Add sample_generator.py and update samples to via generator.

Reviewed in: http://codereview.appspot.com/4449062/
diff --git a/samples/src/prediction.py b/samples/src/prediction.py
new file mode 100644
index 0000000..1c4a78d
--- /dev/null
+++ b/samples/src/prediction.py
@@ -0,0 +1,31 @@
+# version: v1.2
+# scope: https://www.googleapis.com/auth/prediction
+# title: Simple command-line sample for the Google Prediction API
+# description: Command-line application that trains on some data. This sample does the same thing as the Hello Prediction! example.
+
+  # Name of Google Storage bucket/object that contains the training data
+  OBJECT_NAME = "apiclient-prediction-sample/prediction_models/languages"
+
+  # Start training on a data set
+  train = service.training()
+  start = train.insert(data=OBJECT_NAME, body={}).execute()
+
+  print 'Started training'
+  pprint.pprint(start)
+
+  import time
+  # Wait for the training to complete
+  while True:
+    status = train.get(data=OBJECT_NAME).execute()
+    pprint.pprint(status)
+    if 'RUNNING' != status['trainingStatus']:
+      break
+    print 'Waiting for training to complete.'
+    time.sleep(10)
+  print 'Training is complete'
+
+  # Now make a prediction using that training
+  body = {'input': {'csvInstance': ["mucho bueno"]}}
+  prediction = service.predict(body=body, data=OBJECT_NAME).execute()
+  print 'The prediction is:'
+  pprint.pprint(prediction)