Clean and regen docs (#401)

diff --git a/docs/dyn/ml_v1beta1.projects.jobs.html b/docs/dyn/ml_v1beta1.projects.jobs.html
index 4980b42..cd6f67a 100644
--- a/docs/dyn/ml_v1beta1.projects.jobs.html
+++ b/docs/dyn/ml_v1beta1.projects.jobs.html
@@ -136,7 +136,6 @@
     The object takes the form of:
 
 { # Represents a training or prediction job.
-    "errorMessage": "A String", # Output only. The details of a failure or a cancellation.
     "trainingOutput": { # Represents results of a training job. Output only. # The current training job result.
       "completedTrialCount": "A String", # The number of hyperparameter tuning trials that completed successfully.
           # Only set for hyperparameter tuning jobs.
@@ -165,7 +164,6 @@
       ],
       "consumedMLUnits": 3.14, # The amount of ML units consumed by the job.
     },
-    "startTime": "A String", # Output only. When the job processing was started.
     "trainingInput": { # Represents input parameters for a training job. # Input parameters to create a training job.
       "workerType": "A String", # Optional. Specifies the type of virtual machine to use for your training
           # job's worker nodes.
@@ -222,7 +220,7 @@
           #   <dt>complex_model_m_gpu</dt>
           #   <dd>
           #   A machine equivalent to
-          #   <code suppresswarning="true">coplex_model_m</code> that also includes
+          #   <code suppresswarning="true">complex_model_m</code> that also includes
           #   four GPUs.
           #   </dd>
           # </dl>
@@ -243,9 +241,9 @@
             "maxValue": 3.14, # Required if typeis `DOUBLE` or `INTEGER`. This field
                 # should be unset if type is `CATEGORICAL`. This value should be integers if
                 # type is `INTEGER`.
-            "minValue": 3.14, # Required if type is `DOUBLE` or `INTEGER`. This field
-                # should be unset if type is `CATEGORICAL`. This value should be integers if
-                # type is INTEGER.
+            "categoricalValues": [ # Required if type is `CATEGORICAL`. The list of possible categories.
+              "A String",
+            ],
             "discreteValues": [ # Required if type is `DISCRETE`.
                 # A list of feasible points.
                 # The list should be in strictly increasing order. For instance, this
@@ -255,9 +253,9 @@
             ],
             "parameterName": "A String", # Required. The parameter name must be unique amongst all ParameterConfigs in
                 # a HyperparameterSpec message. E.g., "learning_rate".
-            "categoricalValues": [ # Required if type is `CATEGORICAL`. The list of possible categories.
-              "A String",
-            ],
+            "minValue": 3.14, # Required if type is `DOUBLE` or `INTEGER`. This field
+                # should be unset if type is `CATEGORICAL`. This value should be integers if
+                # type is INTEGER.
             "type": "A String", # Required. The type of the parameter.
             "scaleType": "A String", # Optional. How the parameter should be scaled to the hypercube.
                 # Leave unset for categorical parameters.
@@ -291,6 +289,7 @@
           # this field is that Cloud ML validates the path for use in training.
       "packageUris": [ # Required. The Google Cloud Storage location of the packages with
           # the training program and any additional dependencies.
+          # The maximum number of package URIs is 100.
         "A String",
       ],
       "workerCount": "A String", # Optional. The number of worker replicas to use for the training job. Each
@@ -313,6 +312,8 @@
           # This value can only be used when `scale_tier` is set to `CUSTOM`.If you
           # set this value, you must also set `parameter_server_type`.
     },
+    "startTime": "A String", # Output only. When the job processing was started.
+    "errorMessage": "A String", # Output only. The details of a failure or a cancellation.
     "jobId": "A String", # Required. The user-specified id of the job.
     "state": "A String", # Output only. The detailed state of a job.
     "predictionInput": { # Represents input parameters for a prediction job. # Input parameters to create a prediction job.
@@ -361,7 +362,6 @@
   An object of the form:
 
     { # Represents a training or prediction job.
-      "errorMessage": "A String", # Output only. The details of a failure or a cancellation.
       "trainingOutput": { # Represents results of a training job. Output only. # The current training job result.
         "completedTrialCount": "A String", # The number of hyperparameter tuning trials that completed successfully.
             # Only set for hyperparameter tuning jobs.
@@ -390,7 +390,6 @@
         ],
         "consumedMLUnits": 3.14, # The amount of ML units consumed by the job.
       },
-      "startTime": "A String", # Output only. When the job processing was started.
       "trainingInput": { # Represents input parameters for a training job. # Input parameters to create a training job.
         "workerType": "A String", # Optional. Specifies the type of virtual machine to use for your training
             # job's worker nodes.
@@ -447,7 +446,7 @@
             #   <dt>complex_model_m_gpu</dt>
             #   <dd>
             #   A machine equivalent to
-            #   <code suppresswarning="true">coplex_model_m</code> that also includes
+            #   <code suppresswarning="true">complex_model_m</code> that also includes
             #   four GPUs.
             #   </dd>
             # </dl>
@@ -468,9 +467,9 @@
               "maxValue": 3.14, # Required if typeis `DOUBLE` or `INTEGER`. This field
                   # should be unset if type is `CATEGORICAL`. This value should be integers if
                   # type is `INTEGER`.
-              "minValue": 3.14, # Required if type is `DOUBLE` or `INTEGER`. This field
-                  # should be unset if type is `CATEGORICAL`. This value should be integers if
-                  # type is INTEGER.
+              "categoricalValues": [ # Required if type is `CATEGORICAL`. The list of possible categories.
+                "A String",
+              ],
               "discreteValues": [ # Required if type is `DISCRETE`.
                   # A list of feasible points.
                   # The list should be in strictly increasing order. For instance, this
@@ -480,9 +479,9 @@
               ],
               "parameterName": "A String", # Required. The parameter name must be unique amongst all ParameterConfigs in
                   # a HyperparameterSpec message. E.g., "learning_rate".
-              "categoricalValues": [ # Required if type is `CATEGORICAL`. The list of possible categories.
-                "A String",
-              ],
+              "minValue": 3.14, # Required if type is `DOUBLE` or `INTEGER`. This field
+                  # should be unset if type is `CATEGORICAL`. This value should be integers if
+                  # type is INTEGER.
               "type": "A String", # Required. The type of the parameter.
               "scaleType": "A String", # Optional. How the parameter should be scaled to the hypercube.
                   # Leave unset for categorical parameters.
@@ -516,6 +515,7 @@
             # this field is that Cloud ML validates the path for use in training.
         "packageUris": [ # Required. The Google Cloud Storage location of the packages with
             # the training program and any additional dependencies.
+            # The maximum number of package URIs is 100.
           "A String",
         ],
         "workerCount": "A String", # Optional. The number of worker replicas to use for the training job. Each
@@ -538,6 +538,8 @@
             # This value can only be used when `scale_tier` is set to `CUSTOM`.If you
             # set this value, you must also set `parameter_server_type`.
       },
+      "startTime": "A String", # Output only. When the job processing was started.
+      "errorMessage": "A String", # Output only. The details of a failure or a cancellation.
       "jobId": "A String", # Required. The user-specified id of the job.
       "state": "A String", # Output only. The detailed state of a job.
       "predictionInput": { # Represents input parameters for a prediction job. # Input parameters to create a prediction job.
@@ -595,7 +597,6 @@
   An object of the form:
 
     { # Represents a training or prediction job.
-      "errorMessage": "A String", # Output only. The details of a failure or a cancellation.
       "trainingOutput": { # Represents results of a training job. Output only. # The current training job result.
         "completedTrialCount": "A String", # The number of hyperparameter tuning trials that completed successfully.
             # Only set for hyperparameter tuning jobs.
@@ -624,7 +625,6 @@
         ],
         "consumedMLUnits": 3.14, # The amount of ML units consumed by the job.
       },
-      "startTime": "A String", # Output only. When the job processing was started.
       "trainingInput": { # Represents input parameters for a training job. # Input parameters to create a training job.
         "workerType": "A String", # Optional. Specifies the type of virtual machine to use for your training
             # job's worker nodes.
@@ -681,7 +681,7 @@
             #   <dt>complex_model_m_gpu</dt>
             #   <dd>
             #   A machine equivalent to
-            #   <code suppresswarning="true">coplex_model_m</code> that also includes
+            #   <code suppresswarning="true">complex_model_m</code> that also includes
             #   four GPUs.
             #   </dd>
             # </dl>
@@ -702,9 +702,9 @@
               "maxValue": 3.14, # Required if typeis `DOUBLE` or `INTEGER`. This field
                   # should be unset if type is `CATEGORICAL`. This value should be integers if
                   # type is `INTEGER`.
-              "minValue": 3.14, # Required if type is `DOUBLE` or `INTEGER`. This field
-                  # should be unset if type is `CATEGORICAL`. This value should be integers if
-                  # type is INTEGER.
+              "categoricalValues": [ # Required if type is `CATEGORICAL`. The list of possible categories.
+                "A String",
+              ],
               "discreteValues": [ # Required if type is `DISCRETE`.
                   # A list of feasible points.
                   # The list should be in strictly increasing order. For instance, this
@@ -714,9 +714,9 @@
               ],
               "parameterName": "A String", # Required. The parameter name must be unique amongst all ParameterConfigs in
                   # a HyperparameterSpec message. E.g., "learning_rate".
-              "categoricalValues": [ # Required if type is `CATEGORICAL`. The list of possible categories.
-                "A String",
-              ],
+              "minValue": 3.14, # Required if type is `DOUBLE` or `INTEGER`. This field
+                  # should be unset if type is `CATEGORICAL`. This value should be integers if
+                  # type is INTEGER.
               "type": "A String", # Required. The type of the parameter.
               "scaleType": "A String", # Optional. How the parameter should be scaled to the hypercube.
                   # Leave unset for categorical parameters.
@@ -750,6 +750,7 @@
             # this field is that Cloud ML validates the path for use in training.
         "packageUris": [ # Required. The Google Cloud Storage location of the packages with
             # the training program and any additional dependencies.
+            # The maximum number of package URIs is 100.
           "A String",
         ],
         "workerCount": "A String", # Optional. The number of worker replicas to use for the training job. Each
@@ -772,6 +773,8 @@
             # This value can only be used when `scale_tier` is set to `CUSTOM`.If you
             # set this value, you must also set `parameter_server_type`.
       },
+      "startTime": "A String", # Output only. When the job processing was started.
+      "errorMessage": "A String", # Output only. The details of a failure or a cancellation.
       "jobId": "A String", # Required. The user-specified id of the job.
       "state": "A String", # Output only. The detailed state of a job.
       "predictionInput": { # Represents input parameters for a prediction job. # Input parameters to create a prediction job.
@@ -843,7 +846,6 @@
         # subsequent call.
     "jobs": [ # The list of jobs.
       { # Represents a training or prediction job.
-          "errorMessage": "A String", # Output only. The details of a failure or a cancellation.
           "trainingOutput": { # Represents results of a training job. Output only. # The current training job result.
             "completedTrialCount": "A String", # The number of hyperparameter tuning trials that completed successfully.
                 # Only set for hyperparameter tuning jobs.
@@ -872,7 +874,6 @@
             ],
             "consumedMLUnits": 3.14, # The amount of ML units consumed by the job.
           },
-          "startTime": "A String", # Output only. When the job processing was started.
           "trainingInput": { # Represents input parameters for a training job. # Input parameters to create a training job.
             "workerType": "A String", # Optional. Specifies the type of virtual machine to use for your training
                 # job's worker nodes.
@@ -929,7 +930,7 @@
                 #   <dt>complex_model_m_gpu</dt>
                 #   <dd>
                 #   A machine equivalent to
-                #   <code suppresswarning="true">coplex_model_m</code> that also includes
+                #   <code suppresswarning="true">complex_model_m</code> that also includes
                 #   four GPUs.
                 #   </dd>
                 # </dl>
@@ -950,9 +951,9 @@
                   "maxValue": 3.14, # Required if typeis `DOUBLE` or `INTEGER`. This field
                       # should be unset if type is `CATEGORICAL`. This value should be integers if
                       # type is `INTEGER`.
-                  "minValue": 3.14, # Required if type is `DOUBLE` or `INTEGER`. This field
-                      # should be unset if type is `CATEGORICAL`. This value should be integers if
-                      # type is INTEGER.
+                  "categoricalValues": [ # Required if type is `CATEGORICAL`. The list of possible categories.
+                    "A String",
+                  ],
                   "discreteValues": [ # Required if type is `DISCRETE`.
                       # A list of feasible points.
                       # The list should be in strictly increasing order. For instance, this
@@ -962,9 +963,9 @@
                   ],
                   "parameterName": "A String", # Required. The parameter name must be unique amongst all ParameterConfigs in
                       # a HyperparameterSpec message. E.g., "learning_rate".
-                  "categoricalValues": [ # Required if type is `CATEGORICAL`. The list of possible categories.
-                    "A String",
-                  ],
+                  "minValue": 3.14, # Required if type is `DOUBLE` or `INTEGER`. This field
+                      # should be unset if type is `CATEGORICAL`. This value should be integers if
+                      # type is INTEGER.
                   "type": "A String", # Required. The type of the parameter.
                   "scaleType": "A String", # Optional. How the parameter should be scaled to the hypercube.
                       # Leave unset for categorical parameters.
@@ -998,6 +999,7 @@
                 # this field is that Cloud ML validates the path for use in training.
             "packageUris": [ # Required. The Google Cloud Storage location of the packages with
                 # the training program and any additional dependencies.
+                # The maximum number of package URIs is 100.
               "A String",
             ],
             "workerCount": "A String", # Optional. The number of worker replicas to use for the training job. Each
@@ -1020,6 +1022,8 @@
                 # This value can only be used when `scale_tier` is set to `CUSTOM`.If you
                 # set this value, you must also set `parameter_server_type`.
           },
+          "startTime": "A String", # Output only. When the job processing was started.
+          "errorMessage": "A String", # Output only. The details of a failure or a cancellation.
           "jobId": "A String", # Required. The user-specified id of the job.
           "state": "A String", # Output only. The detailed state of a job.
           "predictionInput": { # Represents input parameters for a prediction job. # Input parameters to create a prediction job.