NULL{}, is only used to check that it represents the current
Fred Drakee058b4f1998-02-16 06:15:35 +00003999thread state --- if it isn't, a fatal error is reported. This
4000function is not available when thread support is disabled at compile
4001time.
Guido van Rossum4a944d71997-08-14 20:35:38 +00004002\end{cfuncdesc}
4003
Fred Drakec6fa34e1998-04-02 06:47:24 +00004004\begin{cfuncdesc}{PyThreadState*}{PyEval_SaveThread}{}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004005Release the interpreter lock (if it has been created and thread
Guido van Rossum580aa8d1997-11-25 15:34:51 +00004006support is enabled) and reset the thread state to \NULL{},
4007returning the previous thread state (which is not \NULL{}). If
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004008the lock has been created, the current thread must have acquired it.
4009(This function is available even when thread support is disabled at
4010compile time.)
Guido van Rossum4a944d71997-08-14 20:35:38 +00004011\end{cfuncdesc}
4012
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004013\begin{cfuncdesc}{void}{PyEval_RestoreThread}{PyThreadState *tstate}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004014Acquire the interpreter lock (if it has been created and thread
4015support is enabled) and set the thread state to \var{tstate}, which
Guido van Rossum580aa8d1997-11-25 15:34:51 +00004016must not be \NULL{}. If the lock has been created, the current
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004017thread must not have acquired it, otherwise deadlock ensues. (This
4018function is available even when thread support is disabled at compile
4019time.)
Guido van Rossum4a944d71997-08-14 20:35:38 +00004020\end{cfuncdesc}
4021
Fred Drake659ebfa2000-04-03 15:42:13 +00004022The following macros are normally used without a trailing semicolon;
4023look for example usage in the Python source distribution.
4024
4025\begin{csimplemacrodesc}{Py_BEGIN_ALLOW_THREADS}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004026This macro expands to
Fred Drakee058b4f1998-02-16 06:15:35 +00004027\samp{\{ PyThreadState *_save; _save = PyEval_SaveThread();}.
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004028Note that it contains an opening brace; it must be matched with a
4029following \code{Py_END_ALLOW_THREADS} macro. See above for further
4030discussion of this macro. It is a no-op when thread support is
4031disabled at compile time.
Fred Drake659ebfa2000-04-03 15:42:13 +00004032\end{csimplemacrodesc}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004033
Fred Drake659ebfa2000-04-03 15:42:13 +00004034\begin{csimplemacrodesc}{Py_END_ALLOW_THREADS}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004035This macro expands to
Fred Drakee058b4f1998-02-16 06:15:35 +00004036\samp{PyEval_RestoreThread(_save); \}}.
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004037Note that it contains a closing brace; it must be matched with an
4038earlier \code{Py_BEGIN_ALLOW_THREADS} macro. See above for further
4039discussion of this macro. It is a no-op when thread support is
4040disabled at compile time.
Fred Drake659ebfa2000-04-03 15:42:13 +00004041\end{csimplemacrodesc}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004042
Fred Drake659ebfa2000-04-03 15:42:13 +00004043\begin{csimplemacrodesc}{Py_BEGIN_BLOCK_THREADS}
Fred Drakee058b4f1998-02-16 06:15:35 +00004044This macro expands to \samp{PyEval_RestoreThread(_save);} i.e. it
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004045is equivalent to \code{Py_END_ALLOW_THREADS} without the closing
4046brace. It is a no-op when thread support is disabled at compile
4047time.
Fred Drake659ebfa2000-04-03 15:42:13 +00004048\end{csimplemacrodesc}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004049
Fred Drake659ebfa2000-04-03 15:42:13 +00004050\begin{csimplemacrodesc}{Py_BEGIN_UNBLOCK_THREADS}
Fred Drakee058b4f1998-02-16 06:15:35 +00004051This macro expands to \samp{_save = PyEval_SaveThread();} i.e. it is
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004052equivalent to \code{Py_BEGIN_ALLOW_THREADS} without the opening brace
4053and variable declaration. It is a no-op when thread support is
4054disabled at compile time.
Fred Drake659ebfa2000-04-03 15:42:13 +00004055\end{csimplemacrodesc}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004056
4057All of the following functions are only available when thread support
4058is enabled at compile time, and must be called only when the
Fred Drake9d20ac31998-02-16 15:27:08 +00004059interpreter lock has been created.
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004060
Fred Drakec6fa34e1998-04-02 06:47:24 +00004061\begin{cfuncdesc}{PyInterpreterState*}{PyInterpreterState_New}{}
Guido van Rossumed9dcc11998-08-07 18:28:03 +00004062Create a new interpreter state object. The interpreter lock need not
4063be held, but may be held if it is necessary to serialize calls to this
4064function.
Guido van Rossum4a944d71997-08-14 20:35:38 +00004065\end{cfuncdesc}
4066
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004067\begin{cfuncdesc}{void}{PyInterpreterState_Clear}{PyInterpreterState *interp}
4068Reset all information in an interpreter state object. The interpreter
4069lock must be held.
Guido van Rossum4a944d71997-08-14 20:35:38 +00004070\end{cfuncdesc}
4071
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004072\begin{cfuncdesc}{void}{PyInterpreterState_Delete}{PyInterpreterState *interp}
4073Destroy an interpreter state object. The interpreter lock need not be
4074held. The interpreter state must have been reset with a previous
Fred Drakee058b4f1998-02-16 06:15:35 +00004075call to \cfunction{PyInterpreterState_Clear()}.
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004076\end{cfuncdesc}
4077
Fred Drakec6fa34e1998-04-02 06:47:24 +00004078\begin{cfuncdesc}{PyThreadState*}{PyThreadState_New}{PyInterpreterState *interp}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004079Create a new thread state object belonging to the given interpreter
Guido van Rossumed9dcc11998-08-07 18:28:03 +00004080object. The interpreter lock need not be held, but may be held if it
4081is necessary to serialize calls to this function.
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004082\end{cfuncdesc}
4083
4084\begin{cfuncdesc}{void}{PyThreadState_Clear}{PyThreadState *tstate}
4085Reset all information in a thread state object. The interpreter lock
4086must be held.
4087\end{cfuncdesc}
4088
4089\begin{cfuncdesc}{void}{PyThreadState_Delete}{PyThreadState *tstate}
4090Destroy a thread state object. The interpreter lock need not be
4091held. The thread state must have been reset with a previous
Fred Drakee058b4f1998-02-16 06:15:35 +00004092call to \cfunction{PyThreadState_Clear()}.
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004093\end{cfuncdesc}
4094
Fred Drakec6fa34e1998-04-02 06:47:24 +00004095\begin{cfuncdesc}{PyThreadState*}{PyThreadState_Get}{}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004096Return the current thread state. The interpreter lock must be held.
Guido van Rossum580aa8d1997-11-25 15:34:51 +00004097When the current thread state is \NULL{}, this issues a fatal
Guido van Rossum5b8a5231997-12-30 04:38:44 +00004098error (so that the caller needn't check for \NULL{}).
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004099\end{cfuncdesc}
4100
Fred Drakec6fa34e1998-04-02 06:47:24 +00004101\begin{cfuncdesc}{PyThreadState*}{PyThreadState_Swap}{PyThreadState *tstate}
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004102Swap the current thread state with the thread state given by the
Guido van Rossum580aa8d1997-11-25 15:34:51 +00004103argument \var{tstate}, which may be \NULL{}. The interpreter lock
Guido van Rossumc44d3d61997-10-06 05:10:47 +00004104must be held.
4105\end{cfuncdesc}
4106
4107
Fred Drake659ebfa2000-04-03 15:42:13 +00004108\chapter{Memory Management \label{memory}}
4109\sectionauthor{Vladimir Marangozov}{Vladimir.Marangozov@inrialpes.fr}
4110
4111
4112\section{Overview \label{memoryOverview}}
4113
4114Memory management in Python involves a private heap containing all
4115Python objects and data structures. The management of this private
4116heap is ensured internally by the \emph{Python memory manager}. The
4117Python memory manager has different components which deal with various
4118dynamic storage management aspects, like sharing, segmentation,
4119preallocation or caching.
4120
4121At the lowest level, a raw memory allocator ensures that there is
4122enough room in the private heap for storing all Python-related data
4123by interacting with the memory manager of the operating system. On top
4124of the raw memory allocator, several object-specific allocators
4125operate on the same heap and implement distinct memory management
4126policies adapted to the peculiarities of every object type. For
4127example, integer objects are managed differently within the heap than
4128strings, tuples or dictionaries because integers imply different
4129storage requirements and speed/space tradeoffs. The Python memory
4130manager thus delegates some of the work to the object-specific
4131allocators, but ensures that the latter operate within the bounds of
4132the private heap.
4133
4134It is important to understand that the management of the Python heap
4135is performed by the interpreter itself and that the user has no
4136control on it, even if she regularly manipulates object pointers to
4137memory blocks inside that heap. The allocation of heap space for
4138Python objects and other internal buffers is performed on demand by
4139the Python memory manager through the Python/C API functions listed in
4140this document.
4141
4142To avoid memory corruption, extension writers should never try to
4143operate on Python objects with the functions exported by the C
4144library: \cfunction{malloc()}\ttindex{malloc()},
4145\cfunction{calloc()}\ttindex{calloc()},
4146\cfunction{realloc()}\ttindex{realloc()} and
4147\cfunction{free()}\ttindex{free()}. This will result in
4148mixed calls between the C allocator and the Python memory manager
4149with fatal consequences, because they implement different algorithms
4150and operate on different heaps. However, one may safely allocate and
4151release memory blocks with the C library allocator for individual
4152purposes, as shown in the following example:
4153
4154\begin{verbatim}
4155 PyObject *res;
4156 char *buf = (char *) malloc(BUFSIZ); /* for I/O */
4157
4158 if (buf == NULL)
4159 return PyErr_NoMemory();
4160 ...Do some I/O operation involving buf...
4161 res = PyString_FromString(buf);
4162 free(buf); /* malloc'ed */
4163 return res;
4164\end{verbatim}
4165
4166In this example, the memory request for the I/O buffer is handled by
4167the C library allocator. The Python memory manager is involved only
4168in the allocation of the string object returned as a result.
4169
4170In most situations, however, it is recommended to allocate memory from
4171the Python heap specifically because the latter is under control of
4172the Python memory manager. For example, this is required when the
4173interpreter is extended with new object types written in C. Another
4174reason for using the Python heap is the desire to \emph{inform} the
4175Python memory manager about the memory needs of the extension module.
4176Even when the requested memory is used exclusively for internal,
4177highly-specific purposes, delegating all memory requests to the Python
4178memory manager causes the interpreter to have a more accurate image of
4179its memory footprint as a whole. Consequently, under certain
4180circumstances, the Python memory manager may or may not trigger
4181appropriate actions, like garbage collection, memory compaction or
4182other preventive procedures. Note that by using the C library
4183allocator as shown in the previous example, the allocated memory for
4184the I/O buffer escapes completely the Python memory manager.
4185
4186
4187\section{Memory Interface \label{memoryInterface}}
4188
4189The following function sets, modeled after the ANSI C standard, are
4190available for allocating and releasing memory from the Python heap:
4191
4192
4193\begin{ctypedesc}{ANY*}
4194The type used to represent arbitrary blocks of memory. Values of this
4195type should be cast to the specific type that is needed.
4196\end{ctypedesc}
4197
4198\begin{cfuncdesc}{ANY*}{PyMem_Malloc}{size_t n}
4199Allocates \var{n} bytes and returns a pointer of type \ctype{ANY*} to
4200the allocated memory, or \NULL{} if the request fails. Requesting zero
4201bytes returns a non-\NULL{} pointer.
4202\end{cfuncdesc}
4203
4204\begin{cfuncdesc}{ANY*}{PyMem_Realloc}{ANY *p, size_t n}
4205Resizes the memory block pointed to by \var{p} to \var{n} bytes. The
4206contents will be unchanged to the minimum of the old and the new
4207sizes. If \var{p} is \NULL{}, the call is equivalent to
4208\cfunction{PyMem_Malloc(\var{n})}; if \var{n} is equal to zero, the memory block
4209is resized but is not freed, and the returned pointer is non-\NULL{}.
4210Unless \var{p} is \NULL{}, it must have been returned by a previous
4211call to \cfunction{PyMem_Malloc()} or \cfunction{PyMem_Realloc()}.
4212\end{cfuncdesc}
4213
4214\begin{cfuncdesc}{void}{PyMem_Free}{ANY *p}
4215Frees the memory block pointed to by \var{p}, which must have been
4216returned by a previous call to \cfunction{PyMem_Malloc()} or
4217\cfunction{PyMem_Realloc()}. Otherwise, or if
4218\cfunction{PyMem_Free(p)} has been called before, undefined behaviour
4219occurs. If \var{p} is \NULL{}, no operation is performed.
4220\end{cfuncdesc}
4221
4222\begin{cfuncdesc}{ANY*}{Py_Malloc}{size_t n}
4223Same as \cfunction{PyMem_Malloc()}, but calls
4224\cfunction{PyErr_NoMemory()} on failure.
4225\end{cfuncdesc}
4226
4227\begin{cfuncdesc}{ANY*}{Py_Realloc}{ANY *p, size_t n}
4228Same as \cfunction{PyMem_Realloc()}, but calls
4229\cfunction{PyErr_NoMemory()} on failure.
4230\end{cfuncdesc}
4231
4232\begin{cfuncdesc}{void}{Py_Free}{ANY *p}
4233Same as \cfunction{PyMem_Free()}.
4234\end{cfuncdesc}
4235
4236The following type-oriented macros are provided for convenience. Note
4237that \var{TYPE} refers to any C type.
4238
4239\begin{cfuncdesc}{\var{TYPE}*}{PyMem_NEW}{TYPE, size_t n}
4240Same as \cfunction{PyMem_Malloc()}, but allocates \code{(\var{n} *
4241sizeof(\var{TYPE}))} bytes of memory. Returns a pointer cast to
4242\ctype{\var{TYPE}*}.
4243\end{cfuncdesc}
4244
4245\begin{cfuncdesc}{\var{TYPE}*}{PyMem_RESIZE}{ANY *p, TYPE, size_t n}
4246Same as \cfunction{PyMem_Realloc()}, but the memory block is resized
4247to \code{(\var{n} * sizeof(\var{TYPE}))} bytes. Returns a pointer
4248cast to \ctype{\var{TYPE}*}.
4249\end{cfuncdesc}
4250
4251\begin{cfuncdesc}{void}{PyMem_DEL}{ANY *p}
4252Same as \cfunction{PyMem_Free()}.
4253\end{cfuncdesc}
4254
4255
4256\section{Examples \label{memoryExamples}}
4257
4258Here is the example from section \ref{memoryOverview}, rewritten so
4259that the I/O buffer is allocated from the Python heap by using the
4260first function set:
4261
4262\begin{verbatim}
4263 PyObject *res;
4264 char *buf = (char *) PyMem_Malloc(BUFSIZ); /* for I/O */
4265
4266 if (buf == NULL)
4267 return PyErr_NoMemory();
4268 /* ...Do some I/O operation involving buf... */
4269 res = PyString_FromString(buf);
4270 PyMem_Free(buf); /* allocated with PyMem_Malloc */
4271 return res;
4272\end{verbatim}
4273
4274With the second function set, the need to call
4275\cfunction{PyErr_NoMemory()} is obviated:
4276
4277\begin{verbatim}
4278 PyObject *res;
4279 char *buf = (char *) Py_Malloc(BUFSIZ); /* for I/O */
4280
4281 if (buf == NULL)
4282 return NULL;
4283 /* ...Do some I/O operation involving buf... */
4284 res = PyString_FromString(buf);
4285 Py_Free(buf); /* allocated with Py_Malloc */
4286 return res;
4287\end{verbatim}
4288
4289The same code using the macro set:
4290
4291\begin{verbatim}
4292 PyObject *res;
4293 char *buf = PyMem_NEW(char, BUFSIZ); /* for I/O */
4294
4295 if (buf == NULL)
4296 return PyErr_NoMemory();
4297 /* ...Do some I/O operation involving buf... */
4298 res = PyString_FromString(buf);
4299 PyMem_DEL(buf); /* allocated with PyMem_NEW */
4300 return res;
4301\end{verbatim}
4302
4303Note that in the three examples above, the buffer is always
4304manipulated via functions/macros belonging to the same set. Indeed, it
4305is required to use the same memory API family for a given
4306memory block, so that the risk of mixing different allocators is
4307reduced to a minimum. The following code sequence contains two errors,
4308one of which is labeled as \emph{fatal} because it mixes two different
4309allocators operating on different heaps.
4310
4311\begin{verbatim}
4312char *buf1 = PyMem_NEW(char, BUFSIZ);
4313char *buf2 = (char *) malloc(BUFSIZ);
4314char *buf3 = (char *) PyMem_Malloc(BUFSIZ);
4315...
4316PyMem_DEL(buf3); /* Wrong -- should be PyMem_Free() */
4317free(buf2); /* Right -- allocated via malloc() */
4318free(buf1); /* Fatal -- should be PyMem_DEL() */
4319\end{verbatim}
4320
4321In addition to the functions aimed at handling raw memory blocks from
4322the Python heap, objects in Python are allocated and released with
4323\cfunction{_PyObject_New()}\ttindex{_PyObject_New()} and
4324\cfunction{_PyObject_NewVar()}\ttindex{_PyObject_NewVar()}, or with
4325their corresponding macros
4326\cfunction{PyObject_NEW()}\ttindex{PyObject_NEW()} and
4327\cfunction{PyObject_NEW_VAR()}\ttindex{PyObject_NEW_VAR()}.
4328
4329% XXX use this for Python 1.6:
4330% \cfunction{_PyObject_New()}, \cfunction{_PyObject_NewVar()},
4331% \cfunction{_PyObject_Del()}, or with their corresponding macros
4332% \cfunction{PyObject_NEW()}, \cfunction{PyObject_NEW_VAR()},
4333% \cfunction{PyObject_DEL()}.
4334
4335% These will be explained in the next chapter on defining and
4336% implementing new object types in C.
4337
4338
Fred Drakeefd146c1999-02-15 15:30:45 +00004339\chapter{Defining New Object Types \label{newTypes}}
Guido van Rossum4a944d71997-08-14 20:35:38 +00004340
Fred Drakec6fa34e1998-04-02 06:47:24 +00004341\begin{cfuncdesc}{PyObject*}{_PyObject_New}{PyTypeObject *type}
Fred Drakee058b4f1998-02-16 06:15:35 +00004342\end{cfuncdesc}
4343
Fred Drakec6fa34e1998-04-02 06:47:24 +00004344\begin{cfuncdesc}{PyObject*}{_PyObject_NewVar}{PyTypeObject *type, int size}
Fred Drakee058b4f1998-02-16 06:15:35 +00004345\end{cfuncdesc}
4346
Fred Drake659ebfa2000-04-03 15:42:13 +00004347\begin{cfuncdesc}{\var{TYPE}}{_PyObject_NEW}{TYPE, PyTypeObject *type}
Fred Drakee058b4f1998-02-16 06:15:35 +00004348\end{cfuncdesc}
4349
Fred Drake659ebfa2000-04-03 15:42:13 +00004350\begin{cfuncdesc}{\var{TYPE}}{_PyObject_NEW_VAR}{TYPE, PyTypeObject *type,
4351 int size}
Fred Drakee058b4f1998-02-16 06:15:35 +00004352\end{cfuncdesc}
4353
Guido van Rossum3c4378b1998-04-14 20:21:10 +00004354Py_InitModule (!!!)
4355
4356PyArg_ParseTupleAndKeywords, PyArg_ParseTuple, PyArg_Parse
4357
4358Py_BuildValue
Guido van Rossumae110af1997-05-22 20:11:52 +00004359
Fred Drake659ebfa2000-04-03 15:42:13 +00004360DL_IMPORT
4361
4362Py*_Check
4363
4364_Py_NoneStruct
4365
4366
4367\section{Common Object Structures \label{common-structs}}
4368
Guido van Rossumae110af1997-05-22 20:11:52 +00004369PyObject, PyVarObject
4370
4371PyObject_HEAD, PyObject_HEAD_INIT, PyObject_VAR_HEAD
4372
4373Typedefs:
4374unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc,
4375intintargfunc, intobjargproc, intintobjargproc, objobjargproc,
Guido van Rossumae110af1997-05-22 20:11:52 +00004376destructor, printfunc, getattrfunc, getattrofunc, setattrfunc,
4377setattrofunc, cmpfunc, reprfunc, hashfunc
4378
Fred Drake659ebfa2000-04-03 15:42:13 +00004379
4380\section{Mapping Object Structures \label{mapping-structs}}
4381
4382\begin{ctypedesc}{PyMappingMethods}
4383Structure used to hold pointers to the functions used to implement the
4384mapping protocol for an extension type.
4385\end{ctypedesc}
4386
4387
4388\section{Number Object Structures \label{number-structs}}
4389
4390\begin{ctypedesc}{PyNumberMethods}
4391Structure used to hold pointers to the functions an extension type
4392uses to implement the number protocol.
4393\end{ctypedesc}
4394
4395
4396\section{Sequence Object Structures \label{sequence-structs}}
4397
4398\begin{ctypedesc}{PySequenceMethods}
4399Structure used to hold pointers to the functions which an object uses
4400to implement the sequence protocol.
4401\end{ctypedesc}
4402
4403
4404\section{Buffer Object Structures \label{buffer-structs}}
4405\sectionauthor{Greg J. Stein}{greg@lyra.org}
4406
4407The buffer interface exports a model where an object can expose its
4408internal data as a set of chunks of data, where each chunk is
4409specified as a pointer/length pair. These chunks are called
4410\dfn{segments} and are presumed to be non-contiguous in memory.
4411
4412If an object does not export the buffer interface, then its
4413\member{tp_as_buffer} member in the \ctype{PyTypeObject} structure
4414should be \NULL{}. Otherwise, the \member{tp_as_buffer} will point to
4415a \ctype{PyBufferProcs} structure.
4416
4417\strong{Note:} It is very important that your
4418\ctype{PyTypeObject} structure uses \code{Py_TPFLAGS_DEFAULT} for the
4419value of the \member{tp_flags} member rather than \code{0}. This
4420tells the Python runtime that your \ctype{PyBufferProcs} structure
4421contains the \member{bf_getcharbuffer} slot. Older versions of Python
4422did not have this member, so a new Python interpreter using an old
4423extension needs to be able to test for its presence before using it.
4424
4425\begin{ctypedesc}{PyBufferProcs}
4426Structure used to hold the function pointers which define an
4427implementation of the buffer protocol.
4428
4429The first slot is \member{bf_getreadbuffer}, of type
4430\ctype{getreadbufferproc}. If this slot is \NULL{}, then the object
4431does not support reading from the internal data. This is
4432non-sensical, so implementors should fill this in, but callers should
4433test that the slot contains a non-\NULL{} value.
4434
4435The next slot is \member{bf_getwritebuffer} having type
4436\ctype{getwritebufferproc}. This slot may be \NULL{} if the object
4437does not allow writing into its returned buffers.
4438
4439The third slot is \member{bf_getsegcount}, with type
4440\ctype{getsegcountproc}. This slot must not be \NULL{} and is used to
4441inform the caller how many segments the object contains. Simple
4442objects such as \ctype{PyString_Type} and
4443\ctype{PyBuffer_Type} objects contain a single segment.
4444
4445The last slot is \member{bf_getcharbuffer}, of type
4446\ctype{getcharbufferproc}. This slot will only be present if the
4447\code{Py_TPFLAGS_HAVE_GETCHARBUFFER} flag is present in the
4448\member{tp_flags} field of the object's \ctype{PyTypeObject}. Before using
4449this slot, the caller should test whether it is present by using the
4450\cfunction{PyType_HasFeature()}\ttindex{PyType_HasFeature()} function.
4451If present, it may be \NULL, indicating that the object's contents
4452cannot be used as \emph{8-bit characters}.
4453The slot function may also raise an error if the object's contents
4454cannot be interpreted as 8-bit characters. For example, if the object
4455is an array which is configured to hold floating point values, an
4456exception may be raised if a caller attempts to use
4457\member{bf_getcharbuffer} to fetch a sequence of 8-bit characters.
4458This notion of exporting the internal buffers as ``text'' is used to
4459distinguish between objects that are binary in nature, and those which
4460have character-based content.
4461
4462\strong{Note:} The current policy seems to state that these characters
4463may be multi-byte characters. This implies that a buffer size of
4464\var{N} does not mean there are \var{N} characters present.
4465\end{ctypedesc}
4466
4467\begin{datadesc}{Py_TPFLAGS_HAVE_GETCHARBUFFER}
4468Flag bit set in the type structure to indicate that the
4469\member{bf_getcharbuffer} slot is known. This being set does not
4470indicate that the object supports the buffer interface or that the
4471\member{bf_getcharbuffer} slot is non-\NULL.
4472\end{datadesc}
4473
4474\begin{ctypedesc}[getreadbufferproc]{int (*getreadbufferproc)
4475 (PyObject *self, int segment, void **ptrptr)}
4476Return a pointer to a readable segment of the buffer. This function
4477is allowed to raise an exception, in which case it must return
4478\code{-1}. The \var{segment} which is passed must be zero or
4479positive, and strictly less than the number of segments returned by
4480the \member{bf_getsegcount} slot function. On success, returns
4481\code{0} and sets \code{*\var{ptrptr}} to a pointer to the buffer
4482memory.
4483\end{ctypedesc}
4484
4485\begin{ctypedesc}[getwritebufferproc]{int (*getwritebufferproc)
4486 (PyObject *self, int segment, void **ptrptr)}
Fred Drake58c5a2a1999-08-04 13:13:24 +00004487Return a pointer to a writable memory buffer in \code{*\var{ptrptr}};
4488the memory buffer must correspond to buffer segment \var{segment}.
4489Must return \code{-1} and set an exception on error.
4490\exception{TypeError} should be raised if the object only supports
4491read-only buffers, and \exception{SystemError} should be raised when
4492\var{segment} specifies a segment that doesn't exist.
4493% Why doesn't it raise ValueError for this one?
Fred Drake659ebfa2000-04-03 15:42:13 +00004494% GJS: because you shouldn't be calling it with an invalid
4495% segment. That indicates a blatant programming error in the C
4496% code.
Fred Drake58c5a2a1999-08-04 13:13:24 +00004497\end{ctypedesc}
4498
Fred Drake659ebfa2000-04-03 15:42:13 +00004499\begin{ctypedesc}[getsegcountproc]{int (*getsegcountproc)
4500 (PyObject *self, int *lenp)}
4501Return the number of memory segments which comprise the buffer. If
4502\var{lenp} is not \NULL, the implementation must report the sum of the
4503sizes (in bytes) of all segments in \code{*\var{lenp}}.
4504The function cannot fail.
4505\end{ctypedesc}
Guido van Rossumae110af1997-05-22 20:11:52 +00004506
Fred Drake659ebfa2000-04-03 15:42:13 +00004507\begin{ctypedesc}[getcharbufferproc]{int (*getcharbufferproc)
4508 (PyObject *self, int segment, const char **ptrptr)}
4509\end{ctypedesc}
Guido van Rossumae110af1997-05-22 20:11:52 +00004510
Guido van Rossumae110af1997-05-22 20:11:52 +00004511
Fred Drake659ebfa2000-04-03 15:42:13 +00004512% \chapter{Debugging \label{debugging}}
4513%
4514% XXX Explain Py_DEBUG, Py_TRACE_REFS, Py_REF_DEBUG.
Guido van Rossum5b8a5231997-12-30 04:38:44 +00004515
4516
Fred Drakef3aa0e01998-03-17 06:23:13 +00004517\input{api.ind} % Index -- must be last
Guido van Rossum9231c8f1997-05-15 21:43:21 +00004518
4519\end{document}