Regen docs (#364)

diff --git a/docs/dyn/ml_v1.projects.html b/docs/dyn/ml_v1.projects.html
new file mode 100644
index 0000000..f228e04
--- /dev/null
+++ b/docs/dyn/ml_v1.projects.html
@@ -0,0 +1,418 @@
+<html><body>
+<style>
+
+body, h1, h2, h3, div, span, p, pre, a {
+  margin: 0;
+  padding: 0;
+  border: 0;
+  font-weight: inherit;
+  font-style: inherit;
+  font-size: 100%;
+  font-family: inherit;
+  vertical-align: baseline;
+}
+
+body {
+  font-size: 13px;
+  padding: 1em;
+}
+
+h1 {
+  font-size: 26px;
+  margin-bottom: 1em;
+}
+
+h2 {
+  font-size: 24px;
+  margin-bottom: 1em;
+}
+
+h3 {
+  font-size: 20px;
+  margin-bottom: 1em;
+  margin-top: 1em;
+}
+
+pre, code {
+  line-height: 1.5;
+  font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
+}
+
+pre {
+  margin-top: 0.5em;
+}
+
+h1, h2, h3, p {
+  font-family: Arial, sans serif;
+}
+
+h1, h2, h3 {
+  border-bottom: solid #CCC 1px;
+}
+
+.toc_element {
+  margin-top: 0.5em;
+}
+
+.firstline {
+  margin-left: 2 em;
+}
+
+.method  {
+  margin-top: 1em;
+  border: solid 1px #CCC;
+  padding: 1em;
+  background: #EEE;
+}
+
+.details {
+  font-weight: bold;
+  font-size: 14px;
+}
+
+</style>
+
+<h1><a href="ml_v1.html">Google Cloud Machine Learning Engine</a> . <a href="ml_v1.projects.html">projects</a></h1>
+<h2>Instance Methods</h2>
+<p class="toc_element">
+  <code><a href="ml_v1.projects.jobs.html">jobs()</a></code>
+</p>
+<p class="firstline">Returns the jobs Resource.</p>
+
+<p class="toc_element">
+  <code><a href="ml_v1.projects.models.html">models()</a></code>
+</p>
+<p class="firstline">Returns the models Resource.</p>
+
+<p class="toc_element">
+  <code><a href="ml_v1.projects.operations.html">operations()</a></code>
+</p>
+<p class="firstline">Returns the operations Resource.</p>
+
+<p class="toc_element">
+  <code><a href="#getConfig">getConfig(name=None, x__xgafv=None)</a></code></p>
+<p class="firstline">Get the service account information associated with your project. You need</p>
+<p class="toc_element">
+  <code><a href="#predict">predict(name=None, body, x__xgafv=None)</a></code></p>
+<p class="firstline">Performs prediction on the data in the request.</p>
+<h3>Method Details</h3>
+<div class="method">
+    <code class="details" id="getConfig">getConfig(name=None, x__xgafv=None)</code>
+  <pre>Get the service account information associated with your project. You need
+this information in order to grant the service account persmissions for
+the Google Cloud Storage location where you put your model training code
+for training the model with Google Cloud Machine Learning.
+
+Args:
+  name: string, Required. The project name.
+
+Authorization: requires `Viewer` role on the specified project. (required)
+  x__xgafv: string, V1 error format.
+    Allowed values
+      1 - v1 error format
+      2 - v2 error format
+
+Returns:
+  An object of the form:
+
+    { # Returns service account information associated with a project.
+    "serviceAccountProject": "A String", # The project number for `service_account`.
+    "serviceAccount": "A String", # The service account Cloud ML uses to access resources in the project.
+  }</pre>
+</div>
+
+<div class="method">
+    <code class="details" id="predict">predict(name=None, body, x__xgafv=None)</code>
+  <pre>Performs prediction on the data in the request.
+
+**** REMOVE FROM GENERATED DOCUMENTATION
+
+Args:
+  name: string, Required. The resource name of a model or a version.
+
+Authorization: requires `Viewer` role on the parent project. (required)
+  body: object, The request body. (required)
+    The object takes the form of:
+
+{ # Request for predictions to be issued against a trained model.
+      # 
+      # The body of the request is a single JSON object with a single top-level
+      # field:
+      # 
+      # <dl>
+      #   <dt>instances</dt>
+      #   <dd>A JSON array containing values representing the instances to use for
+      #       prediction.</dd>
+      # </dl>
+      # 
+      # The structure of each element of the instances list is determined by your
+      # model's input definition. Instances can include named inputs or can contain
+      # only unlabeled values.
+      # 
+      # Not all data includes named inputs. Some instances will be simple
+      # JSON values (boolean, number, or string). However, instances are often lists
+      # of simple values, or complex nested lists. Here are some examples of request
+      # bodies:
+      # 
+      # CSV data with each row encoded as a string value:
+      # <pre>
+      # {"instances": ["1.0,true,\\"x\\"", "-2.0,false,\\"y\\""]}
+      # </pre>
+      # Plain text:
+      # <pre>
+      # {"instances": ["the quick brown fox", "la bruja le dio"]}
+      # </pre>
+      # Sentences encoded as lists of words (vectors of strings):
+      # <pre>
+      # {
+      #   "instances": [
+      #     ["the","quick","brown"],
+      #     ["la","bruja","le"],
+      #     ...
+      #   ]
+      # }
+      # </pre>
+      # Floating point scalar values:
+      # <pre>
+      # {"instances": [0.0, 1.1, 2.2]}
+      # </pre>
+      # Vectors of integers:
+      # <pre>
+      # {
+      #   "instances": [
+      #     [0, 1, 2],
+      #     [3, 4, 5],
+      #     ...
+      #   ]
+      # }
+      # </pre>
+      # Tensors (in this case, two-dimensional tensors):
+      # <pre>
+      # {
+      #   "instances": [
+      #     [
+      #       [0, 1, 2],
+      #       [3, 4, 5]
+      #     ],
+      #     ...
+      #   ]
+      # }
+      # </pre>
+      # Images can be represented different ways. In this encoding scheme the first
+      # two dimensions represent the rows and columns of the image, and the third
+      # contains lists (vectors) of the R, G, and B values for each pixel.
+      # <pre>
+      # {
+      #   "instances": [
+      #     [
+      #       [
+      #         [138, 30, 66],
+      #         [130, 20, 56],
+      #         ...
+      #       ],
+      #       [
+      #         [126, 38, 61],
+      #         [122, 24, 57],
+      #         ...
+      #       ],
+      #       ...
+      #     ],
+      #     ...
+      #   ]
+      # }
+      # </pre>
+      # JSON strings must be encoded as UTF-8. To send binary data, you must
+      # base64-encode the data and mark it as binary. To mark a JSON string
+      # as binary, replace it with a JSON object with a single attribute named `b64`:
+      # <pre>{"b64": "..."} </pre>
+      # For example:
+      # 
+      # Two Serialized tf.Examples (fake data, for illustrative purposes only):
+      # <pre>
+      # {"instances": [{"b64": "X5ad6u"}, {"b64": "IA9j4nx"}]}
+      # </pre>
+      # Two JPEG image byte strings (fake data, for illustrative purposes only):
+      # <pre>
+      # {"instances": [{"b64": "ASa8asdf"}, {"b64": "JLK7ljk3"}]}
+      # </pre>
+      # If your data includes named references, format each instance as a JSON object
+      # with the named references as the keys:
+      # 
+      # JSON input data to be preprocessed:
+      # <pre>
+      # {
+      #   "instances": [
+      #     {
+      #       "a": 1.0,
+      #       "b": true,
+      #       "c": "x"
+      #     },
+      #     {
+      #       "a": -2.0,
+      #       "b": false,
+      #       "c": "y"
+      #     }
+      #   ]
+      # }
+      # </pre>
+      # Some models have an underlying TensorFlow graph that accepts multiple input
+      # tensors. In this case, you should use the names of JSON name/value pairs to
+      # identify the input tensors, as shown in the following exmaples:
+      # 
+      # For a graph with input tensor aliases "tag" (string) and "image"
+      # (base64-encoded string):
+      # <pre>
+      # {
+      #   "instances": [
+      #     {
+      #       "tag": "beach",
+      #       "image": {"b64": "ASa8asdf"}
+      #     },
+      #     {
+      #       "tag": "car",
+      #       "image": {"b64": "JLK7ljk3"}
+      #     }
+      #   ]
+      # }
+      # </pre>
+      # For a graph with input tensor aliases "tag" (string) and "image"
+      # (3-dimensional array of 8-bit ints):
+      # <pre>
+      # {
+      #   "instances": [
+      #     {
+      #       "tag": "beach",
+      #       "image": [
+      #         [
+      #           [138, 30, 66],
+      #           [130, 20, 56],
+      #           ...
+      #         ],
+      #         [
+      #           [126, 38, 61],
+      #           [122, 24, 57],
+      #           ...
+      #         ],
+      #         ...
+      #       ]
+      #     },
+      #     {
+      #       "tag": "car",
+      #       "image": [
+      #         [
+      #           [255, 0, 102],
+      #           [255, 0, 97],
+      #           ...
+      #         ],
+      #         [
+      #           [254, 1, 101],
+      #           [254, 2, 93],
+      #           ...
+      #         ],
+      #         ...
+      #       ]
+      #     },
+      #     ...
+      #   ]
+      # }
+      # </pre>
+      # If the call is successful, the response body will contain one prediction
+      # entry per instance in the request body. If prediction fails for any
+      # instance, the response body will contain no predictions and will contian
+      # a single error entry instead.
+    "httpBody": { # Message that represents an arbitrary HTTP body. It should only be used for # 
+        # Required. The prediction request body.
+        # payload formats that can't be represented as JSON, such as raw binary or
+        # an HTML page.
+        #
+        #
+        # This message can be used both in streaming and non-streaming API methods in
+        # the request as well as the response.
+        #
+        # It can be used as a top-level request field, which is convenient if one
+        # wants to extract parameters from either the URL or HTTP template into the
+        # request fields and also want access to the raw HTTP body.
+        #
+        # Example:
+        #
+        #     message GetResourceRequest {
+        #       // A unique request id.
+        #       string request_id = 1;
+        #
+        #       // The raw HTTP body is bound to this field.
+        #       google.api.HttpBody http_body = 2;
+        #     }
+        #
+        #     service ResourceService {
+        #       rpc GetResource(GetResourceRequest) returns (google.api.HttpBody);
+        #       rpc UpdateResource(google.api.HttpBody) returns (google.protobuf.Empty);
+        #     }
+        #
+        # Example with streaming methods:
+        #
+        #     service CaldavService {
+        #       rpc GetCalendar(stream google.api.HttpBody)
+        #         returns (stream google.api.HttpBody);
+        #       rpc UpdateCalendar(stream google.api.HttpBody)
+        #         returns (stream google.api.HttpBody);
+        #     }
+        #
+        # Use of this type only changes how the request and response bodies are
+        # handled, all other features will continue to work unchanged.
+      "contentType": "A String", # The HTTP Content-Type string representing the content type of the body.
+      "data": "A String", # HTTP body binary data.
+    },
+  }
+
+  x__xgafv: string, V1 error format.
+    Allowed values
+      1 - v1 error format
+      2 - v2 error format
+
+Returns:
+  An object of the form:
+
+    { # Message that represents an arbitrary HTTP body. It should only be used for
+      # payload formats that can't be represented as JSON, such as raw binary or
+      # an HTML page.
+      #
+      #
+      # This message can be used both in streaming and non-streaming API methods in
+      # the request as well as the response.
+      #
+      # It can be used as a top-level request field, which is convenient if one
+      # wants to extract parameters from either the URL or HTTP template into the
+      # request fields and also want access to the raw HTTP body.
+      #
+      # Example:
+      #
+      #     message GetResourceRequest {
+      #       // A unique request id.
+      #       string request_id = 1;
+      #
+      #       // The raw HTTP body is bound to this field.
+      #       google.api.HttpBody http_body = 2;
+      #     }
+      #
+      #     service ResourceService {
+      #       rpc GetResource(GetResourceRequest) returns (google.api.HttpBody);
+      #       rpc UpdateResource(google.api.HttpBody) returns (google.protobuf.Empty);
+      #     }
+      #
+      # Example with streaming methods:
+      #
+      #     service CaldavService {
+      #       rpc GetCalendar(stream google.api.HttpBody)
+      #         returns (stream google.api.HttpBody);
+      #       rpc UpdateCalendar(stream google.api.HttpBody)
+      #         returns (stream google.api.HttpBody);
+      #     }
+      #
+      # Use of this type only changes how the request and response bodies are
+      # handled, all other features will continue to work unchanged.
+    "contentType": "A String", # The HTTP Content-Type string representing the content type of the body.
+    "data": "A String", # HTTP body binary data.
+  }</pre>
+</div>
+
+</body></html>
\ No newline at end of file