blob: e7b81adb64f959c466b28512132ff8fb7e5c3028 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`random` --- Generate pseudo-random numbers
2================================================
3
4.. module:: random
5 :synopsis: Generate pseudo-random numbers with various common distributions.
6
Raymond Hettinger10480942011-01-10 03:26:08 +00007**Source code:** :source:`Lib/random.py`
Georg Brandl116aa622007-08-15 14:28:22 +00008
Raymond Hettinger4f707fd2011-01-10 19:54:11 +00009--------------
10
Georg Brandl116aa622007-08-15 14:28:22 +000011This module implements pseudo-random number generators for various
12distributions.
13
Raymond Hettingerb21dac12010-09-07 05:32:49 +000014For integers, there is uniform selection from a range. For sequences, there is
15uniform selection of a random element, a function to generate a random
16permutation of a list in-place, and a function for random sampling without
17replacement.
Georg Brandl116aa622007-08-15 14:28:22 +000018
19On the real line, there are functions to compute uniform, normal (Gaussian),
20lognormal, negative exponential, gamma, and beta distributions. For generating
21distributions of angles, the von Mises distribution is available.
22
Georg Brandl92849d12016-02-19 08:57:38 +010023Almost all module functions depend on the basic function :func:`.random`, which
Georg Brandl116aa622007-08-15 14:28:22 +000024generates a random float uniformly in the semi-open range [0.0, 1.0). Python
25uses the Mersenne Twister as the core generator. It produces 53-bit precision
26floats and has a period of 2\*\*19937-1. The underlying implementation in C is
27both fast and threadsafe. The Mersenne Twister is one of the most extensively
28tested random number generators in existence. However, being completely
29deterministic, it is not suitable for all purposes, and is completely unsuitable
30for cryptographic purposes.
31
32The functions supplied by this module are actually bound methods of a hidden
33instance of the :class:`random.Random` class. You can instantiate your own
Raymond Hettinger28de64f2008-01-13 23:40:30 +000034instances of :class:`Random` to get generators that don't share state.
Georg Brandl116aa622007-08-15 14:28:22 +000035
36Class :class:`Random` can also be subclassed if you want to use a different
Georg Brandl92849d12016-02-19 08:57:38 +010037basic generator of your own devising: in that case, override the :meth:`~Random.random`,
38:meth:`~Random.seed`, :meth:`~Random.getstate`, and :meth:`~Random.setstate` methods.
39Optionally, a new generator can supply a :meth:`~Random.getrandbits` method --- this
Georg Brandl116aa622007-08-15 14:28:22 +000040allows :meth:`randrange` to produce selections over an arbitrarily large range.
41
Benjamin Peterson21896a32010-03-21 22:03:03 +000042The :mod:`random` module also provides the :class:`SystemRandom` class which
43uses the system function :func:`os.urandom` to generate random numbers
44from sources provided by the operating system.
Georg Brandl116aa622007-08-15 14:28:22 +000045
Raymond Hettingerc89a4512014-05-11 02:26:23 -070046.. warning::
47
48 The pseudo-random generators of this module should not be used for
Steven D'Apranob2871fa2016-04-17 01:42:33 +100049 security purposes. For security or cryptographic uses, see the
50 :mod:`secrets` module.
Raymond Hettingerc89a4512014-05-11 02:26:23 -070051
Georg Brandl116aa622007-08-15 14:28:22 +000052
Raymond Hettinger10480942011-01-10 03:26:08 +000053Bookkeeping functions:
Georg Brandl116aa622007-08-15 14:28:22 +000054
Ezio Melottie0add762012-09-14 06:32:35 +030055.. function:: seed(a=None, version=2)
Georg Brandl116aa622007-08-15 14:28:22 +000056
Raymond Hettingerf763a722010-09-07 00:38:15 +000057 Initialize the random number generator.
Georg Brandl116aa622007-08-15 14:28:22 +000058
Ezio Melottie0add762012-09-14 06:32:35 +030059 If *a* is omitted or ``None``, the current system time is used. If
Raymond Hettingerf763a722010-09-07 00:38:15 +000060 randomness sources are provided by the operating system, they are used
61 instead of the system time (see the :func:`os.urandom` function for details
62 on availability).
Georg Brandl116aa622007-08-15 14:28:22 +000063
Ezio Melottie0add762012-09-14 06:32:35 +030064 If *a* is an int, it is used directly.
Raymond Hettingerf763a722010-09-07 00:38:15 +000065
66 With version 2 (the default), a :class:`str`, :class:`bytes`, or :class:`bytearray`
Raymond Hettinger3149f9c2010-09-07 05:35:10 +000067 object gets converted to an :class:`int` and all of its bits are used. With version 1,
Ezio Melottie0add762012-09-14 06:32:35 +030068 the :func:`hash` of *a* is used instead.
Raymond Hettingerf763a722010-09-07 00:38:15 +000069
70 .. versionchanged:: 3.2
71 Moved to the version 2 scheme which uses all of the bits in a string seed.
Georg Brandl116aa622007-08-15 14:28:22 +000072
73.. function:: getstate()
74
75 Return an object capturing the current internal state of the generator. This
76 object can be passed to :func:`setstate` to restore the state.
77
Georg Brandl116aa622007-08-15 14:28:22 +000078
79.. function:: setstate(state)
80
81 *state* should have been obtained from a previous call to :func:`getstate`, and
82 :func:`setstate` restores the internal state of the generator to what it was at
Sandro Tosi985104a2012-08-12 15:12:15 +020083 the time :func:`getstate` was called.
Georg Brandl116aa622007-08-15 14:28:22 +000084
Georg Brandl116aa622007-08-15 14:28:22 +000085
Georg Brandl116aa622007-08-15 14:28:22 +000086.. function:: getrandbits(k)
87
Ezio Melotti0639d5a2009-12-19 23:26:38 +000088 Returns a Python integer with *k* random bits. This method is supplied with
Georg Brandl5c106642007-11-29 17:41:05 +000089 the MersenneTwister generator and some other generators may also provide it
Georg Brandl116aa622007-08-15 14:28:22 +000090 as an optional part of the API. When available, :meth:`getrandbits` enables
91 :meth:`randrange` to handle arbitrarily large ranges.
92
Georg Brandl116aa622007-08-15 14:28:22 +000093
94Functions for integers:
95
Ezio Melottie0add762012-09-14 06:32:35 +030096.. function:: randrange(stop)
97 randrange(start, stop[, step])
Georg Brandl116aa622007-08-15 14:28:22 +000098
99 Return a randomly selected element from ``range(start, stop, step)``. This is
100 equivalent to ``choice(range(start, stop, step))``, but doesn't actually build a
101 range object.
102
Raymond Hettinger05156612010-09-07 04:44:52 +0000103 The positional argument pattern matches that of :func:`range`. Keyword arguments
104 should not be used because the function may use them in unexpected ways.
105
106 .. versionchanged:: 3.2
107 :meth:`randrange` is more sophisticated about producing equally distributed
108 values. Formerly it used a style like ``int(random()*n)`` which could produce
109 slightly uneven distributions.
Georg Brandl116aa622007-08-15 14:28:22 +0000110
111.. function:: randint(a, b)
112
Raymond Hettingerafd30452009-02-24 10:57:02 +0000113 Return a random integer *N* such that ``a <= N <= b``. Alias for
114 ``randrange(a, b+1)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000115
Georg Brandl116aa622007-08-15 14:28:22 +0000116
Georg Brandl55ac8f02007-09-01 13:51:09 +0000117Functions for sequences:
Georg Brandl116aa622007-08-15 14:28:22 +0000118
119.. function:: choice(seq)
120
121 Return a random element from the non-empty sequence *seq*. If *seq* is empty,
122 raises :exc:`IndexError`.
123
124
125.. function:: shuffle(x[, random])
126
127 Shuffle the sequence *x* in place. The optional argument *random* is a
128 0-argument function returning a random float in [0.0, 1.0); by default, this is
Georg Brandl92849d12016-02-19 08:57:38 +0100129 the function :func:`.random`.
Georg Brandl116aa622007-08-15 14:28:22 +0000130
131 Note that for even rather small ``len(x)``, the total number of permutations of
132 *x* is larger than the period of most random number generators; this implies
133 that most permutations of a long sequence can never be generated.
134
135
136.. function:: sample(population, k)
137
Raymond Hettinger1acde192008-01-14 01:00:53 +0000138 Return a *k* length list of unique elements chosen from the population sequence
139 or set. Used for random sampling without replacement.
Georg Brandl116aa622007-08-15 14:28:22 +0000140
Georg Brandl116aa622007-08-15 14:28:22 +0000141 Returns a new list containing elements from the population while leaving the
142 original population unchanged. The resulting list is in selection order so that
143 all sub-slices will also be valid random samples. This allows raffle winners
144 (the sample) to be partitioned into grand prize and second place winners (the
145 subslices).
146
Guido van Rossum2cc30da2007-11-02 23:46:40 +0000147 Members of the population need not be :term:`hashable` or unique. If the population
Georg Brandl116aa622007-08-15 14:28:22 +0000148 contains repeats, then each occurrence is a possible selection in the sample.
149
150 To choose a sample from a range of integers, use an :func:`range` object as an
151 argument. This is especially fast and space efficient for sampling from a large
152 population: ``sample(range(10000000), 60)``.
153
Raymond Hettingerf07d9492012-07-09 12:43:57 -0700154 If the sample size is larger than the population size, a :exc:`ValueError`
Raymond Hettinger86a20f82012-07-08 16:01:53 -0700155 is raised.
156
Georg Brandl116aa622007-08-15 14:28:22 +0000157The following functions generate specific real-valued distributions. Function
158parameters are named after the corresponding variables in the distribution's
159equation, as used in common mathematical practice; most of these equations can
160be found in any statistics text.
161
162
163.. function:: random()
164
165 Return the next random floating point number in the range [0.0, 1.0).
166
167
168.. function:: uniform(a, b)
169
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000170 Return a random floating point number *N* such that ``a <= N <= b`` for
171 ``a <= b`` and ``b <= N <= a`` for ``b < a``.
Georg Brandl116aa622007-08-15 14:28:22 +0000172
Raymond Hettingerbe40db02009-06-11 23:12:14 +0000173 The end-point value ``b`` may or may not be included in the range
174 depending on floating-point rounding in the equation ``a + (b-a) * random()``.
Benjamin Peterson35e8c462008-04-24 02:34:53 +0000175
Georg Brandl73dd7c72011-09-17 20:36:28 +0200176
Christian Heimesfe337bf2008-03-23 21:54:12 +0000177.. function:: triangular(low, high, mode)
178
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000179 Return a random floating point number *N* such that ``low <= N <= high`` and
Christian Heimescc47b052008-03-25 14:56:36 +0000180 with the specified *mode* between those bounds. The *low* and *high* bounds
181 default to zero and one. The *mode* argument defaults to the midpoint
182 between the bounds, giving a symmetric distribution.
Christian Heimesfe337bf2008-03-23 21:54:12 +0000183
Georg Brandl116aa622007-08-15 14:28:22 +0000184
185.. function:: betavariate(alpha, beta)
186
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000187 Beta distribution. Conditions on the parameters are ``alpha > 0`` and
188 ``beta > 0``. Returned values range between 0 and 1.
Georg Brandl116aa622007-08-15 14:28:22 +0000189
190
191.. function:: expovariate(lambd)
192
Mark Dickinson2f947362009-01-07 17:54:07 +0000193 Exponential distribution. *lambd* is 1.0 divided by the desired
194 mean. It should be nonzero. (The parameter would be called
195 "lambda", but that is a reserved word in Python.) Returned values
196 range from 0 to positive infinity if *lambd* is positive, and from
197 negative infinity to 0 if *lambd* is negative.
Georg Brandl116aa622007-08-15 14:28:22 +0000198
199
200.. function:: gammavariate(alpha, beta)
201
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000202 Gamma distribution. (*Not* the gamma function!) Conditions on the
203 parameters are ``alpha > 0`` and ``beta > 0``.
Georg Brandl116aa622007-08-15 14:28:22 +0000204
Georg Brandl73dd7c72011-09-17 20:36:28 +0200205 The probability distribution function is::
206
207 x ** (alpha - 1) * math.exp(-x / beta)
208 pdf(x) = --------------------------------------
209 math.gamma(alpha) * beta ** alpha
210
Georg Brandl116aa622007-08-15 14:28:22 +0000211
212.. function:: gauss(mu, sigma)
213
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000214 Gaussian distribution. *mu* is the mean, and *sigma* is the standard
215 deviation. This is slightly faster than the :func:`normalvariate` function
216 defined below.
Georg Brandl116aa622007-08-15 14:28:22 +0000217
218
219.. function:: lognormvariate(mu, sigma)
220
221 Log normal distribution. If you take the natural logarithm of this
222 distribution, you'll get a normal distribution with mean *mu* and standard
223 deviation *sigma*. *mu* can have any value, and *sigma* must be greater than
224 zero.
225
226
227.. function:: normalvariate(mu, sigma)
228
229 Normal distribution. *mu* is the mean, and *sigma* is the standard deviation.
230
231
232.. function:: vonmisesvariate(mu, kappa)
233
234 *mu* is the mean angle, expressed in radians between 0 and 2\*\ *pi*, and *kappa*
235 is the concentration parameter, which must be greater than or equal to zero. If
236 *kappa* is equal to zero, this distribution reduces to a uniform random angle
237 over the range 0 to 2\*\ *pi*.
238
239
240.. function:: paretovariate(alpha)
241
242 Pareto distribution. *alpha* is the shape parameter.
243
244
245.. function:: weibullvariate(alpha, beta)
246
247 Weibull distribution. *alpha* is the scale parameter and *beta* is the shape
248 parameter.
249
250
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000251Alternative Generator:
Georg Brandl116aa622007-08-15 14:28:22 +0000252
Georg Brandl116aa622007-08-15 14:28:22 +0000253.. class:: SystemRandom([seed])
254
255 Class that uses the :func:`os.urandom` function for generating random numbers
256 from sources provided by the operating system. Not available on all systems.
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000257 Does not rely on software state, and sequences are not reproducible. Accordingly,
Raymond Hettingerafd30452009-02-24 10:57:02 +0000258 the :meth:`seed` method has no effect and is ignored.
Georg Brandl116aa622007-08-15 14:28:22 +0000259 The :meth:`getstate` and :meth:`setstate` methods raise
260 :exc:`NotImplementedError` if called.
261
Georg Brandl116aa622007-08-15 14:28:22 +0000262
Georg Brandl116aa622007-08-15 14:28:22 +0000263.. seealso::
264
265 M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally
266 equidistributed uniform pseudorandom number generator", ACM Transactions on
267 Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.
268
Georg Brandl116aa622007-08-15 14:28:22 +0000269
Raymond Hettinger1fd32a62009-04-01 20:52:13 +0000270 `Complementary-Multiply-with-Carry recipe
Georg Brandl5d941342016-02-26 19:37:12 +0100271 <https://code.activestate.com/recipes/576707/>`_ for a compatible alternative
Raymond Hettinger9743fd02009-04-03 05:47:33 +0000272 random number generator with a long period and comparatively simple update
Raymond Hettinger1fd32a62009-04-01 20:52:13 +0000273 operations.
Raymond Hettinger435cb0f2010-09-06 23:36:31 +0000274
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000275
Raymond Hettinger435cb0f2010-09-06 23:36:31 +0000276Notes on Reproducibility
Antoine Pitroue72b5862010-12-12 20:13:31 +0000277------------------------
Raymond Hettinger435cb0f2010-09-06 23:36:31 +0000278
279Sometimes it is useful to be able to reproduce the sequences given by a pseudo
280random number generator. By re-using a seed value, the same sequence should be
281reproducible from run to run as long as multiple threads are not running.
282
283Most of the random module's algorithms and seeding functions are subject to
284change across Python versions, but two aspects are guaranteed not to change:
285
286* If a new seeding method is added, then a backward compatible seeder will be
287 offered.
288
Georg Brandl92849d12016-02-19 08:57:38 +0100289* The generator's :meth:`~Random.random` method will continue to produce the same
Raymond Hettinger435cb0f2010-09-06 23:36:31 +0000290 sequence when the compatible seeder is given the same seed.
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000291
Raymond Hettinger6e353942010-12-04 23:42:12 +0000292.. _random-examples:
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000293
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000294Examples and Recipes
Antoine Pitroue72b5862010-12-12 20:13:31 +0000295--------------------
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000296
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000297Basic usage::
298
299 >>> random.random() # Random float x, 0.0 <= x < 1.0
300 0.37444887175646646
301
302 >>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
303 1.1800146073117523
304
305 >>> random.randrange(10) # Integer from 0 to 9
306 7
307
308 >>> random.randrange(0, 101, 2) # Even integer from 0 to 100
309 26
310
311 >>> random.choice('abcdefghij') # Single random element
312 'c'
313
314 >>> items = [1, 2, 3, 4, 5, 6, 7]
315 >>> random.shuffle(items)
316 >>> items
317 [7, 3, 2, 5, 6, 4, 1]
318
319 >>> random.sample([1, 2, 3, 4, 5], 3) # Three samples without replacement
320 [4, 1, 5]
321
Sandro Tosi1ee17192012-04-14 16:01:17 +0200322A common task is to make a :func:`random.choice` with weighted probabilities.
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000323
324If the weights are small integer ratios, a simple technique is to build a sample
325population with repeats::
326
327 >>> weighted_choices = [('Red', 3), ('Blue', 2), ('Yellow', 1), ('Green', 4)]
328 >>> population = [val for val, cnt in weighted_choices for i in range(cnt)]
329 >>> random.choice(population)
330 'Green'
331
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000332A more general approach is to arrange the weights in a cumulative distribution
333with :func:`itertools.accumulate`, and then locate the random value with
334:func:`bisect.bisect`::
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000335
336 >>> choices, weights = zip(*weighted_choices)
337 >>> cumdist = list(itertools.accumulate(weights))
338 >>> x = random.random() * cumdist[-1]
339 >>> choices[bisect.bisect(cumdist, x)]
340 'Blue'