Update docs (#291)
diff --git a/docs/dyn/ml_v1beta1.projects.html b/docs/dyn/ml_v1beta1.projects.html
new file mode 100644
index 0000000..6aab1f0
--- /dev/null
+++ b/docs/dyn/ml_v1beta1.projects.html
@@ -0,0 +1,368 @@
+<html><body>
+<style>
+
+body, h1, h2, h3, div, span, p, pre, a {
+ margin: 0;
+ padding: 0;
+ border: 0;
+ font-weight: inherit;
+ font-style: inherit;
+ font-size: 100%;
+ font-family: inherit;
+ vertical-align: baseline;
+}
+
+body {
+ font-size: 13px;
+ padding: 1em;
+}
+
+h1 {
+ font-size: 26px;
+ margin-bottom: 1em;
+}
+
+h2 {
+ font-size: 24px;
+ margin-bottom: 1em;
+}
+
+h3 {
+ font-size: 20px;
+ margin-bottom: 1em;
+ margin-top: 1em;
+}
+
+pre, code {
+ line-height: 1.5;
+ font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
+}
+
+pre {
+ margin-top: 0.5em;
+}
+
+h1, h2, h3, p {
+ font-family: Arial, sans serif;
+}
+
+h1, h2, h3 {
+ border-bottom: solid #CCC 1px;
+}
+
+.toc_element {
+ margin-top: 0.5em;
+}
+
+.firstline {
+ margin-left: 2 em;
+}
+
+.method {
+ margin-top: 1em;
+ border: solid 1px #CCC;
+ padding: 1em;
+ background: #EEE;
+}
+
+.details {
+ font-weight: bold;
+ font-size: 14px;
+}
+
+</style>
+
+<h1><a href="ml_v1beta1.html">Google Cloud Machine Learning</a> . <a href="ml_v1beta1.projects.html">projects</a></h1>
+<h2>Instance Methods</h2>
+<p class="toc_element">
+ <code><a href="ml_v1beta1.projects.jobs.html">jobs()</a></code>
+</p>
+<p class="firstline">Returns the jobs Resource.</p>
+
+<p class="toc_element">
+ <code><a href="ml_v1beta1.projects.models.html">models()</a></code>
+</p>
+<p class="firstline">Returns the models Resource.</p>
+
+<p class="toc_element">
+ <code><a href="ml_v1beta1.projects.operations.html">operations()</a></code>
+</p>
+<p class="firstline">Returns the operations Resource.</p>
+
+<p class="toc_element">
+ <code><a href="#getConfig">getConfig(name=None, x__xgafv=None)</a></code></p>
+<p class="firstline">Get the service account information associated with your project. You need</p>
+<p class="toc_element">
+ <code><a href="#predict">predict(name=None, body, x__xgafv=None)</a></code></p>
+<p class="firstline">Performs prediction on the data in the request.</p>
+<h3>Method Details</h3>
+<div class="method">
+ <code class="details" id="getConfig">getConfig(name=None, x__xgafv=None)</code>
+ <pre>Get the service account information associated with your project. You need
+this information in order to grant the service account persmissions for
+the Google Cloud Storage location where you put your model training code
+for training the model with Google Cloud Machine Learning.
+
+Args:
+ name: string, Required. The project name.
+
+Authorization: requires `Viewer` role on the specified project. (required)
+ x__xgafv: string, V1 error format.
+ Allowed values
+ 1 - v1 error format
+ 2 - v2 error format
+
+Returns:
+ An object of the form:
+
+ { # Returns service account information associated with a project.
+ "serviceAccountProject": "A String", # The project number for `service_account`.
+ "serviceAccount": "A String", # The service account Cloud ML uses to access resources in the project.
+ }</pre>
+</div>
+
+<div class="method">
+ <code class="details" id="predict">predict(name=None, body, x__xgafv=None)</code>
+ <pre>Performs prediction on the data in the request.
+
+Responses are very similar to requests. There are two top-level fields,
+each of which are JSON lists:
+
+<dl>
+ <dt>predictions</dt>
+ <dd>The list of predictions, one per instance in the request.</dd>
+ <dt>error</dt>
+ <dd>An error message returned instead of a prediction list if any
+ instance produced an error.</dd>
+</dl>
+
+If the call is successful, the response body will contain one prediction
+entry per instance in the request body. If prediction fails for any
+instance, the response body will contain no predictions and will contian
+a single error entry instead.
+
+Even though there is one prediction per instance, the format of a
+prediction is not directly related to the format of an instance.
+Predictions take whatever format is specified in the outputs collection
+defined in the model. The collection of predictions is returned in a JSON
+list. Each member of the list can be a simple value, a list, or a JSON
+object of any complexity. If your model has more than one output tensor,
+each prediction will be a JSON object containing a name/value pair for each
+output. The names identify the output aliases in the graph.
+
+The following examples show some possible responses:
+
+A simple set of predictions for three input instances, where each
+prediction is an integer value:
+<pre>
+{"predictions": [5, 4, 3]}
+</pre>
+A more complex set of predictions, each containing two named values that
+correspond to output tensors, named **label** and **scores** respectively.
+The value of **label** is the predicted category ("car" or "beach") and
+**scores** contains a list of probabilities for that instance across the
+possible categories.
+<pre>
+{"predictions": [{"label": "beach", "scores": [0.1, 0.9]},
+ {"label": "car", "scores": [0.75, 0.25]}]}
+</pre>
+A response when there is an error processing an input instance:
+<pre>
+{"error": "Divide by zero"}
+</pre>
+
+Args:
+ name: string, Required. The resource name of a model or a version.
+
+Authorization: requires `Viewer` role on the parent project. (required)
+ body: object, The request body. (required)
+ The object takes the form of:
+
+{ # Request for predictions to be issued against a trained model.
+ #
+ # The body of the request is a single JSON object with a single top-level
+ # field:
+ #
+ # <dl>
+ # <dt>instances</dt>
+ # <dd>A JSON array containing values representing the instances to use for
+ # prediction.</dd>
+ # </dl>
+ #
+ # The structure of each element of the instances list is determined by your
+ # model's input definition. Instances can include named inputs or can contain
+ # only unlabeled values.
+ #
+ # Most data does not include named inputs. Some instances will be simple
+ # JSON values (boolean, number, or string). However, instances are often lists
+ # of simple values, or complex nested lists. Here are some examples of request
+ # bodies:
+ #
+ # CSV data with each row encoded as a string value:
+ # <pre>
+ # {"instances": ["1.0,true,\\"x\\"", "-2.0,false,\\"y\\""]}
+ # </pre>
+ # Plain text:
+ # <pre>
+ # {"instances": ["the quick brown fox", "la bruja le dio"]}
+ # </pre>
+ # Sentences encoded as lists of words (vectors of strings):
+ # <pre>
+ # {"instances": [["the","quick","brown"], ["la","bruja","le"]]}
+ # </pre>
+ # Floating point scalar values:
+ # <pre>
+ # {"instances": [0.0, 1.1, 2.2]}
+ # </pre>
+ # Vectors of integers:
+ # <pre>
+ # {"instances": [[0, 1, 2], [3, 4, 5],...]}
+ # </pre>
+ # Tensors (in this case, two-dimensional tensors):
+ # <pre>
+ # {"instances": [[[0, 1, 2], [3, 4, 5]], ...]}
+ # </pre>
+ # Images represented as a three-dimensional list. In this encoding scheme the
+ # first two dimensions represent the rows and columns of the image, and the
+ # third contains the R, G, and B values for each pixel.
+ # <pre>
+ # {"instances": [[[[138, 30, 66], [130, 20, 56], ...]]]]}
+ # </pre>
+ # Data must be encoded as UTF-8. If your data uses another character encoding,
+ # you must base64 encode the data and mark it as binary. To mark a JSON string
+ # as binary, replace it with an object with a single attribute named `b`:
+ # <pre>{"b": "..."} </pre>
+ # For example:
+ #
+ # Two Serialized tf.Examples (fake data, for illustrative purposes only):
+ # <pre>
+ # {"instances": [{"b64": "X5ad6u"}, {"b64": "IA9j4nx"}]}
+ # </pre>
+ # Two JPEG image byte strings (fake data, for illustrative purposes only):
+ # <pre>
+ # {"instances": [{"b64": "ASa8asdf"}, {"b64": "JLK7ljk3"}]}
+ # </pre>
+ # If your data includes named references, format each instance as a JSON object
+ # with the named references as the keys:
+ #
+ # JSON input data to be preprocessed:
+ # <pre>
+ # {"instances": [{"a": 1.0, "b": true, "c": "x"},
+ # {"a": -2.0, "b": false, "c": "y"}]}
+ # </pre>
+ # Some models have an underlying TensorFlow graph that accepts multiple input
+ # tensors. In this case, you should use the names of JSON name/value pairs to
+ # identify the input tensors, as shown in the following exmaples:
+ #
+ # For a graph with input tensor aliases "tag" (string) and "image"
+ # (base64-encoded string):
+ # <pre>
+ # {"instances": [{"tag": "beach", "image": {"b64": "ASa8asdf"}},
+ # {"tag": "car", "image": {"b64": "JLK7ljk3"}}]}
+ # </pre>
+ # For a graph with input tensor aliases "tag" (string) and "image"
+ # (3-dimensional array of 8-bit ints):
+ # <pre>
+ # {"instances": [{"tag": "beach", "image": [[[263, 1, 10], [262, 2, 11], ...]]},
+ # {"tag": "car", "image": [[[10, 11, 24], [23, 10, 15], ...]]}]}
+ # </pre>
+ # If the call is successful, the response body will contain one prediction
+ # entry per instance in the request body. If prediction fails for any
+ # instance, the response body will contain no predictions and will contian
+ # a single error entry instead.
+ "httpBody": { # Message that represents an arbitrary HTTP body. It should only be used for #
+ # Required. The prediction request body.
+ # payload formats that can't be represented as JSON, such as raw binary or
+ # an HTML page.
+ #
+ #
+ # This message can be used both in streaming and non-streaming API methods in
+ # the request as well as the response.
+ #
+ # It can be used as a top-level request field, which is convenient if one
+ # wants to extract parameters from either the URL or HTTP template into the
+ # request fields and also want access to the raw HTTP body.
+ #
+ # Example:
+ #
+ # message GetResourceRequest {
+ # // A unique request id.
+ # string request_id = 1;
+ #
+ # // The raw HTTP body is bound to this field.
+ # google.api.HttpBody http_body = 2;
+ # }
+ #
+ # service ResourceService {
+ # rpc GetResource(GetResourceRequest) returns (google.api.HttpBody);
+ # rpc UpdateResource(google.api.HttpBody) returns (google.protobuf.Empty);
+ # }
+ #
+ # Example with streaming methods:
+ #
+ # service CaldavService {
+ # rpc GetCalendar(stream google.api.HttpBody)
+ # returns (stream google.api.HttpBody);
+ # rpc UpdateCalendar(stream google.api.HttpBody)
+ # returns (stream google.api.HttpBody);
+ # }
+ #
+ # Use of this type only changes how the request and response bodies are
+ # handled, all other features will continue to work unchanged.
+ "contentType": "A String", # The HTTP Content-Type string representing the content type of the body.
+ "data": "A String", # HTTP body binary data.
+ },
+ }
+
+ x__xgafv: string, V1 error format.
+ Allowed values
+ 1 - v1 error format
+ 2 - v2 error format
+
+Returns:
+ An object of the form:
+
+ { # Message that represents an arbitrary HTTP body. It should only be used for
+ # payload formats that can't be represented as JSON, such as raw binary or
+ # an HTML page.
+ #
+ #
+ # This message can be used both in streaming and non-streaming API methods in
+ # the request as well as the response.
+ #
+ # It can be used as a top-level request field, which is convenient if one
+ # wants to extract parameters from either the URL or HTTP template into the
+ # request fields and also want access to the raw HTTP body.
+ #
+ # Example:
+ #
+ # message GetResourceRequest {
+ # // A unique request id.
+ # string request_id = 1;
+ #
+ # // The raw HTTP body is bound to this field.
+ # google.api.HttpBody http_body = 2;
+ # }
+ #
+ # service ResourceService {
+ # rpc GetResource(GetResourceRequest) returns (google.api.HttpBody);
+ # rpc UpdateResource(google.api.HttpBody) returns (google.protobuf.Empty);
+ # }
+ #
+ # Example with streaming methods:
+ #
+ # service CaldavService {
+ # rpc GetCalendar(stream google.api.HttpBody)
+ # returns (stream google.api.HttpBody);
+ # rpc UpdateCalendar(stream google.api.HttpBody)
+ # returns (stream google.api.HttpBody);
+ # }
+ #
+ # Use of this type only changes how the request and response bodies are
+ # handled, all other features will continue to work unchanged.
+ "contentType": "A String", # The HTTP Content-Type string representing the content type of the body.
+ "data": "A String", # HTTP body binary data.
+ }</pre>
+</div>
+
+</body></html>
\ No newline at end of file