Update docs
diff --git a/docs/dyn/vision_v1.images.html b/docs/dyn/vision_v1.images.html
new file mode 100644
index 0000000..6a4fded
--- /dev/null
+++ b/docs/dyn/vision_v1.images.html
@@ -0,0 +1,869 @@
+<html><body>
+<style>
+
+body, h1, h2, h3, div, span, p, pre, a {
+  margin: 0;
+  padding: 0;
+  border: 0;
+  font-weight: inherit;
+  font-style: inherit;
+  font-size: 100%;
+  font-family: inherit;
+  vertical-align: baseline;
+}
+
+body {
+  font-size: 13px;
+  padding: 1em;
+}
+
+h1 {
+  font-size: 26px;
+  margin-bottom: 1em;
+}
+
+h2 {
+  font-size: 24px;
+  margin-bottom: 1em;
+}
+
+h3 {
+  font-size: 20px;
+  margin-bottom: 1em;
+  margin-top: 1em;
+}
+
+pre, code {
+  line-height: 1.5;
+  font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
+}
+
+pre {
+  margin-top: 0.5em;
+}
+
+h1, h2, h3, p {
+  font-family: Arial, sans serif;
+}
+
+h1, h2, h3 {
+  border-bottom: solid #CCC 1px;
+}
+
+.toc_element {
+  margin-top: 0.5em;
+}
+
+.firstline {
+  margin-left: 2 em;
+}
+
+.method  {
+  margin-top: 1em;
+  border: solid 1px #CCC;
+  padding: 1em;
+  background: #EEE;
+}
+
+.details {
+  font-weight: bold;
+  font-size: 14px;
+}
+
+</style>
+
+<h1><a href="vision_v1.html">Google Cloud Vision API</a> . <a href="vision_v1.images.html">images</a></h1>
+<h2>Instance Methods</h2>
+<p class="toc_element">
+  <code><a href="#annotate">annotate(body, x__xgafv=None)</a></code></p>
+<p class="firstline">Run image detection and annotation for a batch of images.</p>
+<h3>Method Details</h3>
+<div class="method">
+    <code class="details" id="annotate">annotate(body, x__xgafv=None)</code>
+  <pre>Run image detection and annotation for a batch of images.
+
+Args:
+  body: object, The request body. (required)
+    The object takes the form of:
+
+{ # Multiple image annotation requests are batched into a single service call.
+    "requests": [ # Individual image annotation requests for this batch.
+      { # Request for performing Google Cloud Vision API tasks over a user-provided
+          # image, with user-requested features.
+        "imageContext": { # Image context. # Additional context that may accompany the image.
+          "latLongRect": { # Rectangle determined by min and max LatLng pairs. # Lat/long rectangle that specifies the location of the image.
+            "minLatLng": { # An object representing a latitude/longitude pair. This is expressed as a pair # Min lat/long pair.
+                # of doubles representing degrees latitude and degrees longitude. Unless
+                # specified otherwise, this must conform to the
+                # <a href="http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf">WGS84
+                # standard</a>. Values must be within normalized ranges.
+                #
+                # Example of normalization code in Python:
+                #
+                #     def NormalizeLongitude(longitude):
+                #       """Wraps decimal degrees longitude to [-180.0, 180.0]."""
+                #       q, r = divmod(longitude, 360.0)
+                #       if r > 180.0 or (r == 180.0 and q <= -1.0):
+                #         return r - 360.0
+                #       return r
+                #
+                #     def NormalizeLatLng(latitude, longitude):
+                #       """Wraps decimal degrees latitude and longitude to
+                #       [-90.0, 90.0] and [-180.0, 180.0], respectively."""
+                #       r = latitude % 360.0
+                #       if r <= 90.0:
+                #         return r, NormalizeLongitude(longitude)
+                #       elif r >= 270.0:
+                #         return r - 360, NormalizeLongitude(longitude)
+                #       else:
+                #         return 180 - r, NormalizeLongitude(longitude + 180.0)
+                #
+                #     assert 180.0 == NormalizeLongitude(180.0)
+                #     assert -180.0 == NormalizeLongitude(-180.0)
+                #     assert -179.0 == NormalizeLongitude(181.0)
+                #     assert (0.0, 0.0) == NormalizeLatLng(360.0, 0.0)
+                #     assert (0.0, 0.0) == NormalizeLatLng(-360.0, 0.0)
+                #     assert (85.0, 180.0) == NormalizeLatLng(95.0, 0.0)
+                #     assert (-85.0, -170.0) == NormalizeLatLng(-95.0, 10.0)
+                #     assert (90.0, 10.0) == NormalizeLatLng(90.0, 10.0)
+                #     assert (-90.0, -10.0) == NormalizeLatLng(-90.0, -10.0)
+                #     assert (0.0, -170.0) == NormalizeLatLng(-180.0, 10.0)
+                #     assert (0.0, -170.0) == NormalizeLatLng(180.0, 10.0)
+                #     assert (-90.0, 10.0) == NormalizeLatLng(270.0, 10.0)
+                #     assert (90.0, 10.0) == NormalizeLatLng(-270.0, 10.0)
+              "latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
+              "longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
+            },
+            "maxLatLng": { # An object representing a latitude/longitude pair. This is expressed as a pair # Max lat/long pair.
+                # of doubles representing degrees latitude and degrees longitude. Unless
+                # specified otherwise, this must conform to the
+                # <a href="http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf">WGS84
+                # standard</a>. Values must be within normalized ranges.
+                #
+                # Example of normalization code in Python:
+                #
+                #     def NormalizeLongitude(longitude):
+                #       """Wraps decimal degrees longitude to [-180.0, 180.0]."""
+                #       q, r = divmod(longitude, 360.0)
+                #       if r > 180.0 or (r == 180.0 and q <= -1.0):
+                #         return r - 360.0
+                #       return r
+                #
+                #     def NormalizeLatLng(latitude, longitude):
+                #       """Wraps decimal degrees latitude and longitude to
+                #       [-90.0, 90.0] and [-180.0, 180.0], respectively."""
+                #       r = latitude % 360.0
+                #       if r <= 90.0:
+                #         return r, NormalizeLongitude(longitude)
+                #       elif r >= 270.0:
+                #         return r - 360, NormalizeLongitude(longitude)
+                #       else:
+                #         return 180 - r, NormalizeLongitude(longitude + 180.0)
+                #
+                #     assert 180.0 == NormalizeLongitude(180.0)
+                #     assert -180.0 == NormalizeLongitude(-180.0)
+                #     assert -179.0 == NormalizeLongitude(181.0)
+                #     assert (0.0, 0.0) == NormalizeLatLng(360.0, 0.0)
+                #     assert (0.0, 0.0) == NormalizeLatLng(-360.0, 0.0)
+                #     assert (85.0, 180.0) == NormalizeLatLng(95.0, 0.0)
+                #     assert (-85.0, -170.0) == NormalizeLatLng(-95.0, 10.0)
+                #     assert (90.0, 10.0) == NormalizeLatLng(90.0, 10.0)
+                #     assert (-90.0, -10.0) == NormalizeLatLng(-90.0, -10.0)
+                #     assert (0.0, -170.0) == NormalizeLatLng(-180.0, 10.0)
+                #     assert (0.0, -170.0) == NormalizeLatLng(180.0, 10.0)
+                #     assert (-90.0, 10.0) == NormalizeLatLng(270.0, 10.0)
+                #     assert (90.0, 10.0) == NormalizeLatLng(-270.0, 10.0)
+              "latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
+              "longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
+            },
+          },
+          "languageHints": [ # List of languages to use for TEXT_DETECTION. In most cases, an empty value
+              # will yield the best results as it will allow text detection to
+              # automatically detect the text language. For languages based on the latin
+              # alphabet a hint is not needed. In rare cases, when the language of
+              # the text in the image is known in advance, setting this hint will help get
+              # better results (although it will hurt a great deal if the hint is wrong).
+              # Text detection will return an error if one or more of the languages
+              # specified here are not supported. The exact list of supported languages are
+              # specified here:
+              # https://cloud.google.com/translate/v2/using_rest#language-params
+            "A String",
+          ],
+        },
+        "image": { # Client image to perform Google Cloud Vision API tasks over. # The image to be processed.
+          "content": "A String", # Image content, represented as a stream of bytes.
+          "source": { # External image source (Google Cloud Storage image location). # Google Cloud Storage image location. If both 'content' and 'source'
+              # are filled for an image, 'content' takes precedence and it will be
+              # used for performing the image annotation request.
+            "gcsImageUri": "A String", # Google Cloud Storage image URI. It must be in the following form:
+                # `gs://bucket_name/object_name`. For more
+                # details, please see: https://cloud.google.com/storage/docs/reference-uris.
+                # NOTE: Cloud Storage object versioning is not supported!
+          },
+        },
+        "features": [ # Requested features.
+          { # The <em>Feature</em> indicates what type of image detection task to perform.
+              # Users describe the type of Google Cloud Vision API tasks to perform over
+              # images by using <em>Feature</em>s. Features encode the Cloud Vision API
+              # vertical to operate on and the number of top-scoring results to return.
+            "type": "A String", # The feature type.
+            "maxResults": 42, # Maximum number of results of this type.
+          },
+        ],
+      },
+    ],
+  }
+
+  x__xgafv: string, V1 error format.
+    Allowed values
+      1 - v1 error format
+      2 - v2 error format
+
+Returns:
+  An object of the form:
+
+    { # Response to a batch image annotation request.
+    "responses": [ # Individual responses to image annotation requests within the batch.
+      { # Response to an image annotation request.
+        "safeSearchAnnotation": { # Set of features pertaining to the image, computed by various computer vision # If present, safe-search annotation completed successfully.
+            # methods over safe-search verticals (for example, adult, spoof, medical,
+            # violence).
+          "medical": "A String", # Likelihood this is a medical image.
+          "violence": "A String", # Violence likelihood.
+          "spoof": "A String", # Spoof likelihood. The likelihood that an obvious modification
+              # was made to the image's canonical version to make it appear
+              # funny or offensive.
+          "adult": "A String", # Represents the adult contents likelihood for the image.
+        },
+        "textAnnotations": [ # If present, text (OCR) detection completed successfully.
+          { # Set of detected entity features.
+            "confidence": 3.14, # The accuracy of the entity detection in an image.
+                # For example, for an image containing 'Eiffel Tower,' this field represents
+                # the confidence that there is a tower in the query image. Range [0, 1].
+            "description": "A String", # Entity textual description, expressed in its <code>locale</code> language.
+            "locale": "A String", # The language code for the locale in which the entity textual
+                # <code>description</code> (next field) is expressed.
+            "topicality": 3.14, # The relevancy of the ICA (Image Content Annotation) label to the
+                # image. For example, the relevancy of 'tower' to an image containing
+                # 'Eiffel Tower' is likely higher than an image containing a distant towering
+                # building, though the confidence that there is a tower may be the same.
+                # Range [0, 1].
+            "mid": "A String", # Opaque entity ID. Some IDs might be available in Knowledge Graph(KG).
+                # For more details on KG please see:
+                # https://developers.google.com/knowledge-graph/
+            "locations": [ # The location information for the detected entity. Multiple
+                # <code>LocationInfo</code> elements can be present since one location may
+                # indicate the location of the scene in the query image, and another the
+                # location of the place where the query image was taken. Location information
+                # is usually present for landmarks.
+              { # Detected entity location information.
+                "latLng": { # An object representing a latitude/longitude pair. This is expressed as a pair # Lat - long location coordinates.
+                    # of doubles representing degrees latitude and degrees longitude. Unless
+                    # specified otherwise, this must conform to the
+                    # <a href="http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf">WGS84
+                    # standard</a>. Values must be within normalized ranges.
+                    #
+                    # Example of normalization code in Python:
+                    #
+                    #     def NormalizeLongitude(longitude):
+                    #       """Wraps decimal degrees longitude to [-180.0, 180.0]."""
+                    #       q, r = divmod(longitude, 360.0)
+                    #       if r > 180.0 or (r == 180.0 and q <= -1.0):
+                    #         return r - 360.0
+                    #       return r
+                    #
+                    #     def NormalizeLatLng(latitude, longitude):
+                    #       """Wraps decimal degrees latitude and longitude to
+                    #       [-90.0, 90.0] and [-180.0, 180.0], respectively."""
+                    #       r = latitude % 360.0
+                    #       if r <= 90.0:
+                    #         return r, NormalizeLongitude(longitude)
+                    #       elif r >= 270.0:
+                    #         return r - 360, NormalizeLongitude(longitude)
+                    #       else:
+                    #         return 180 - r, NormalizeLongitude(longitude + 180.0)
+                    #
+                    #     assert 180.0 == NormalizeLongitude(180.0)
+                    #     assert -180.0 == NormalizeLongitude(-180.0)
+                    #     assert -179.0 == NormalizeLongitude(181.0)
+                    #     assert (0.0, 0.0) == NormalizeLatLng(360.0, 0.0)
+                    #     assert (0.0, 0.0) == NormalizeLatLng(-360.0, 0.0)
+                    #     assert (85.0, 180.0) == NormalizeLatLng(95.0, 0.0)
+                    #     assert (-85.0, -170.0) == NormalizeLatLng(-95.0, 10.0)
+                    #     assert (90.0, 10.0) == NormalizeLatLng(90.0, 10.0)
+                    #     assert (-90.0, -10.0) == NormalizeLatLng(-90.0, -10.0)
+                    #     assert (0.0, -170.0) == NormalizeLatLng(-180.0, 10.0)
+                    #     assert (0.0, -170.0) == NormalizeLatLng(180.0, 10.0)
+                    #     assert (-90.0, 10.0) == NormalizeLatLng(270.0, 10.0)
+                    #     assert (90.0, 10.0) == NormalizeLatLng(-270.0, 10.0)
+                  "latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
+                  "longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
+                },
+              },
+            ],
+            "score": 3.14, # Overall score of the result. Range [0, 1].
+            "boundingPoly": { # A bounding polygon for the detected image annotation. # Image region to which this entity belongs. Not filled currently
+                # for `LABEL_DETECTION` features. For `TEXT_DETECTION` (OCR), `boundingPoly`s
+                # are produced for the entire text detected in an image region, followed by
+                # `boundingPoly`s for each word within the detected text.
+              "vertices": [ # The bounding polygon vertices.
+                { # A vertex represents a 2D point in the image.
+                    # NOTE: the vertex coordinates are in the same scale as the original image.
+                  "y": 42, # Y coordinate.
+                  "x": 42, # X coordinate.
+                },
+              ],
+            },
+            "properties": [ # Some entities can have additional optional <code>Property</code> fields.
+                # For example a different kind of score or string that qualifies the entity.
+              { # Arbitrary name/value pair.
+                "name": "A String", # Name of the property.
+                "value": "A String", # Value of the property.
+              },
+            ],
+          },
+        ],
+        "labelAnnotations": [ # If present, label detection completed successfully.
+          { # Set of detected entity features.
+            "confidence": 3.14, # The accuracy of the entity detection in an image.
+                # For example, for an image containing 'Eiffel Tower,' this field represents
+                # the confidence that there is a tower in the query image. Range [0, 1].
+            "description": "A String", # Entity textual description, expressed in its <code>locale</code> language.
+            "locale": "A String", # The language code for the locale in which the entity textual
+                # <code>description</code> (next field) is expressed.
+            "topicality": 3.14, # The relevancy of the ICA (Image Content Annotation) label to the
+                # image. For example, the relevancy of 'tower' to an image containing
+                # 'Eiffel Tower' is likely higher than an image containing a distant towering
+                # building, though the confidence that there is a tower may be the same.
+                # Range [0, 1].
+            "mid": "A String", # Opaque entity ID. Some IDs might be available in Knowledge Graph(KG).
+                # For more details on KG please see:
+                # https://developers.google.com/knowledge-graph/
+            "locations": [ # The location information for the detected entity. Multiple
+                # <code>LocationInfo</code> elements can be present since one location may
+                # indicate the location of the scene in the query image, and another the
+                # location of the place where the query image was taken. Location information
+                # is usually present for landmarks.
+              { # Detected entity location information.
+                "latLng": { # An object representing a latitude/longitude pair. This is expressed as a pair # Lat - long location coordinates.
+                    # of doubles representing degrees latitude and degrees longitude. Unless
+                    # specified otherwise, this must conform to the
+                    # <a href="http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf">WGS84
+                    # standard</a>. Values must be within normalized ranges.
+                    #
+                    # Example of normalization code in Python:
+                    #
+                    #     def NormalizeLongitude(longitude):
+                    #       """Wraps decimal degrees longitude to [-180.0, 180.0]."""
+                    #       q, r = divmod(longitude, 360.0)
+                    #       if r > 180.0 or (r == 180.0 and q <= -1.0):
+                    #         return r - 360.0
+                    #       return r
+                    #
+                    #     def NormalizeLatLng(latitude, longitude):
+                    #       """Wraps decimal degrees latitude and longitude to
+                    #       [-90.0, 90.0] and [-180.0, 180.0], respectively."""
+                    #       r = latitude % 360.0
+                    #       if r <= 90.0:
+                    #         return r, NormalizeLongitude(longitude)
+                    #       elif r >= 270.0:
+                    #         return r - 360, NormalizeLongitude(longitude)
+                    #       else:
+                    #         return 180 - r, NormalizeLongitude(longitude + 180.0)
+                    #
+                    #     assert 180.0 == NormalizeLongitude(180.0)
+                    #     assert -180.0 == NormalizeLongitude(-180.0)
+                    #     assert -179.0 == NormalizeLongitude(181.0)
+                    #     assert (0.0, 0.0) == NormalizeLatLng(360.0, 0.0)
+                    #     assert (0.0, 0.0) == NormalizeLatLng(-360.0, 0.0)
+                    #     assert (85.0, 180.0) == NormalizeLatLng(95.0, 0.0)
+                    #     assert (-85.0, -170.0) == NormalizeLatLng(-95.0, 10.0)
+                    #     assert (90.0, 10.0) == NormalizeLatLng(90.0, 10.0)
+                    #     assert (-90.0, -10.0) == NormalizeLatLng(-90.0, -10.0)
+                    #     assert (0.0, -170.0) == NormalizeLatLng(-180.0, 10.0)
+                    #     assert (0.0, -170.0) == NormalizeLatLng(180.0, 10.0)
+                    #     assert (-90.0, 10.0) == NormalizeLatLng(270.0, 10.0)
+                    #     assert (90.0, 10.0) == NormalizeLatLng(-270.0, 10.0)
+                  "latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
+                  "longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
+                },
+              },
+            ],
+            "score": 3.14, # Overall score of the result. Range [0, 1].
+            "boundingPoly": { # A bounding polygon for the detected image annotation. # Image region to which this entity belongs. Not filled currently
+                # for `LABEL_DETECTION` features. For `TEXT_DETECTION` (OCR), `boundingPoly`s
+                # are produced for the entire text detected in an image region, followed by
+                # `boundingPoly`s for each word within the detected text.
+              "vertices": [ # The bounding polygon vertices.
+                { # A vertex represents a 2D point in the image.
+                    # NOTE: the vertex coordinates are in the same scale as the original image.
+                  "y": 42, # Y coordinate.
+                  "x": 42, # X coordinate.
+                },
+              ],
+            },
+            "properties": [ # Some entities can have additional optional <code>Property</code> fields.
+                # For example a different kind of score or string that qualifies the entity.
+              { # Arbitrary name/value pair.
+                "name": "A String", # Name of the property.
+                "value": "A String", # Value of the property.
+              },
+            ],
+          },
+        ],
+        "imagePropertiesAnnotation": { # Stores image properties (e.g. dominant colors). # If present, image properties were extracted successfully.
+          "dominantColors": { # Set of dominant colors and their corresponding scores. # If present, dominant colors completed successfully.
+            "colors": [ # RGB color values, with their score and pixel fraction.
+              { # Color information consists of RGB channels, score and fraction of
+                  # image the color occupies in the image.
+                "color": { # Represents a color in the RGBA color space. This representation is designed # RGB components of the color.
+                    # for simplicity of conversion to/from color representations in various
+                    # languages over compactness; for example, the fields of this representation
+                    # can be trivially provided to the constructor of "java.awt.Color" in Java; it
+                    # can also be trivially provided to UIColor's "+colorWithRed:green:blue:alpha"
+                    # method in iOS; and, with just a little work, it can be easily formatted into
+                    # a CSS "rgba()" string in JavaScript, as well. Here are some examples:
+                    #
+                    # Example (Java):
+                    #
+                    #      import com.google.type.Color;
+                    #
+                    #      // ...
+                    #      public static java.awt.Color fromProto(Color protocolor) {
+                    #        float alpha = protocolor.hasAlpha()
+                    #            ? protocolor.getAlpha().getValue()
+                    #            : 1.0;
+                    #
+                    #        return new java.awt.Color(
+                    #            protocolor.getRed(),
+                    #            protocolor.getGreen(),
+                    #            protocolor.getBlue(),
+                    #            alpha);
+                    #      }
+                    #
+                    #      public static Color toProto(java.awt.Color color) {
+                    #        float red = (float) color.getRed();
+                    #        float green = (float) color.getGreen();
+                    #        float blue = (float) color.getBlue();
+                    #        float denominator = 255.0;
+                    #        Color.Builder resultBuilder =
+                    #            Color
+                    #                .newBuilder()
+                    #                .setRed(red / denominator)
+                    #                .setGreen(green / denominator)
+                    #                .setBlue(blue / denominator);
+                    #        int alpha = color.getAlpha();
+                    #        if (alpha != 255) {
+                    #          result.setAlpha(
+                    #              FloatValue
+                    #                  .newBuilder()
+                    #                  .setValue(((float) alpha) / denominator)
+                    #                  .build());
+                    #        }
+                    #        return resultBuilder.build();
+                    #      }
+                    #      // ...
+                    #
+                    # Example (iOS / Obj-C):
+                    #
+                    #      // ...
+                    #      static UIColor* fromProto(Color* protocolor) {
+                    #         float red = [protocolor red];
+                    #         float green = [protocolor green];
+                    #         float blue = [protocolor blue];
+                    #         FloatValue* alpha_wrapper = [protocolor alpha];
+                    #         float alpha = 1.0;
+                    #         if (alpha_wrapper != nil) {
+                    #           alpha = [alpha_wrapper value];
+                    #         }
+                    #         return [UIColor colorWithRed:red green:green blue:blue alpha:alpha];
+                    #      }
+                    #
+                    #      static Color* toProto(UIColor* color) {
+                    #          CGFloat red, green, blue, alpha;
+                    #          if (![color getRed:&red green:&green blue:&blue alpha:&alpha]) {
+                    #            return nil;
+                    #          }
+                    #          Color* result = [Color alloc] init];
+                    #          [result setRed:red];
+                    #          [result setGreen:green];
+                    #          [result setBlue:blue];
+                    #          if (alpha <= 0.9999) {
+                    #            [result setAlpha:floatWrapperWithValue(alpha)];
+                    #          }
+                    #          [result autorelease];
+                    #          return result;
+                    #     }
+                    #     // ...
+                    #
+                    #  Example (JavaScript):
+                    #
+                    #     // ...
+                    #
+                    #     var protoToCssColor = function(rgb_color) {
+                    #        var redFrac = rgb_color.red || 0.0;
+                    #        var greenFrac = rgb_color.green || 0.0;
+                    #        var blueFrac = rgb_color.blue || 0.0;
+                    #        var red = Math.floor(redFrac * 255);
+                    #        var green = Math.floor(greenFrac * 255);
+                    #        var blue = Math.floor(blueFrac * 255);
+                    #
+                    #        if (!('alpha' in rgb_color)) {
+                    #           return rgbToCssColor_(red, green, blue);
+                    #        }
+                    #
+                    #        var alphaFrac = rgb_color.alpha.value || 0.0;
+                    #        var rgbParams = [red, green, blue].join(',');
+                    #        return ['rgba(', rgbParams, ',', alphaFrac, ')'].join('');
+                    #     };
+                    #
+                    #     var rgbToCssColor_ = function(red, green, blue) {
+                    #       var rgbNumber = new Number((red << 16) | (green << 8) | blue);
+                    #       var hexString = rgbNumber.toString(16);
+                    #       var missingZeros = 6 - hexString.length;
+                    #       var resultBuilder = ['#'];
+                    #       for (var i = 0; i < missingZeros; i++) {
+                    #          resultBuilder.push('0');
+                    #       }
+                    #       resultBuilder.push(hexString);
+                    #       return resultBuilder.join('');
+                    #     };
+                    #
+                    #     // ...
+                  "blue": 3.14, # The amount of blue in the color as a value in the interval [0, 1].
+                  "alpha": 3.14, # The fraction of this color that should be applied to the pixel. That is,
+                      # the final pixel color is defined by the equation:
+                      #
+                      #   pixel color = alpha * (this color) + (1.0 - alpha) * (background color)
+                      #
+                      # This means that a value of 1.0 corresponds to a solid color, whereas
+                      # a value of 0.0 corresponds to a completely transparent color. This
+                      # uses a wrapper message rather than a simple float scalar so that it is
+                      # possible to distinguish between a default value and the value being unset.
+                      # If omitted, this color object is to be rendered as a solid color
+                      # (as if the alpha value had been explicitly given with a value of 1.0).
+                  "green": 3.14, # The amount of green in the color as a value in the interval [0, 1].
+                  "red": 3.14, # The amount of red in the color as a value in the interval [0, 1].
+                },
+                "pixelFraction": 3.14, # Stores the fraction of pixels the color occupies in the image.
+                    # Value in range [0, 1].
+                "score": 3.14, # Image-specific score for this color. Value in range [0, 1].
+              },
+            ],
+          },
+        },
+        "faceAnnotations": [ # If present, face detection completed successfully.
+          { # A face annotation object contains the results of face detection.
+            "panAngle": 3.14, # Yaw angle. Indicates the leftward/rightward angle that the face is
+                # pointing, relative to the vertical plane perpendicular to the image. Range
+                # [-180,180].
+            "sorrowLikelihood": "A String", # Sorrow likelihood.
+            "underExposedLikelihood": "A String", # Under-exposed likelihood.
+            "detectionConfidence": 3.14, # Detection confidence. Range [0, 1].
+            "joyLikelihood": "A String", # Joy likelihood.
+            "landmarks": [ # Detected face landmarks.
+              { # A face-specific landmark (for example, a face feature).
+                  # Landmark positions may fall outside the bounds of the image
+                  # when the face is near one or more edges of the image.
+                  # Therefore it is NOT guaranteed that 0 <= x < width or 0 <= y < height.
+                "position": { # A 3D position in the image, used primarily for Face detection landmarks. # Face landmark position.
+                    # A valid Position must have both x and y coordinates.
+                    # The position coordinates are in the same scale as the original image.
+                  "y": 3.14, # Y coordinate.
+                  "x": 3.14, # X coordinate.
+                  "z": 3.14, # Z coordinate (or depth).
+                },
+                "type": "A String", # Face landmark type.
+              },
+            ],
+            "surpriseLikelihood": "A String", # Surprise likelihood.
+            "blurredLikelihood": "A String", # Blurred likelihood.
+            "tiltAngle": 3.14, # Pitch angle. Indicates the upwards/downwards angle that the face is
+                # pointing
+                # relative to the image's horizontal plane. Range [-180,180].
+            "angerLikelihood": "A String", # Anger likelihood.
+            "boundingPoly": { # A bounding polygon for the detected image annotation. # The bounding polygon around the face. The coordinates of the bounding box
+                # are in the original image's scale, as returned in ImageParams.
+                # The bounding box is computed to "frame" the face in accordance with human
+                # expectations. It is based on the landmarker results.
+                # Note that one or more x and/or y coordinates may not be generated in the
+                # BoundingPoly (the polygon will be unbounded) if only a partial face appears in
+                # the image to be annotated.
+              "vertices": [ # The bounding polygon vertices.
+                { # A vertex represents a 2D point in the image.
+                    # NOTE: the vertex coordinates are in the same scale as the original image.
+                  "y": 42, # Y coordinate.
+                  "x": 42, # X coordinate.
+                },
+              ],
+            },
+            "rollAngle": 3.14, # Roll angle. Indicates the amount of clockwise/anti-clockwise rotation of
+                # the
+                # face relative to the image vertical, about the axis perpendicular to the
+                # face. Range [-180,180].
+            "headwearLikelihood": "A String", # Headwear likelihood.
+            "fdBoundingPoly": { # A bounding polygon for the detected image annotation. # This bounding polygon is tighter than the previous
+                # <code>boundingPoly</code>, and
+                # encloses only the skin part of the face. Typically, it is used to
+                # eliminate the face from any image analysis that detects the
+                # "amount of skin" visible in an image. It is not based on the
+                # landmarker results, only on the initial face detection, hence
+                # the <code>fd</code> (face detection) prefix.
+              "vertices": [ # The bounding polygon vertices.
+                { # A vertex represents a 2D point in the image.
+                    # NOTE: the vertex coordinates are in the same scale as the original image.
+                  "y": 42, # Y coordinate.
+                  "x": 42, # X coordinate.
+                },
+              ],
+            },
+            "landmarkingConfidence": 3.14, # Face landmarking confidence. Range [0, 1].
+          },
+        ],
+        "logoAnnotations": [ # If present, logo detection completed successfully.
+          { # Set of detected entity features.
+            "confidence": 3.14, # The accuracy of the entity detection in an image.
+                # For example, for an image containing 'Eiffel Tower,' this field represents
+                # the confidence that there is a tower in the query image. Range [0, 1].
+            "description": "A String", # Entity textual description, expressed in its <code>locale</code> language.
+            "locale": "A String", # The language code for the locale in which the entity textual
+                # <code>description</code> (next field) is expressed.
+            "topicality": 3.14, # The relevancy of the ICA (Image Content Annotation) label to the
+                # image. For example, the relevancy of 'tower' to an image containing
+                # 'Eiffel Tower' is likely higher than an image containing a distant towering
+                # building, though the confidence that there is a tower may be the same.
+                # Range [0, 1].
+            "mid": "A String", # Opaque entity ID. Some IDs might be available in Knowledge Graph(KG).
+                # For more details on KG please see:
+                # https://developers.google.com/knowledge-graph/
+            "locations": [ # The location information for the detected entity. Multiple
+                # <code>LocationInfo</code> elements can be present since one location may
+                # indicate the location of the scene in the query image, and another the
+                # location of the place where the query image was taken. Location information
+                # is usually present for landmarks.
+              { # Detected entity location information.
+                "latLng": { # An object representing a latitude/longitude pair. This is expressed as a pair # Lat - long location coordinates.
+                    # of doubles representing degrees latitude and degrees longitude. Unless
+                    # specified otherwise, this must conform to the
+                    # <a href="http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf">WGS84
+                    # standard</a>. Values must be within normalized ranges.
+                    #
+                    # Example of normalization code in Python:
+                    #
+                    #     def NormalizeLongitude(longitude):
+                    #       """Wraps decimal degrees longitude to [-180.0, 180.0]."""
+                    #       q, r = divmod(longitude, 360.0)
+                    #       if r > 180.0 or (r == 180.0 and q <= -1.0):
+                    #         return r - 360.0
+                    #       return r
+                    #
+                    #     def NormalizeLatLng(latitude, longitude):
+                    #       """Wraps decimal degrees latitude and longitude to
+                    #       [-90.0, 90.0] and [-180.0, 180.0], respectively."""
+                    #       r = latitude % 360.0
+                    #       if r <= 90.0:
+                    #         return r, NormalizeLongitude(longitude)
+                    #       elif r >= 270.0:
+                    #         return r - 360, NormalizeLongitude(longitude)
+                    #       else:
+                    #         return 180 - r, NormalizeLongitude(longitude + 180.0)
+                    #
+                    #     assert 180.0 == NormalizeLongitude(180.0)
+                    #     assert -180.0 == NormalizeLongitude(-180.0)
+                    #     assert -179.0 == NormalizeLongitude(181.0)
+                    #     assert (0.0, 0.0) == NormalizeLatLng(360.0, 0.0)
+                    #     assert (0.0, 0.0) == NormalizeLatLng(-360.0, 0.0)
+                    #     assert (85.0, 180.0) == NormalizeLatLng(95.0, 0.0)
+                    #     assert (-85.0, -170.0) == NormalizeLatLng(-95.0, 10.0)
+                    #     assert (90.0, 10.0) == NormalizeLatLng(90.0, 10.0)
+                    #     assert (-90.0, -10.0) == NormalizeLatLng(-90.0, -10.0)
+                    #     assert (0.0, -170.0) == NormalizeLatLng(-180.0, 10.0)
+                    #     assert (0.0, -170.0) == NormalizeLatLng(180.0, 10.0)
+                    #     assert (-90.0, 10.0) == NormalizeLatLng(270.0, 10.0)
+                    #     assert (90.0, 10.0) == NormalizeLatLng(-270.0, 10.0)
+                  "latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
+                  "longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
+                },
+              },
+            ],
+            "score": 3.14, # Overall score of the result. Range [0, 1].
+            "boundingPoly": { # A bounding polygon for the detected image annotation. # Image region to which this entity belongs. Not filled currently
+                # for `LABEL_DETECTION` features. For `TEXT_DETECTION` (OCR), `boundingPoly`s
+                # are produced for the entire text detected in an image region, followed by
+                # `boundingPoly`s for each word within the detected text.
+              "vertices": [ # The bounding polygon vertices.
+                { # A vertex represents a 2D point in the image.
+                    # NOTE: the vertex coordinates are in the same scale as the original image.
+                  "y": 42, # Y coordinate.
+                  "x": 42, # X coordinate.
+                },
+              ],
+            },
+            "properties": [ # Some entities can have additional optional <code>Property</code> fields.
+                # For example a different kind of score or string that qualifies the entity.
+              { # Arbitrary name/value pair.
+                "name": "A String", # Name of the property.
+                "value": "A String", # Value of the property.
+              },
+            ],
+          },
+        ],
+        "landmarkAnnotations": [ # If present, landmark detection completed successfully.
+          { # Set of detected entity features.
+            "confidence": 3.14, # The accuracy of the entity detection in an image.
+                # For example, for an image containing 'Eiffel Tower,' this field represents
+                # the confidence that there is a tower in the query image. Range [0, 1].
+            "description": "A String", # Entity textual description, expressed in its <code>locale</code> language.
+            "locale": "A String", # The language code for the locale in which the entity textual
+                # <code>description</code> (next field) is expressed.
+            "topicality": 3.14, # The relevancy of the ICA (Image Content Annotation) label to the
+                # image. For example, the relevancy of 'tower' to an image containing
+                # 'Eiffel Tower' is likely higher than an image containing a distant towering
+                # building, though the confidence that there is a tower may be the same.
+                # Range [0, 1].
+            "mid": "A String", # Opaque entity ID. Some IDs might be available in Knowledge Graph(KG).
+                # For more details on KG please see:
+                # https://developers.google.com/knowledge-graph/
+            "locations": [ # The location information for the detected entity. Multiple
+                # <code>LocationInfo</code> elements can be present since one location may
+                # indicate the location of the scene in the query image, and another the
+                # location of the place where the query image was taken. Location information
+                # is usually present for landmarks.
+              { # Detected entity location information.
+                "latLng": { # An object representing a latitude/longitude pair. This is expressed as a pair # Lat - long location coordinates.
+                    # of doubles representing degrees latitude and degrees longitude. Unless
+                    # specified otherwise, this must conform to the
+                    # <a href="http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf">WGS84
+                    # standard</a>. Values must be within normalized ranges.
+                    #
+                    # Example of normalization code in Python:
+                    #
+                    #     def NormalizeLongitude(longitude):
+                    #       """Wraps decimal degrees longitude to [-180.0, 180.0]."""
+                    #       q, r = divmod(longitude, 360.0)
+                    #       if r > 180.0 or (r == 180.0 and q <= -1.0):
+                    #         return r - 360.0
+                    #       return r
+                    #
+                    #     def NormalizeLatLng(latitude, longitude):
+                    #       """Wraps decimal degrees latitude and longitude to
+                    #       [-90.0, 90.0] and [-180.0, 180.0], respectively."""
+                    #       r = latitude % 360.0
+                    #       if r <= 90.0:
+                    #         return r, NormalizeLongitude(longitude)
+                    #       elif r >= 270.0:
+                    #         return r - 360, NormalizeLongitude(longitude)
+                    #       else:
+                    #         return 180 - r, NormalizeLongitude(longitude + 180.0)
+                    #
+                    #     assert 180.0 == NormalizeLongitude(180.0)
+                    #     assert -180.0 == NormalizeLongitude(-180.0)
+                    #     assert -179.0 == NormalizeLongitude(181.0)
+                    #     assert (0.0, 0.0) == NormalizeLatLng(360.0, 0.0)
+                    #     assert (0.0, 0.0) == NormalizeLatLng(-360.0, 0.0)
+                    #     assert (85.0, 180.0) == NormalizeLatLng(95.0, 0.0)
+                    #     assert (-85.0, -170.0) == NormalizeLatLng(-95.0, 10.0)
+                    #     assert (90.0, 10.0) == NormalizeLatLng(90.0, 10.0)
+                    #     assert (-90.0, -10.0) == NormalizeLatLng(-90.0, -10.0)
+                    #     assert (0.0, -170.0) == NormalizeLatLng(-180.0, 10.0)
+                    #     assert (0.0, -170.0) == NormalizeLatLng(180.0, 10.0)
+                    #     assert (-90.0, 10.0) == NormalizeLatLng(270.0, 10.0)
+                    #     assert (90.0, 10.0) == NormalizeLatLng(-270.0, 10.0)
+                  "latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
+                  "longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
+                },
+              },
+            ],
+            "score": 3.14, # Overall score of the result. Range [0, 1].
+            "boundingPoly": { # A bounding polygon for the detected image annotation. # Image region to which this entity belongs. Not filled currently
+                # for `LABEL_DETECTION` features. For `TEXT_DETECTION` (OCR), `boundingPoly`s
+                # are produced for the entire text detected in an image region, followed by
+                # `boundingPoly`s for each word within the detected text.
+              "vertices": [ # The bounding polygon vertices.
+                { # A vertex represents a 2D point in the image.
+                    # NOTE: the vertex coordinates are in the same scale as the original image.
+                  "y": 42, # Y coordinate.
+                  "x": 42, # X coordinate.
+                },
+              ],
+            },
+            "properties": [ # Some entities can have additional optional <code>Property</code> fields.
+                # For example a different kind of score or string that qualifies the entity.
+              { # Arbitrary name/value pair.
+                "name": "A String", # Name of the property.
+                "value": "A String", # Value of the property.
+              },
+            ],
+          },
+        ],
+        "error": { # The `Status` type defines a logical error model that is suitable for different # If set, represents the error message for the operation.
+            # Note that filled-in mage annotations are guaranteed to be
+            # correct, even when <code>error</code> is non-empty.
+            # programming environments, including REST APIs and RPC APIs. It is used by
+            # [gRPC](https://github.com/grpc). The error model is designed to be:
+            #
+            # - Simple to use and understand for most users
+            # - Flexible enough to meet unexpected needs
+            #
+            # # Overview
+            #
+            # The `Status` message contains three pieces of data: error code, error message,
+            # and error details. The error code should be an enum value of
+            # google.rpc.Code, but it may accept additional error codes if needed.  The
+            # error message should be a developer-facing English message that helps
+            # developers *understand* and *resolve* the error. If a localized user-facing
+            # error message is needed, put the localized message in the error details or
+            # localize it in the client. The optional error details may contain arbitrary
+            # information about the error. There is a predefined set of error detail types
+            # in the package `google.rpc` which can be used for common error conditions.
+            #
+            # # Language mapping
+            #
+            # The `Status` message is the logical representation of the error model, but it
+            # is not necessarily the actual wire format. When the `Status` message is
+            # exposed in different client libraries and different wire protocols, it can be
+            # mapped differently. For example, it will likely be mapped to some exceptions
+            # in Java, but more likely mapped to some error codes in C.
+            #
+            # # Other uses
+            #
+            # The error model and the `Status` message can be used in a variety of
+            # environments, either with or without APIs, to provide a
+            # consistent developer experience across different environments.
+            #
+            # Example uses of this error model include:
+            #
+            # - Partial errors. If a service needs to return partial errors to the client,
+            #     it may embed the `Status` in the normal response to indicate the partial
+            #     errors.
+            #
+            # - Workflow errors. A typical workflow has multiple steps. Each step may
+            #     have a `Status` message for error reporting purpose.
+            #
+            # - Batch operations. If a client uses batch request and batch response, the
+            #     `Status` message should be used directly inside batch response, one for
+            #     each error sub-response.
+            #
+            # - Asynchronous operations. If an API call embeds asynchronous operation
+            #     results in its response, the status of those operations should be
+            #     represented directly using the `Status` message.
+            #
+            # - Logging. If some API errors are stored in logs, the message `Status` could
+            #     be used directly after any stripping needed for security/privacy reasons.
+          "message": "A String", # A developer-facing error message, which should be in English. Any
+              # user-facing error message should be localized and sent in the
+              # google.rpc.Status.details field, or localized by the client.
+          "code": 42, # The status code, which should be an enum value of google.rpc.Code.
+          "details": [ # A list of messages that carry the error details.  There will be a
+              # common set of message types for APIs to use.
+            {
+              "a_key": "", # Properties of the object. Contains field @ype with type URL.
+            },
+          ],
+        },
+      },
+    ],
+  }</pre>
+</div>
+
+</body></html>
\ No newline at end of file