chore: Update discovery artifacts (#1195)

* chore(accesscontextmanager): update the api
* chore(adexchangebuyer2): update the api
* chore(admin): update the api
* chore(alertcenter): update the api
* chore(analyticsadmin): update the api
* chore(analyticsdata): update the api
* chore(androidmanagement): update the api
* chore(apigateway): update the api
* chore(apigee): update the api
* chore(appengine): update the api
* chore(area120tables): update the api
* chore(artifactregistry): update the api
* chore(bigquery): update the api
* chore(bigqueryconnection): update the api
* chore(bigqueryreservation): update the api
* chore(billingbudgets): update the api
* chore(binaryauthorization): update the api
* chore(blogger): update the api
* chore(calendar): update the api
* chore(chat): update the api
* chore(cloudasset): update the api
* chore(cloudbuild): update the api
* chore(cloudfunctions): update the api
* chore(cloudidentity): update the api
* chore(cloudkms): update the api
* chore(cloudresourcemanager): update the api
* chore(cloudscheduler): update the api
* chore(cloudtasks): update the api
* chore(composer): update the api
* chore(compute): update the api
* chore(container): update the api
* chore(containeranalysis): update the api
* chore(content): update the api
* chore(datacatalog): update the api
* chore(dataflow): update the api
* chore(datafusion): update the api
* chore(datamigration): update the api
* chore(dataproc): update the api
* chore(deploymentmanager): update the api
* chore(dialogflow): update the api
* chore(displayvideo): update the api
* chore(dlp): update the api
* chore(dns): update the api
* chore(documentai): update the api
* chore(eventarc): update the api
* chore(file): update the api
* chore(firebaseml): update the api
* chore(games): update the api
* chore(gameservices): update the api
* chore(genomics): update the api
* chore(healthcare): update the api
* chore(homegraph): update the api
* chore(iam): update the api
* chore(iap): update the api
* chore(jobs): update the api
* chore(lifesciences): update the api
* chore(localservices): update the api
* chore(managedidentities): update the api
* chore(manufacturers): update the api
* chore(memcache): update the api
* chore(ml): update the api
* chore(monitoring): update the api
* chore(notebooks): update the api
* chore(osconfig): update the api
* chore(pagespeedonline): update the api
* chore(people): update the api
* chore(privateca): update the api
* chore(prod_tt_sasportal): update the api
* chore(pubsub): update the api
* chore(pubsublite): update the api
* chore(recommender): update the api
* chore(remotebuildexecution): update the api
* chore(reseller): update the api
* chore(run): update the api
* chore(safebrowsing): update the api
* chore(sasportal): update the api
* chore(searchconsole): update the api
* chore(secretmanager): update the api
* chore(securitycenter): update the api
* chore(serviceconsumermanagement): update the api
* chore(servicecontrol): update the api
* chore(servicenetworking): update the api
* chore(serviceusage): update the api
* chore(sheets): update the api
* chore(slides): update the api
* chore(spanner): update the api
* chore(speech): update the api
* chore(sqladmin): update the api
* chore(storage): update the api
* chore(storagetransfer): update the api
* chore(sts): update the api
* chore(tagmanager): update the api
* chore(testing): update the api
* chore(toolresults): update the api
* chore(transcoder): update the api
* chore(vectortile): update the api
* chore(videointelligence): update the api
* chore(vision): update the api
* chore(webmasters): update the api
* chore(workflowexecutions): update the api
* chore(youtube): update the api
diff --git a/docs/dyn/notebooks_v1.projects.locations.executions.html b/docs/dyn/notebooks_v1.projects.locations.executions.html
new file mode 100644
index 0000000..1b58dd2
--- /dev/null
+++ b/docs/dyn/notebooks_v1.projects.locations.executions.html
@@ -0,0 +1,309 @@
+<html><body>
+<style>
+
+body, h1, h2, h3, div, span, p, pre, a {
+  margin: 0;
+  padding: 0;
+  border: 0;
+  font-weight: inherit;
+  font-style: inherit;
+  font-size: 100%;
+  font-family: inherit;
+  vertical-align: baseline;
+}
+
+body {
+  font-size: 13px;
+  padding: 1em;
+}
+
+h1 {
+  font-size: 26px;
+  margin-bottom: 1em;
+}
+
+h2 {
+  font-size: 24px;
+  margin-bottom: 1em;
+}
+
+h3 {
+  font-size: 20px;
+  margin-bottom: 1em;
+  margin-top: 1em;
+}
+
+pre, code {
+  line-height: 1.5;
+  font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
+}
+
+pre {
+  margin-top: 0.5em;
+}
+
+h1, h2, h3, p {
+  font-family: Arial, sans serif;
+}
+
+h1, h2, h3 {
+  border-bottom: solid #CCC 1px;
+}
+
+.toc_element {
+  margin-top: 0.5em;
+}
+
+.firstline {
+  margin-left: 2 em;
+}
+
+.method  {
+  margin-top: 1em;
+  border: solid 1px #CCC;
+  padding: 1em;
+  background: #EEE;
+}
+
+.details {
+  font-weight: bold;
+  font-size: 14px;
+}
+
+</style>
+
+<h1><a href="notebooks_v1.html">Notebooks API</a> . <a href="notebooks_v1.projects.html">projects</a> . <a href="notebooks_v1.projects.locations.html">locations</a> . <a href="notebooks_v1.projects.locations.executions.html">executions</a></h1>
+<h2>Instance Methods</h2>
+<p class="toc_element">
+  <code><a href="#close">close()</a></code></p>
+<p class="firstline">Close httplib2 connections.</p>
+<p class="toc_element">
+  <code><a href="#create">create(parent, body=None, executionId=None, x__xgafv=None)</a></code></p>
+<p class="firstline">Creates a new Scheduled Notebook in a given project and location.</p>
+<p class="toc_element">
+  <code><a href="#delete">delete(name, x__xgafv=None)</a></code></p>
+<p class="firstline">Deletes execution</p>
+<p class="toc_element">
+  <code><a href="#get">get(name, x__xgafv=None)</a></code></p>
+<p class="firstline">Gets details of executions</p>
+<p class="toc_element">
+  <code><a href="#list">list(parent, filter=None, orderBy=None, pageSize=None, pageToken=None, x__xgafv=None)</a></code></p>
+<p class="firstline">Lists executions in a given project and location</p>
+<p class="toc_element">
+  <code><a href="#list_next">list_next(previous_request, previous_response)</a></code></p>
+<p class="firstline">Retrieves the next page of results.</p>
+<h3>Method Details</h3>
+<div class="method">
+    <code class="details" id="close">close()</code>
+  <pre>Close httplib2 connections.</pre>
+</div>
+
+<div class="method">
+    <code class="details" id="create">create(parent, body=None, executionId=None, x__xgafv=None)</code>
+  <pre>Creates a new Scheduled Notebook in a given project and location.
+
+Args:
+  parent: string, Required. Format: `parent=projects/{project_id}/locations/{location}` (required)
+  body: object, The request body.
+    The object takes the form of:
+
+{ # The definition of a single executed notebook.
+  &quot;createTime&quot;: &quot;A String&quot;, # Output only. Time the Execution was instantiated.
+  &quot;description&quot;: &quot;A String&quot;, # A brief description of this execution.
+  &quot;displayName&quot;: &quot;A String&quot;, # Output only. Name used for UI purposes. Name can only contain alphanumeric characters and underscores &#x27;_&#x27;.
+  &quot;executionTemplate&quot;: { # The description a notebook execution workload. # execute metadata including name, hardware spec, region, labels, etc.
+    &quot;acceleratorConfig&quot;: { # Definition of a hardware accelerator. Note that not all combinations of `type` and `core_count` are valid. Check GPUs on Compute Engine to find a valid combination. TPUs are not supported. # Configuration (count and accelerator type) for hardware running notebook execution.
+      &quot;coreCount&quot;: &quot;A String&quot;, # Count of cores of this accelerator.
+      &quot;type&quot;: &quot;A String&quot;, # Type of this accelerator.
+    },
+    &quot;containerImageUri&quot;: &quot;A String&quot;, # Container Image URI to a DLVM Example: &#x27;gcr.io/deeplearning-platform-release/base-cu100&#x27; More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
+    &quot;inputNotebookFile&quot;: &quot;A String&quot;, # Path to the notebook file to execute. Must be in a Google Cloud Storage bucket. Format: gs://{project_id}/{folder}/{notebook_file_name} Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
+    &quot;labels&quot;: { # Labels for execution. If execution is scheduled, a field included will be &#x27;nbs-scheduled&#x27;. Otherwise, it is an immediate execution, and an included field will be &#x27;nbs-immediate&#x27;. Use fields to efficiently index between various types of executions.
+      &quot;a_key&quot;: &quot;A String&quot;,
+    },
+    &quot;masterType&quot;: &quot;A String&quot;, # Specifies the type of virtual machine to use for your training job&#x27;s master worker. You must specify this field when `scaleTier` is set to `CUSTOM`. You can use certain Compute Engine machine types directly in this field. The following types are supported: - `n1-standard-4` - `n1-standard-8` - `n1-standard-16` - `n1-standard-32` - `n1-standard-64` - `n1-standard-96` - `n1-highmem-2` - `n1-highmem-4` - `n1-highmem-8` - `n1-highmem-16` - `n1-highmem-32` - `n1-highmem-64` - `n1-highmem-96` - `n1-highcpu-16` - `n1-highcpu-32` - `n1-highcpu-64` - `n1-highcpu-96` Alternatively, you can use the following legacy machine types: - `standard` - `large_model` - `complex_model_s` - `complex_model_m` - `complex_model_l` - `standard_gpu` - `complex_model_m_gpu` - `complex_model_l_gpu` - `standard_p100` - `complex_model_m_p100` - `standard_v100` - `large_model_v100` - `complex_model_m_v100` - `complex_model_l_v100` Finally, if you want to use a TPU for training, specify `cloud_tpu` in this field. Learn more about the [special configuration options for training with TPU.
+    &quot;outputNotebookFolder&quot;: &quot;A String&quot;, # Path to the notebook folder to write to. Must be in a Google Cloud Storage bucket path. Format: gs://{project_id}/{folder} Ex: gs://notebook_user/scheduled_notebooks
+    &quot;parameters&quot;: &quot;A String&quot;, # Parameters used within the &#x27;input_notebook_file&#x27; notebook.
+    &quot;paramsYamlFile&quot;: &quot;A String&quot;, # Parameters to be overridden in the notebook during execution. Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on how to specifying parameters in the input notebook and pass them here in an YAML file. Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
+    &quot;scaleTier&quot;: &quot;A String&quot;, # Required. Scale tier of the hardware used for notebook execution.
+  },
+  &quot;name&quot;: &quot;A String&quot;, # Output only. The resource name of the execute. Format: `projects/{project_id}/locations/{location}/execution/{execution_id}
+  &quot;outputNotebookFile&quot;: &quot;A String&quot;, # Output notebook file generated by this execution
+  &quot;state&quot;: &quot;A String&quot;, # Output only. State of the underlying AI Platform job.
+  &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Time the Execution was last updated.
+}
+
+  executionId: string, Required. User-defined unique ID of this execution.
+  x__xgafv: string, V1 error format.
+    Allowed values
+      1 - v1 error format
+      2 - v2 error format
+
+Returns:
+  An object of the form:
+
+    { # This resource represents a long-running operation that is the result of a network API call.
+  &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
+  &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
+    &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
+    &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
+      {
+        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
+      },
+    ],
+    &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
+  },
+  &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
+    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
+  },
+  &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
+  &quot;response&quot;: { # The normal response of the operation in case of success. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
+    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
+  },
+}</pre>
+</div>
+
+<div class="method">
+    <code class="details" id="delete">delete(name, x__xgafv=None)</code>
+  <pre>Deletes execution
+
+Args:
+  name: string, Required. Format: `projects/{project_id}/locations/{location}/executions/{execution_id}` (required)
+  x__xgafv: string, V1 error format.
+    Allowed values
+      1 - v1 error format
+      2 - v2 error format
+
+Returns:
+  An object of the form:
+
+    { # This resource represents a long-running operation that is the result of a network API call.
+  &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
+  &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
+    &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
+    &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
+      {
+        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
+      },
+    ],
+    &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
+  },
+  &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
+    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
+  },
+  &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
+  &quot;response&quot;: { # The normal response of the operation in case of success. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
+    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
+  },
+}</pre>
+</div>
+
+<div class="method">
+    <code class="details" id="get">get(name, x__xgafv=None)</code>
+  <pre>Gets details of executions
+
+Args:
+  name: string, Required. Format: `projects/{project_id}/locations/{location}/schedules/{execution_id}` (required)
+  x__xgafv: string, V1 error format.
+    Allowed values
+      1 - v1 error format
+      2 - v2 error format
+
+Returns:
+  An object of the form:
+
+    { # The definition of a single executed notebook.
+  &quot;createTime&quot;: &quot;A String&quot;, # Output only. Time the Execution was instantiated.
+  &quot;description&quot;: &quot;A String&quot;, # A brief description of this execution.
+  &quot;displayName&quot;: &quot;A String&quot;, # Output only. Name used for UI purposes. Name can only contain alphanumeric characters and underscores &#x27;_&#x27;.
+  &quot;executionTemplate&quot;: { # The description a notebook execution workload. # execute metadata including name, hardware spec, region, labels, etc.
+    &quot;acceleratorConfig&quot;: { # Definition of a hardware accelerator. Note that not all combinations of `type` and `core_count` are valid. Check GPUs on Compute Engine to find a valid combination. TPUs are not supported. # Configuration (count and accelerator type) for hardware running notebook execution.
+      &quot;coreCount&quot;: &quot;A String&quot;, # Count of cores of this accelerator.
+      &quot;type&quot;: &quot;A String&quot;, # Type of this accelerator.
+    },
+    &quot;containerImageUri&quot;: &quot;A String&quot;, # Container Image URI to a DLVM Example: &#x27;gcr.io/deeplearning-platform-release/base-cu100&#x27; More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
+    &quot;inputNotebookFile&quot;: &quot;A String&quot;, # Path to the notebook file to execute. Must be in a Google Cloud Storage bucket. Format: gs://{project_id}/{folder}/{notebook_file_name} Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
+    &quot;labels&quot;: { # Labels for execution. If execution is scheduled, a field included will be &#x27;nbs-scheduled&#x27;. Otherwise, it is an immediate execution, and an included field will be &#x27;nbs-immediate&#x27;. Use fields to efficiently index between various types of executions.
+      &quot;a_key&quot;: &quot;A String&quot;,
+    },
+    &quot;masterType&quot;: &quot;A String&quot;, # Specifies the type of virtual machine to use for your training job&#x27;s master worker. You must specify this field when `scaleTier` is set to `CUSTOM`. You can use certain Compute Engine machine types directly in this field. The following types are supported: - `n1-standard-4` - `n1-standard-8` - `n1-standard-16` - `n1-standard-32` - `n1-standard-64` - `n1-standard-96` - `n1-highmem-2` - `n1-highmem-4` - `n1-highmem-8` - `n1-highmem-16` - `n1-highmem-32` - `n1-highmem-64` - `n1-highmem-96` - `n1-highcpu-16` - `n1-highcpu-32` - `n1-highcpu-64` - `n1-highcpu-96` Alternatively, you can use the following legacy machine types: - `standard` - `large_model` - `complex_model_s` - `complex_model_m` - `complex_model_l` - `standard_gpu` - `complex_model_m_gpu` - `complex_model_l_gpu` - `standard_p100` - `complex_model_m_p100` - `standard_v100` - `large_model_v100` - `complex_model_m_v100` - `complex_model_l_v100` Finally, if you want to use a TPU for training, specify `cloud_tpu` in this field. Learn more about the [special configuration options for training with TPU.
+    &quot;outputNotebookFolder&quot;: &quot;A String&quot;, # Path to the notebook folder to write to. Must be in a Google Cloud Storage bucket path. Format: gs://{project_id}/{folder} Ex: gs://notebook_user/scheduled_notebooks
+    &quot;parameters&quot;: &quot;A String&quot;, # Parameters used within the &#x27;input_notebook_file&#x27; notebook.
+    &quot;paramsYamlFile&quot;: &quot;A String&quot;, # Parameters to be overridden in the notebook during execution. Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on how to specifying parameters in the input notebook and pass them here in an YAML file. Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
+    &quot;scaleTier&quot;: &quot;A String&quot;, # Required. Scale tier of the hardware used for notebook execution.
+  },
+  &quot;name&quot;: &quot;A String&quot;, # Output only. The resource name of the execute. Format: `projects/{project_id}/locations/{location}/execution/{execution_id}
+  &quot;outputNotebookFile&quot;: &quot;A String&quot;, # Output notebook file generated by this execution
+  &quot;state&quot;: &quot;A String&quot;, # Output only. State of the underlying AI Platform job.
+  &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Time the Execution was last updated.
+}</pre>
+</div>
+
+<div class="method">
+    <code class="details" id="list">list(parent, filter=None, orderBy=None, pageSize=None, pageToken=None, x__xgafv=None)</code>
+  <pre>Lists executions in a given project and location
+
+Args:
+  parent: string, Required. Format: `parent=projects/{project_id}/locations/{location}` (required)
+  filter: string, Filter applied to resulting executions.
+  orderBy: string, Sort by field.
+  pageSize: integer, Maximum return size of the list call.
+  pageToken: string, A previous returned page token that can be used to continue listing from the last result.
+  x__xgafv: string, V1 error format.
+    Allowed values
+      1 - v1 error format
+      2 - v2 error format
+
+Returns:
+  An object of the form:
+
+    { # Response for listing scheduled notebook executions
+  &quot;executions&quot;: [ # A list of returned instances.
+    { # The definition of a single executed notebook.
+      &quot;createTime&quot;: &quot;A String&quot;, # Output only. Time the Execution was instantiated.
+      &quot;description&quot;: &quot;A String&quot;, # A brief description of this execution.
+      &quot;displayName&quot;: &quot;A String&quot;, # Output only. Name used for UI purposes. Name can only contain alphanumeric characters and underscores &#x27;_&#x27;.
+      &quot;executionTemplate&quot;: { # The description a notebook execution workload. # execute metadata including name, hardware spec, region, labels, etc.
+        &quot;acceleratorConfig&quot;: { # Definition of a hardware accelerator. Note that not all combinations of `type` and `core_count` are valid. Check GPUs on Compute Engine to find a valid combination. TPUs are not supported. # Configuration (count and accelerator type) for hardware running notebook execution.
+          &quot;coreCount&quot;: &quot;A String&quot;, # Count of cores of this accelerator.
+          &quot;type&quot;: &quot;A String&quot;, # Type of this accelerator.
+        },
+        &quot;containerImageUri&quot;: &quot;A String&quot;, # Container Image URI to a DLVM Example: &#x27;gcr.io/deeplearning-platform-release/base-cu100&#x27; More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
+        &quot;inputNotebookFile&quot;: &quot;A String&quot;, # Path to the notebook file to execute. Must be in a Google Cloud Storage bucket. Format: gs://{project_id}/{folder}/{notebook_file_name} Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
+        &quot;labels&quot;: { # Labels for execution. If execution is scheduled, a field included will be &#x27;nbs-scheduled&#x27;. Otherwise, it is an immediate execution, and an included field will be &#x27;nbs-immediate&#x27;. Use fields to efficiently index between various types of executions.
+          &quot;a_key&quot;: &quot;A String&quot;,
+        },
+        &quot;masterType&quot;: &quot;A String&quot;, # Specifies the type of virtual machine to use for your training job&#x27;s master worker. You must specify this field when `scaleTier` is set to `CUSTOM`. You can use certain Compute Engine machine types directly in this field. The following types are supported: - `n1-standard-4` - `n1-standard-8` - `n1-standard-16` - `n1-standard-32` - `n1-standard-64` - `n1-standard-96` - `n1-highmem-2` - `n1-highmem-4` - `n1-highmem-8` - `n1-highmem-16` - `n1-highmem-32` - `n1-highmem-64` - `n1-highmem-96` - `n1-highcpu-16` - `n1-highcpu-32` - `n1-highcpu-64` - `n1-highcpu-96` Alternatively, you can use the following legacy machine types: - `standard` - `large_model` - `complex_model_s` - `complex_model_m` - `complex_model_l` - `standard_gpu` - `complex_model_m_gpu` - `complex_model_l_gpu` - `standard_p100` - `complex_model_m_p100` - `standard_v100` - `large_model_v100` - `complex_model_m_v100` - `complex_model_l_v100` Finally, if you want to use a TPU for training, specify `cloud_tpu` in this field. Learn more about the [special configuration options for training with TPU.
+        &quot;outputNotebookFolder&quot;: &quot;A String&quot;, # Path to the notebook folder to write to. Must be in a Google Cloud Storage bucket path. Format: gs://{project_id}/{folder} Ex: gs://notebook_user/scheduled_notebooks
+        &quot;parameters&quot;: &quot;A String&quot;, # Parameters used within the &#x27;input_notebook_file&#x27; notebook.
+        &quot;paramsYamlFile&quot;: &quot;A String&quot;, # Parameters to be overridden in the notebook during execution. Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on how to specifying parameters in the input notebook and pass them here in an YAML file. Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
+        &quot;scaleTier&quot;: &quot;A String&quot;, # Required. Scale tier of the hardware used for notebook execution.
+      },
+      &quot;name&quot;: &quot;A String&quot;, # Output only. The resource name of the execute. Format: `projects/{project_id}/locations/{location}/execution/{execution_id}
+      &quot;outputNotebookFile&quot;: &quot;A String&quot;, # Output notebook file generated by this execution
+      &quot;state&quot;: &quot;A String&quot;, # Output only. State of the underlying AI Platform job.
+      &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Time the Execution was last updated.
+    },
+  ],
+  &quot;nextPageToken&quot;: &quot;A String&quot;, # Page token that can be used to continue listing from the last result in the next list call.
+  &quot;unreachable&quot;: [ # Executions IDs that could not be reached. For example, [&#x27;projects/{project_id}/location/{location}/executions/imagenet_test1&#x27;, &#x27;projects/{project_id}/location/{location}/executions/classifier_train1&#x27;].
+    &quot;A String&quot;,
+  ],
+}</pre>
+</div>
+
+<div class="method">
+    <code class="details" id="list_next">list_next(previous_request, previous_response)</code>
+  <pre>Retrieves the next page of results.
+
+Args:
+  previous_request: The request for the previous page. (required)
+  previous_response: The response from the request for the previous page. (required)
+
+Returns:
+  A request object that you can call &#x27;execute()&#x27; on to request the next
+  page. Returns None if there are no more items in the collection.
+    </pre>
+</div>
+
+</body></html>
\ No newline at end of file