Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 1 | <html><body> |
| 2 | <style> |
| 3 | |
| 4 | body, h1, h2, h3, div, span, p, pre, a { |
| 5 | margin: 0; |
| 6 | padding: 0; |
| 7 | border: 0; |
| 8 | font-weight: inherit; |
| 9 | font-style: inherit; |
| 10 | font-size: 100%; |
| 11 | font-family: inherit; |
| 12 | vertical-align: baseline; |
| 13 | } |
| 14 | |
| 15 | body { |
| 16 | font-size: 13px; |
| 17 | padding: 1em; |
| 18 | } |
| 19 | |
| 20 | h1 { |
| 21 | font-size: 26px; |
| 22 | margin-bottom: 1em; |
| 23 | } |
| 24 | |
| 25 | h2 { |
| 26 | font-size: 24px; |
| 27 | margin-bottom: 1em; |
| 28 | } |
| 29 | |
| 30 | h3 { |
| 31 | font-size: 20px; |
| 32 | margin-bottom: 1em; |
| 33 | margin-top: 1em; |
| 34 | } |
| 35 | |
| 36 | pre, code { |
| 37 | line-height: 1.5; |
| 38 | font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace; |
| 39 | } |
| 40 | |
| 41 | pre { |
| 42 | margin-top: 0.5em; |
| 43 | } |
| 44 | |
| 45 | h1, h2, h3, p { |
| 46 | font-family: Arial, sans serif; |
| 47 | } |
| 48 | |
| 49 | h1, h2, h3 { |
| 50 | border-bottom: solid #CCC 1px; |
| 51 | } |
| 52 | |
| 53 | .toc_element { |
| 54 | margin-top: 0.5em; |
| 55 | } |
| 56 | |
| 57 | .firstline { |
| 58 | margin-left: 2 em; |
| 59 | } |
| 60 | |
| 61 | .method { |
| 62 | margin-top: 1em; |
| 63 | border: solid 1px #CCC; |
| 64 | padding: 1em; |
| 65 | background: #EEE; |
| 66 | } |
| 67 | |
| 68 | .details { |
| 69 | font-weight: bold; |
| 70 | font-size: 14px; |
| 71 | } |
| 72 | |
| 73 | </style> |
| 74 | |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 75 | <h1><a href="ml_v1beta1.html">Google Cloud Machine Learning Engine</a> . <a href="ml_v1beta1.projects.html">projects</a> . <a href="ml_v1beta1.projects.jobs.html">jobs</a></h1> |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 76 | <h2>Instance Methods</h2> |
| 77 | <p class="toc_element"> |
| 78 | <code><a href="#cancel">cancel(name=None, body, x__xgafv=None)</a></code></p> |
| 79 | <p class="firstline">Cancels a running job.</p> |
| 80 | <p class="toc_element"> |
| 81 | <code><a href="#create">create(parent=None, body, x__xgafv=None)</a></code></p> |
| 82 | <p class="firstline">Creates a training or a batch prediction job.</p> |
| 83 | <p class="toc_element"> |
| 84 | <code><a href="#get">get(name=None, x__xgafv=None)</a></code></p> |
| 85 | <p class="firstline">Describes a job.</p> |
| 86 | <p class="toc_element"> |
| 87 | <code><a href="#list">list(parent=None, pageSize=None, filter=None, pageToken=None, x__xgafv=None)</a></code></p> |
| 88 | <p class="firstline">Lists the jobs in the project.</p> |
| 89 | <p class="toc_element"> |
| 90 | <code><a href="#list_next">list_next(previous_request, previous_response)</a></code></p> |
| 91 | <p class="firstline">Retrieves the next page of results.</p> |
| 92 | <h3>Method Details</h3> |
| 93 | <div class="method"> |
| 94 | <code class="details" id="cancel">cancel(name=None, body, x__xgafv=None)</code> |
| 95 | <pre>Cancels a running job. |
| 96 | |
| 97 | Args: |
| 98 | name: string, Required. The name of the job to cancel. |
| 99 | |
| 100 | Authorization: requires `Editor` role on the parent project. (required) |
| 101 | body: object, The request body. (required) |
| 102 | The object takes the form of: |
| 103 | |
| 104 | { # Request message for the CancelJob method. |
| 105 | } |
| 106 | |
| 107 | x__xgafv: string, V1 error format. |
| 108 | Allowed values |
| 109 | 1 - v1 error format |
| 110 | 2 - v2 error format |
| 111 | |
| 112 | Returns: |
| 113 | An object of the form: |
| 114 | |
| 115 | { # A generic empty message that you can re-use to avoid defining duplicated |
| 116 | # empty messages in your APIs. A typical example is to use it as the request |
| 117 | # or the response type of an API method. For instance: |
| 118 | # |
| 119 | # service Foo { |
| 120 | # rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); |
| 121 | # } |
| 122 | # |
| 123 | # The JSON representation for `Empty` is empty JSON object `{}`. |
| 124 | }</pre> |
| 125 | </div> |
| 126 | |
| 127 | <div class="method"> |
| 128 | <code class="details" id="create">create(parent=None, body, x__xgafv=None)</code> |
| 129 | <pre>Creates a training or a batch prediction job. |
| 130 | |
| 131 | Args: |
| 132 | parent: string, Required. The project name. |
| 133 | |
| 134 | Authorization: requires `Editor` role on the specified project. (required) |
| 135 | body: object, The request body. (required) |
| 136 | The object takes the form of: |
| 137 | |
| 138 | { # Represents a training or prediction job. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 139 | "trainingOutput": { # Represents results of a training job. Output only. # The current training job result. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 140 | "trials": [ # Results for individual Hyperparameter trials. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 141 | # Only set for hyperparameter tuning jobs. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 142 | { # Represents the result of a single hyperparameter tuning trial from a |
| 143 | # training job. The TrainingOutput object that is returned on successful |
| 144 | # completion of a training job with hyperparameter tuning includes a list |
| 145 | # of HyperparameterOutput objects, one for each successful trial. |
| 146 | "hyperparameters": { # The hyperparameters given to this trial. |
| 147 | "a_key": "A String", |
| 148 | }, |
| 149 | "trialId": "A String", # The trial id for these results. |
| 150 | "allMetrics": [ # All recorded object metrics for this trial. |
| 151 | { # An observed value of a metric. |
| 152 | "trainingStep": "A String", # The global training step for this metric. |
| 153 | "objectiveValue": 3.14, # The objective value at this training step. |
| 154 | }, |
| 155 | ], |
| 156 | "finalMetric": { # An observed value of a metric. # The final objective metric seen for this trial. |
| 157 | "trainingStep": "A String", # The global training step for this metric. |
| 158 | "objectiveValue": 3.14, # The objective value at this training step. |
| 159 | }, |
| 160 | }, |
| 161 | ], |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 162 | "isHyperparameterTuningJob": True or False, # Whether this job is a hyperparameter tuning job. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 163 | "consumedMLUnits": 3.14, # The amount of ML units consumed by the job. |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 164 | "completedTrialCount": "A String", # The number of hyperparameter tuning trials that completed successfully. |
| 165 | # Only set for hyperparameter tuning jobs. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 166 | }, |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 167 | "trainingInput": { # Represents input parameters for a training job. # Input parameters to create a training job. |
| 168 | "workerType": "A String", # Optional. Specifies the type of virtual machine to use for your training |
| 169 | # job's worker nodes. |
| 170 | # |
| 171 | # The supported values are the same as those described in the entry for |
| 172 | # `masterType`. |
| 173 | # |
| 174 | # This value must be present when `scaleTier` is set to `CUSTOM` and |
| 175 | # `workerCount` is greater than zero. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 176 | "runtimeVersion": "A String", # Optional. The Google Cloud ML runtime version to use for training. If not |
| 177 | # set, Google Cloud ML will choose the latest stable version. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 178 | "scaleTier": "A String", # Required. Specifies the machine types, the number of replicas for workers |
| 179 | # and parameter servers. |
| 180 | "masterType": "A String", # Optional. Specifies the type of virtual machine to use for your training |
| 181 | # job's master worker. |
| 182 | # |
| 183 | # The following types are supported: |
| 184 | # |
| 185 | # <dl> |
| 186 | # <dt>standard</dt> |
| 187 | # <dd> |
| 188 | # A basic machine configuration suitable for training simple models with |
| 189 | # small to moderate datasets. |
| 190 | # </dd> |
| 191 | # <dt>large_model</dt> |
| 192 | # <dd> |
| 193 | # A machine with a lot of memory, specially suited for parameter servers |
| 194 | # when your model is large (having many hidden layers or layers with very |
| 195 | # large numbers of nodes). |
| 196 | # </dd> |
| 197 | # <dt>complex_model_s</dt> |
| 198 | # <dd> |
| 199 | # A machine suitable for the master and workers of the cluster when your |
| 200 | # model requires more computation than the standard machine can handle |
| 201 | # satisfactorily. |
| 202 | # </dd> |
| 203 | # <dt>complex_model_m</dt> |
| 204 | # <dd> |
| 205 | # A machine with roughly twice the number of cores and roughly double the |
| 206 | # memory of <code suppresswarning="true">complex_model_s</code>. |
| 207 | # </dd> |
| 208 | # <dt>complex_model_l</dt> |
| 209 | # <dd> |
| 210 | # A machine with roughly twice the number of cores and roughly double the |
| 211 | # memory of <code suppresswarning="true">complex_model_m</code>. |
| 212 | # </dd> |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 213 | # <dt>standard_gpu</dt> |
| 214 | # <dd> |
| 215 | # A machine equivalent to <code suppresswarning="true">standard</code> that |
| 216 | # also includes a |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 217 | # <a href="/ml-engine/docs/how-tos/using-gpus"> |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 218 | # GPU that you can use in your trainer</a>. |
| 219 | # </dd> |
| 220 | # <dt>complex_model_m_gpu</dt> |
| 221 | # <dd> |
| 222 | # A machine equivalent to |
| 223 | # <code suppresswarning="true">coplex_model_m</code> that also includes |
| 224 | # four GPUs. |
| 225 | # </dd> |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 226 | # </dl> |
| 227 | # |
| 228 | # You must set this value when `scaleTier` is set to `CUSTOM`. |
| 229 | "hyperparameters": { # Represents a set of hyperparameters to optimize. # Optional. The set of Hyperparameters to tune. |
| 230 | "maxTrials": 42, # Optional. How many training trials should be attempted to optimize |
| 231 | # the specified hyperparameters. |
| 232 | # |
| 233 | # Defaults to one. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 234 | "hyperparameterMetricTag": "A String", # Optional. The Tensorflow summary tag name to use for optimizing trials. For |
| 235 | # current versions of Tensorflow, this tag name should exactly match what is |
| 236 | # shown in Tensorboard, including all scopes. For versions of Tensorflow |
| 237 | # prior to 0.12, this should be only the tag passed to tf.Summary. |
| 238 | # By default, "training/hptuning/metric" will be used. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 239 | "params": [ # Required. The set of parameters to tune. |
| 240 | { # Represents a single hyperparameter to optimize. |
| 241 | "maxValue": 3.14, # Required if typeis `DOUBLE` or `INTEGER`. This field |
| 242 | # should be unset if type is `CATEGORICAL`. This value should be integers if |
| 243 | # type is `INTEGER`. |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 244 | "minValue": 3.14, # Required if type is `DOUBLE` or `INTEGER`. This field |
| 245 | # should be unset if type is `CATEGORICAL`. This value should be integers if |
| 246 | # type is INTEGER. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 247 | "discreteValues": [ # Required if type is `DISCRETE`. |
| 248 | # A list of feasible points. |
| 249 | # The list should be in strictly increasing order. For instance, this |
| 250 | # parameter might have possible settings of 1.5, 2.5, and 4.0. This list |
| 251 | # should not contain more than 1,000 values. |
| 252 | 3.14, |
| 253 | ], |
| 254 | "parameterName": "A String", # Required. The parameter name must be unique amongst all ParameterConfigs in |
| 255 | # a HyperparameterSpec message. E.g., "learning_rate". |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 256 | "categoricalValues": [ # Required if type is `CATEGORICAL`. The list of possible categories. |
| 257 | "A String", |
| 258 | ], |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 259 | "type": "A String", # Required. The type of the parameter. |
| 260 | "scaleType": "A String", # Optional. How the parameter should be scaled to the hypercube. |
| 261 | # Leave unset for categorical parameters. |
| 262 | # Some kind of scaling is strongly recommended for real or integral |
| 263 | # parameters (e.g., `UNIT_LINEAR_SCALE`). |
| 264 | }, |
| 265 | ], |
| 266 | "maxParallelTrials": 42, # Optional. The number of training trials to run concurrently. |
| 267 | # You can reduce the time it takes to perform hyperparameter tuning by adding |
| 268 | # trials in parallel. However, each trail only benefits from the information |
| 269 | # gained in completed trials. That means that a trial does not get access to |
| 270 | # the results of trials running at the same time, which could reduce the |
| 271 | # quality of the overall optimization. |
| 272 | # |
| 273 | # Each trial will use the same scale tier and machine types. |
| 274 | # |
| 275 | # Defaults to one. |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 276 | "goal": "A String", # Required. The type of goal to use for tuning. Available types are |
| 277 | # `MAXIMIZE` and `MINIMIZE`. |
| 278 | # |
| 279 | # Defaults to `MAXIMIZE`. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 280 | }, |
| 281 | "region": "A String", # Required. The Google Compute Engine region to run the training job in. |
| 282 | "args": [ # Optional. Command line arguments to pass to the program. |
| 283 | "A String", |
| 284 | ], |
| 285 | "pythonModule": "A String", # Required. The Python module name to run after installing the packages. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 286 | "jobDir": "A String", # Optional. A Google Cloud Storage path in which to store training outputs |
| 287 | # and other data needed for training. This path is passed to your TensorFlow |
| 288 | # program as the 'job_dir' command-line argument. The benefit of specifying |
| 289 | # this field is that Cloud ML validates the path for use in training. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 290 | "packageUris": [ # Required. The Google Cloud Storage location of the packages with |
| 291 | # the training program and any additional dependencies. |
| 292 | "A String", |
| 293 | ], |
| 294 | "workerCount": "A String", # Optional. The number of worker replicas to use for the training job. Each |
| 295 | # replica in the cluster will be of the type specified in `worker_type`. |
| 296 | # |
| 297 | # This value can only be used when `scale_tier` is set to `CUSTOM`. If you |
| 298 | # set this value, you must also set `worker_type`. |
| 299 | "parameterServerType": "A String", # Optional. Specifies the type of virtual machine to use for your training |
| 300 | # job's parameter server. |
| 301 | # |
| 302 | # The supported values are the same as those described in the entry for |
| 303 | # `master_type`. |
| 304 | # |
| 305 | # This value must be present when `scaleTier` is set to `CUSTOM` and |
| 306 | # `parameter_server_count` is greater than zero. |
| 307 | "parameterServerCount": "A String", # Optional. The number of parameter server replicas to use for the training |
| 308 | # job. Each replica in the cluster will be of the type specified in |
| 309 | # `parameter_server_type`. |
| 310 | # |
| 311 | # This value can only be used when `scale_tier` is set to `CUSTOM`.If you |
| 312 | # set this value, you must also set `parameter_server_type`. |
| 313 | }, |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 314 | "predictionInput": { # Represents input parameters for a prediction job. # Input parameters to create a prediction job. |
| 315 | "modelName": "A String", # Use this field if you want to use the default version for the specified |
| 316 | # model. The string must use the following format: |
| 317 | # |
| 318 | # `"projects/<var>[YOUR_PROJECT]</var>/models/<var>[YOUR_MODEL]</var>"` |
| 319 | "runtimeVersion": "A String", # Optional. The Google Cloud ML runtime version to use for this batch |
| 320 | # prediction. If not set, Google Cloud ML will pick the runtime version used |
| 321 | # during the CreateVersion request for this model version, or choose the |
| 322 | # latest stable version when model version information is not available |
| 323 | # such as when the model is specified by uri. |
| 324 | "inputPaths": [ # Required. The Google Cloud Storage location of the input data files. |
| 325 | # May contain wildcards. |
| 326 | "A String", |
| 327 | ], |
| 328 | "maxWorkerCount": "A String", # Optional. The maximum number of workers to be used for parallel processing. |
| 329 | # Defaults to 10 if not specified. |
| 330 | "uri": "A String", # Use this field if you want to specify a Google Cloud Storage path for |
| 331 | # the model to use. |
| 332 | "outputPath": "A String", # Required. The output Google Cloud Storage location. |
| 333 | "dataFormat": "A String", # Required. The format of the input data files. |
| 334 | "versionName": "A String", # Use this field if you want to specify a version of the model to use. The |
| 335 | # string is formatted the same way as `model_version`, with the addition |
| 336 | # of the version information: |
| 337 | # |
| 338 | # `"projects/<var>[YOUR_PROJECT]</var>/models/<var>YOUR_MODEL/versions/<var>[YOUR_VERSION]</var>"` |
| 339 | "region": "A String", # Required. The Google Compute Engine region to run the prediction job in. |
| 340 | }, |
| 341 | "errorMessage": "A String", # Output only. The details of a failure or a cancellation. |
| 342 | "jobId": "A String", # Required. The user-specified id of the job. |
| 343 | "state": "A String", # Output only. The detailed state of a job. |
| 344 | "startTime": "A String", # Output only. When the job processing was started. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 345 | "endTime": "A String", # Output only. When the job processing was completed. |
| 346 | "predictionOutput": { # Represents results of a prediction job. # The current prediction job result. |
| 347 | "outputPath": "A String", # The output Google Cloud Storage location provided at the job creation time. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 348 | "nodeHours": 3.14, # Node hours used by the batch prediction job. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 349 | "predictionCount": "A String", # The number of generated predictions. |
| 350 | "errorCount": "A String", # The number of data instances which resulted in errors. |
| 351 | }, |
| 352 | "createTime": "A String", # Output only. When the job was created. |
| 353 | } |
| 354 | |
| 355 | x__xgafv: string, V1 error format. |
| 356 | Allowed values |
| 357 | 1 - v1 error format |
| 358 | 2 - v2 error format |
| 359 | |
| 360 | Returns: |
| 361 | An object of the form: |
| 362 | |
| 363 | { # Represents a training or prediction job. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 364 | "trainingOutput": { # Represents results of a training job. Output only. # The current training job result. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 365 | "trials": [ # Results for individual Hyperparameter trials. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 366 | # Only set for hyperparameter tuning jobs. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 367 | { # Represents the result of a single hyperparameter tuning trial from a |
| 368 | # training job. The TrainingOutput object that is returned on successful |
| 369 | # completion of a training job with hyperparameter tuning includes a list |
| 370 | # of HyperparameterOutput objects, one for each successful trial. |
| 371 | "hyperparameters": { # The hyperparameters given to this trial. |
| 372 | "a_key": "A String", |
| 373 | }, |
| 374 | "trialId": "A String", # The trial id for these results. |
| 375 | "allMetrics": [ # All recorded object metrics for this trial. |
| 376 | { # An observed value of a metric. |
| 377 | "trainingStep": "A String", # The global training step for this metric. |
| 378 | "objectiveValue": 3.14, # The objective value at this training step. |
| 379 | }, |
| 380 | ], |
| 381 | "finalMetric": { # An observed value of a metric. # The final objective metric seen for this trial. |
| 382 | "trainingStep": "A String", # The global training step for this metric. |
| 383 | "objectiveValue": 3.14, # The objective value at this training step. |
| 384 | }, |
| 385 | }, |
| 386 | ], |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 387 | "isHyperparameterTuningJob": True or False, # Whether this job is a hyperparameter tuning job. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 388 | "consumedMLUnits": 3.14, # The amount of ML units consumed by the job. |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 389 | "completedTrialCount": "A String", # The number of hyperparameter tuning trials that completed successfully. |
| 390 | # Only set for hyperparameter tuning jobs. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 391 | }, |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 392 | "trainingInput": { # Represents input parameters for a training job. # Input parameters to create a training job. |
| 393 | "workerType": "A String", # Optional. Specifies the type of virtual machine to use for your training |
| 394 | # job's worker nodes. |
| 395 | # |
| 396 | # The supported values are the same as those described in the entry for |
| 397 | # `masterType`. |
| 398 | # |
| 399 | # This value must be present when `scaleTier` is set to `CUSTOM` and |
| 400 | # `workerCount` is greater than zero. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 401 | "runtimeVersion": "A String", # Optional. The Google Cloud ML runtime version to use for training. If not |
| 402 | # set, Google Cloud ML will choose the latest stable version. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 403 | "scaleTier": "A String", # Required. Specifies the machine types, the number of replicas for workers |
| 404 | # and parameter servers. |
| 405 | "masterType": "A String", # Optional. Specifies the type of virtual machine to use for your training |
| 406 | # job's master worker. |
| 407 | # |
| 408 | # The following types are supported: |
| 409 | # |
| 410 | # <dl> |
| 411 | # <dt>standard</dt> |
| 412 | # <dd> |
| 413 | # A basic machine configuration suitable for training simple models with |
| 414 | # small to moderate datasets. |
| 415 | # </dd> |
| 416 | # <dt>large_model</dt> |
| 417 | # <dd> |
| 418 | # A machine with a lot of memory, specially suited for parameter servers |
| 419 | # when your model is large (having many hidden layers or layers with very |
| 420 | # large numbers of nodes). |
| 421 | # </dd> |
| 422 | # <dt>complex_model_s</dt> |
| 423 | # <dd> |
| 424 | # A machine suitable for the master and workers of the cluster when your |
| 425 | # model requires more computation than the standard machine can handle |
| 426 | # satisfactorily. |
| 427 | # </dd> |
| 428 | # <dt>complex_model_m</dt> |
| 429 | # <dd> |
| 430 | # A machine with roughly twice the number of cores and roughly double the |
| 431 | # memory of <code suppresswarning="true">complex_model_s</code>. |
| 432 | # </dd> |
| 433 | # <dt>complex_model_l</dt> |
| 434 | # <dd> |
| 435 | # A machine with roughly twice the number of cores and roughly double the |
| 436 | # memory of <code suppresswarning="true">complex_model_m</code>. |
| 437 | # </dd> |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 438 | # <dt>standard_gpu</dt> |
| 439 | # <dd> |
| 440 | # A machine equivalent to <code suppresswarning="true">standard</code> that |
| 441 | # also includes a |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 442 | # <a href="/ml-engine/docs/how-tos/using-gpus"> |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 443 | # GPU that you can use in your trainer</a>. |
| 444 | # </dd> |
| 445 | # <dt>complex_model_m_gpu</dt> |
| 446 | # <dd> |
| 447 | # A machine equivalent to |
| 448 | # <code suppresswarning="true">coplex_model_m</code> that also includes |
| 449 | # four GPUs. |
| 450 | # </dd> |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 451 | # </dl> |
| 452 | # |
| 453 | # You must set this value when `scaleTier` is set to `CUSTOM`. |
| 454 | "hyperparameters": { # Represents a set of hyperparameters to optimize. # Optional. The set of Hyperparameters to tune. |
| 455 | "maxTrials": 42, # Optional. How many training trials should be attempted to optimize |
| 456 | # the specified hyperparameters. |
| 457 | # |
| 458 | # Defaults to one. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 459 | "hyperparameterMetricTag": "A String", # Optional. The Tensorflow summary tag name to use for optimizing trials. For |
| 460 | # current versions of Tensorflow, this tag name should exactly match what is |
| 461 | # shown in Tensorboard, including all scopes. For versions of Tensorflow |
| 462 | # prior to 0.12, this should be only the tag passed to tf.Summary. |
| 463 | # By default, "training/hptuning/metric" will be used. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 464 | "params": [ # Required. The set of parameters to tune. |
| 465 | { # Represents a single hyperparameter to optimize. |
| 466 | "maxValue": 3.14, # Required if typeis `DOUBLE` or `INTEGER`. This field |
| 467 | # should be unset if type is `CATEGORICAL`. This value should be integers if |
| 468 | # type is `INTEGER`. |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 469 | "minValue": 3.14, # Required if type is `DOUBLE` or `INTEGER`. This field |
| 470 | # should be unset if type is `CATEGORICAL`. This value should be integers if |
| 471 | # type is INTEGER. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 472 | "discreteValues": [ # Required if type is `DISCRETE`. |
| 473 | # A list of feasible points. |
| 474 | # The list should be in strictly increasing order. For instance, this |
| 475 | # parameter might have possible settings of 1.5, 2.5, and 4.0. This list |
| 476 | # should not contain more than 1,000 values. |
| 477 | 3.14, |
| 478 | ], |
| 479 | "parameterName": "A String", # Required. The parameter name must be unique amongst all ParameterConfigs in |
| 480 | # a HyperparameterSpec message. E.g., "learning_rate". |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 481 | "categoricalValues": [ # Required if type is `CATEGORICAL`. The list of possible categories. |
| 482 | "A String", |
| 483 | ], |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 484 | "type": "A String", # Required. The type of the parameter. |
| 485 | "scaleType": "A String", # Optional. How the parameter should be scaled to the hypercube. |
| 486 | # Leave unset for categorical parameters. |
| 487 | # Some kind of scaling is strongly recommended for real or integral |
| 488 | # parameters (e.g., `UNIT_LINEAR_SCALE`). |
| 489 | }, |
| 490 | ], |
| 491 | "maxParallelTrials": 42, # Optional. The number of training trials to run concurrently. |
| 492 | # You can reduce the time it takes to perform hyperparameter tuning by adding |
| 493 | # trials in parallel. However, each trail only benefits from the information |
| 494 | # gained in completed trials. That means that a trial does not get access to |
| 495 | # the results of trials running at the same time, which could reduce the |
| 496 | # quality of the overall optimization. |
| 497 | # |
| 498 | # Each trial will use the same scale tier and machine types. |
| 499 | # |
| 500 | # Defaults to one. |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 501 | "goal": "A String", # Required. The type of goal to use for tuning. Available types are |
| 502 | # `MAXIMIZE` and `MINIMIZE`. |
| 503 | # |
| 504 | # Defaults to `MAXIMIZE`. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 505 | }, |
| 506 | "region": "A String", # Required. The Google Compute Engine region to run the training job in. |
| 507 | "args": [ # Optional. Command line arguments to pass to the program. |
| 508 | "A String", |
| 509 | ], |
| 510 | "pythonModule": "A String", # Required. The Python module name to run after installing the packages. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 511 | "jobDir": "A String", # Optional. A Google Cloud Storage path in which to store training outputs |
| 512 | # and other data needed for training. This path is passed to your TensorFlow |
| 513 | # program as the 'job_dir' command-line argument. The benefit of specifying |
| 514 | # this field is that Cloud ML validates the path for use in training. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 515 | "packageUris": [ # Required. The Google Cloud Storage location of the packages with |
| 516 | # the training program and any additional dependencies. |
| 517 | "A String", |
| 518 | ], |
| 519 | "workerCount": "A String", # Optional. The number of worker replicas to use for the training job. Each |
| 520 | # replica in the cluster will be of the type specified in `worker_type`. |
| 521 | # |
| 522 | # This value can only be used when `scale_tier` is set to `CUSTOM`. If you |
| 523 | # set this value, you must also set `worker_type`. |
| 524 | "parameterServerType": "A String", # Optional. Specifies the type of virtual machine to use for your training |
| 525 | # job's parameter server. |
| 526 | # |
| 527 | # The supported values are the same as those described in the entry for |
| 528 | # `master_type`. |
| 529 | # |
| 530 | # This value must be present when `scaleTier` is set to `CUSTOM` and |
| 531 | # `parameter_server_count` is greater than zero. |
| 532 | "parameterServerCount": "A String", # Optional. The number of parameter server replicas to use for the training |
| 533 | # job. Each replica in the cluster will be of the type specified in |
| 534 | # `parameter_server_type`. |
| 535 | # |
| 536 | # This value can only be used when `scale_tier` is set to `CUSTOM`.If you |
| 537 | # set this value, you must also set `parameter_server_type`. |
| 538 | }, |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 539 | "predictionInput": { # Represents input parameters for a prediction job. # Input parameters to create a prediction job. |
| 540 | "modelName": "A String", # Use this field if you want to use the default version for the specified |
| 541 | # model. The string must use the following format: |
| 542 | # |
| 543 | # `"projects/<var>[YOUR_PROJECT]</var>/models/<var>[YOUR_MODEL]</var>"` |
| 544 | "runtimeVersion": "A String", # Optional. The Google Cloud ML runtime version to use for this batch |
| 545 | # prediction. If not set, Google Cloud ML will pick the runtime version used |
| 546 | # during the CreateVersion request for this model version, or choose the |
| 547 | # latest stable version when model version information is not available |
| 548 | # such as when the model is specified by uri. |
| 549 | "inputPaths": [ # Required. The Google Cloud Storage location of the input data files. |
| 550 | # May contain wildcards. |
| 551 | "A String", |
| 552 | ], |
| 553 | "maxWorkerCount": "A String", # Optional. The maximum number of workers to be used for parallel processing. |
| 554 | # Defaults to 10 if not specified. |
| 555 | "uri": "A String", # Use this field if you want to specify a Google Cloud Storage path for |
| 556 | # the model to use. |
| 557 | "outputPath": "A String", # Required. The output Google Cloud Storage location. |
| 558 | "dataFormat": "A String", # Required. The format of the input data files. |
| 559 | "versionName": "A String", # Use this field if you want to specify a version of the model to use. The |
| 560 | # string is formatted the same way as `model_version`, with the addition |
| 561 | # of the version information: |
| 562 | # |
| 563 | # `"projects/<var>[YOUR_PROJECT]</var>/models/<var>YOUR_MODEL/versions/<var>[YOUR_VERSION]</var>"` |
| 564 | "region": "A String", # Required. The Google Compute Engine region to run the prediction job in. |
| 565 | }, |
| 566 | "errorMessage": "A String", # Output only. The details of a failure or a cancellation. |
| 567 | "jobId": "A String", # Required. The user-specified id of the job. |
| 568 | "state": "A String", # Output only. The detailed state of a job. |
| 569 | "startTime": "A String", # Output only. When the job processing was started. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 570 | "endTime": "A String", # Output only. When the job processing was completed. |
| 571 | "predictionOutput": { # Represents results of a prediction job. # The current prediction job result. |
| 572 | "outputPath": "A String", # The output Google Cloud Storage location provided at the job creation time. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 573 | "nodeHours": 3.14, # Node hours used by the batch prediction job. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 574 | "predictionCount": "A String", # The number of generated predictions. |
| 575 | "errorCount": "A String", # The number of data instances which resulted in errors. |
| 576 | }, |
| 577 | "createTime": "A String", # Output only. When the job was created. |
| 578 | }</pre> |
| 579 | </div> |
| 580 | |
| 581 | <div class="method"> |
| 582 | <code class="details" id="get">get(name=None, x__xgafv=None)</code> |
| 583 | <pre>Describes a job. |
| 584 | |
| 585 | Args: |
| 586 | name: string, Required. The name of the job to get the description of. |
| 587 | |
| 588 | Authorization: requires `Viewer` role on the parent project. (required) |
| 589 | x__xgafv: string, V1 error format. |
| 590 | Allowed values |
| 591 | 1 - v1 error format |
| 592 | 2 - v2 error format |
| 593 | |
| 594 | Returns: |
| 595 | An object of the form: |
| 596 | |
| 597 | { # Represents a training or prediction job. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 598 | "trainingOutput": { # Represents results of a training job. Output only. # The current training job result. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 599 | "trials": [ # Results for individual Hyperparameter trials. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 600 | # Only set for hyperparameter tuning jobs. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 601 | { # Represents the result of a single hyperparameter tuning trial from a |
| 602 | # training job. The TrainingOutput object that is returned on successful |
| 603 | # completion of a training job with hyperparameter tuning includes a list |
| 604 | # of HyperparameterOutput objects, one for each successful trial. |
| 605 | "hyperparameters": { # The hyperparameters given to this trial. |
| 606 | "a_key": "A String", |
| 607 | }, |
| 608 | "trialId": "A String", # The trial id for these results. |
| 609 | "allMetrics": [ # All recorded object metrics for this trial. |
| 610 | { # An observed value of a metric. |
| 611 | "trainingStep": "A String", # The global training step for this metric. |
| 612 | "objectiveValue": 3.14, # The objective value at this training step. |
| 613 | }, |
| 614 | ], |
| 615 | "finalMetric": { # An observed value of a metric. # The final objective metric seen for this trial. |
| 616 | "trainingStep": "A String", # The global training step for this metric. |
| 617 | "objectiveValue": 3.14, # The objective value at this training step. |
| 618 | }, |
| 619 | }, |
| 620 | ], |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 621 | "isHyperparameterTuningJob": True or False, # Whether this job is a hyperparameter tuning job. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 622 | "consumedMLUnits": 3.14, # The amount of ML units consumed by the job. |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 623 | "completedTrialCount": "A String", # The number of hyperparameter tuning trials that completed successfully. |
| 624 | # Only set for hyperparameter tuning jobs. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 625 | }, |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 626 | "trainingInput": { # Represents input parameters for a training job. # Input parameters to create a training job. |
| 627 | "workerType": "A String", # Optional. Specifies the type of virtual machine to use for your training |
| 628 | # job's worker nodes. |
| 629 | # |
| 630 | # The supported values are the same as those described in the entry for |
| 631 | # `masterType`. |
| 632 | # |
| 633 | # This value must be present when `scaleTier` is set to `CUSTOM` and |
| 634 | # `workerCount` is greater than zero. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 635 | "runtimeVersion": "A String", # Optional. The Google Cloud ML runtime version to use for training. If not |
| 636 | # set, Google Cloud ML will choose the latest stable version. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 637 | "scaleTier": "A String", # Required. Specifies the machine types, the number of replicas for workers |
| 638 | # and parameter servers. |
| 639 | "masterType": "A String", # Optional. Specifies the type of virtual machine to use for your training |
| 640 | # job's master worker. |
| 641 | # |
| 642 | # The following types are supported: |
| 643 | # |
| 644 | # <dl> |
| 645 | # <dt>standard</dt> |
| 646 | # <dd> |
| 647 | # A basic machine configuration suitable for training simple models with |
| 648 | # small to moderate datasets. |
| 649 | # </dd> |
| 650 | # <dt>large_model</dt> |
| 651 | # <dd> |
| 652 | # A machine with a lot of memory, specially suited for parameter servers |
| 653 | # when your model is large (having many hidden layers or layers with very |
| 654 | # large numbers of nodes). |
| 655 | # </dd> |
| 656 | # <dt>complex_model_s</dt> |
| 657 | # <dd> |
| 658 | # A machine suitable for the master and workers of the cluster when your |
| 659 | # model requires more computation than the standard machine can handle |
| 660 | # satisfactorily. |
| 661 | # </dd> |
| 662 | # <dt>complex_model_m</dt> |
| 663 | # <dd> |
| 664 | # A machine with roughly twice the number of cores and roughly double the |
| 665 | # memory of <code suppresswarning="true">complex_model_s</code>. |
| 666 | # </dd> |
| 667 | # <dt>complex_model_l</dt> |
| 668 | # <dd> |
| 669 | # A machine with roughly twice the number of cores and roughly double the |
| 670 | # memory of <code suppresswarning="true">complex_model_m</code>. |
| 671 | # </dd> |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 672 | # <dt>standard_gpu</dt> |
| 673 | # <dd> |
| 674 | # A machine equivalent to <code suppresswarning="true">standard</code> that |
| 675 | # also includes a |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 676 | # <a href="/ml-engine/docs/how-tos/using-gpus"> |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 677 | # GPU that you can use in your trainer</a>. |
| 678 | # </dd> |
| 679 | # <dt>complex_model_m_gpu</dt> |
| 680 | # <dd> |
| 681 | # A machine equivalent to |
| 682 | # <code suppresswarning="true">coplex_model_m</code> that also includes |
| 683 | # four GPUs. |
| 684 | # </dd> |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 685 | # </dl> |
| 686 | # |
| 687 | # You must set this value when `scaleTier` is set to `CUSTOM`. |
| 688 | "hyperparameters": { # Represents a set of hyperparameters to optimize. # Optional. The set of Hyperparameters to tune. |
| 689 | "maxTrials": 42, # Optional. How many training trials should be attempted to optimize |
| 690 | # the specified hyperparameters. |
| 691 | # |
| 692 | # Defaults to one. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 693 | "hyperparameterMetricTag": "A String", # Optional. The Tensorflow summary tag name to use for optimizing trials. For |
| 694 | # current versions of Tensorflow, this tag name should exactly match what is |
| 695 | # shown in Tensorboard, including all scopes. For versions of Tensorflow |
| 696 | # prior to 0.12, this should be only the tag passed to tf.Summary. |
| 697 | # By default, "training/hptuning/metric" will be used. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 698 | "params": [ # Required. The set of parameters to tune. |
| 699 | { # Represents a single hyperparameter to optimize. |
| 700 | "maxValue": 3.14, # Required if typeis `DOUBLE` or `INTEGER`. This field |
| 701 | # should be unset if type is `CATEGORICAL`. This value should be integers if |
| 702 | # type is `INTEGER`. |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 703 | "minValue": 3.14, # Required if type is `DOUBLE` or `INTEGER`. This field |
| 704 | # should be unset if type is `CATEGORICAL`. This value should be integers if |
| 705 | # type is INTEGER. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 706 | "discreteValues": [ # Required if type is `DISCRETE`. |
| 707 | # A list of feasible points. |
| 708 | # The list should be in strictly increasing order. For instance, this |
| 709 | # parameter might have possible settings of 1.5, 2.5, and 4.0. This list |
| 710 | # should not contain more than 1,000 values. |
| 711 | 3.14, |
| 712 | ], |
| 713 | "parameterName": "A String", # Required. The parameter name must be unique amongst all ParameterConfigs in |
| 714 | # a HyperparameterSpec message. E.g., "learning_rate". |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 715 | "categoricalValues": [ # Required if type is `CATEGORICAL`. The list of possible categories. |
| 716 | "A String", |
| 717 | ], |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 718 | "type": "A String", # Required. The type of the parameter. |
| 719 | "scaleType": "A String", # Optional. How the parameter should be scaled to the hypercube. |
| 720 | # Leave unset for categorical parameters. |
| 721 | # Some kind of scaling is strongly recommended for real or integral |
| 722 | # parameters (e.g., `UNIT_LINEAR_SCALE`). |
| 723 | }, |
| 724 | ], |
| 725 | "maxParallelTrials": 42, # Optional. The number of training trials to run concurrently. |
| 726 | # You can reduce the time it takes to perform hyperparameter tuning by adding |
| 727 | # trials in parallel. However, each trail only benefits from the information |
| 728 | # gained in completed trials. That means that a trial does not get access to |
| 729 | # the results of trials running at the same time, which could reduce the |
| 730 | # quality of the overall optimization. |
| 731 | # |
| 732 | # Each trial will use the same scale tier and machine types. |
| 733 | # |
| 734 | # Defaults to one. |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 735 | "goal": "A String", # Required. The type of goal to use for tuning. Available types are |
| 736 | # `MAXIMIZE` and `MINIMIZE`. |
| 737 | # |
| 738 | # Defaults to `MAXIMIZE`. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 739 | }, |
| 740 | "region": "A String", # Required. The Google Compute Engine region to run the training job in. |
| 741 | "args": [ # Optional. Command line arguments to pass to the program. |
| 742 | "A String", |
| 743 | ], |
| 744 | "pythonModule": "A String", # Required. The Python module name to run after installing the packages. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 745 | "jobDir": "A String", # Optional. A Google Cloud Storage path in which to store training outputs |
| 746 | # and other data needed for training. This path is passed to your TensorFlow |
| 747 | # program as the 'job_dir' command-line argument. The benefit of specifying |
| 748 | # this field is that Cloud ML validates the path for use in training. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 749 | "packageUris": [ # Required. The Google Cloud Storage location of the packages with |
| 750 | # the training program and any additional dependencies. |
| 751 | "A String", |
| 752 | ], |
| 753 | "workerCount": "A String", # Optional. The number of worker replicas to use for the training job. Each |
| 754 | # replica in the cluster will be of the type specified in `worker_type`. |
| 755 | # |
| 756 | # This value can only be used when `scale_tier` is set to `CUSTOM`. If you |
| 757 | # set this value, you must also set `worker_type`. |
| 758 | "parameterServerType": "A String", # Optional. Specifies the type of virtual machine to use for your training |
| 759 | # job's parameter server. |
| 760 | # |
| 761 | # The supported values are the same as those described in the entry for |
| 762 | # `master_type`. |
| 763 | # |
| 764 | # This value must be present when `scaleTier` is set to `CUSTOM` and |
| 765 | # `parameter_server_count` is greater than zero. |
| 766 | "parameterServerCount": "A String", # Optional. The number of parameter server replicas to use for the training |
| 767 | # job. Each replica in the cluster will be of the type specified in |
| 768 | # `parameter_server_type`. |
| 769 | # |
| 770 | # This value can only be used when `scale_tier` is set to `CUSTOM`.If you |
| 771 | # set this value, you must also set `parameter_server_type`. |
| 772 | }, |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 773 | "predictionInput": { # Represents input parameters for a prediction job. # Input parameters to create a prediction job. |
| 774 | "modelName": "A String", # Use this field if you want to use the default version for the specified |
| 775 | # model. The string must use the following format: |
| 776 | # |
| 777 | # `"projects/<var>[YOUR_PROJECT]</var>/models/<var>[YOUR_MODEL]</var>"` |
| 778 | "runtimeVersion": "A String", # Optional. The Google Cloud ML runtime version to use for this batch |
| 779 | # prediction. If not set, Google Cloud ML will pick the runtime version used |
| 780 | # during the CreateVersion request for this model version, or choose the |
| 781 | # latest stable version when model version information is not available |
| 782 | # such as when the model is specified by uri. |
| 783 | "inputPaths": [ # Required. The Google Cloud Storage location of the input data files. |
| 784 | # May contain wildcards. |
| 785 | "A String", |
| 786 | ], |
| 787 | "maxWorkerCount": "A String", # Optional. The maximum number of workers to be used for parallel processing. |
| 788 | # Defaults to 10 if not specified. |
| 789 | "uri": "A String", # Use this field if you want to specify a Google Cloud Storage path for |
| 790 | # the model to use. |
| 791 | "outputPath": "A String", # Required. The output Google Cloud Storage location. |
| 792 | "dataFormat": "A String", # Required. The format of the input data files. |
| 793 | "versionName": "A String", # Use this field if you want to specify a version of the model to use. The |
| 794 | # string is formatted the same way as `model_version`, with the addition |
| 795 | # of the version information: |
| 796 | # |
| 797 | # `"projects/<var>[YOUR_PROJECT]</var>/models/<var>YOUR_MODEL/versions/<var>[YOUR_VERSION]</var>"` |
| 798 | "region": "A String", # Required. The Google Compute Engine region to run the prediction job in. |
| 799 | }, |
| 800 | "errorMessage": "A String", # Output only. The details of a failure or a cancellation. |
| 801 | "jobId": "A String", # Required. The user-specified id of the job. |
| 802 | "state": "A String", # Output only. The detailed state of a job. |
| 803 | "startTime": "A String", # Output only. When the job processing was started. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 804 | "endTime": "A String", # Output only. When the job processing was completed. |
| 805 | "predictionOutput": { # Represents results of a prediction job. # The current prediction job result. |
| 806 | "outputPath": "A String", # The output Google Cloud Storage location provided at the job creation time. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 807 | "nodeHours": 3.14, # Node hours used by the batch prediction job. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 808 | "predictionCount": "A String", # The number of generated predictions. |
| 809 | "errorCount": "A String", # The number of data instances which resulted in errors. |
| 810 | }, |
| 811 | "createTime": "A String", # Output only. When the job was created. |
| 812 | }</pre> |
| 813 | </div> |
| 814 | |
| 815 | <div class="method"> |
| 816 | <code class="details" id="list">list(parent=None, pageSize=None, filter=None, pageToken=None, x__xgafv=None)</code> |
| 817 | <pre>Lists the jobs in the project. |
| 818 | |
| 819 | Args: |
| 820 | parent: string, Required. The name of the project for which to list jobs. |
| 821 | |
| 822 | Authorization: requires `Viewer` role on the specified project. (required) |
| 823 | pageSize: integer, Optional. The number of jobs to retrieve per "page" of results. If there |
| 824 | are more remaining results than this number, the response message will |
| 825 | contain a valid value in the `next_page_token` field. |
| 826 | |
| 827 | The default value is 20, and the maximum page size is 100. |
| 828 | filter: string, Optional. Specifies the subset of jobs to retrieve. |
| 829 | pageToken: string, Optional. A page token to request the next page of results. |
| 830 | |
| 831 | You get the token from the `next_page_token` field of the response from |
| 832 | the previous call. |
| 833 | x__xgafv: string, V1 error format. |
| 834 | Allowed values |
| 835 | 1 - v1 error format |
| 836 | 2 - v2 error format |
| 837 | |
| 838 | Returns: |
| 839 | An object of the form: |
| 840 | |
| 841 | { # Response message for the ListJobs method. |
| 842 | "nextPageToken": "A String", # Optional. Pass this token as the `page_token` field of the request for a |
| 843 | # subsequent call. |
| 844 | "jobs": [ # The list of jobs. |
| 845 | { # Represents a training or prediction job. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 846 | "trainingOutput": { # Represents results of a training job. Output only. # The current training job result. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 847 | "trials": [ # Results for individual Hyperparameter trials. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 848 | # Only set for hyperparameter tuning jobs. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 849 | { # Represents the result of a single hyperparameter tuning trial from a |
| 850 | # training job. The TrainingOutput object that is returned on successful |
| 851 | # completion of a training job with hyperparameter tuning includes a list |
| 852 | # of HyperparameterOutput objects, one for each successful trial. |
| 853 | "hyperparameters": { # The hyperparameters given to this trial. |
| 854 | "a_key": "A String", |
| 855 | }, |
| 856 | "trialId": "A String", # The trial id for these results. |
| 857 | "allMetrics": [ # All recorded object metrics for this trial. |
| 858 | { # An observed value of a metric. |
| 859 | "trainingStep": "A String", # The global training step for this metric. |
| 860 | "objectiveValue": 3.14, # The objective value at this training step. |
| 861 | }, |
| 862 | ], |
| 863 | "finalMetric": { # An observed value of a metric. # The final objective metric seen for this trial. |
| 864 | "trainingStep": "A String", # The global training step for this metric. |
| 865 | "objectiveValue": 3.14, # The objective value at this training step. |
| 866 | }, |
| 867 | }, |
| 868 | ], |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 869 | "isHyperparameterTuningJob": True or False, # Whether this job is a hyperparameter tuning job. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 870 | "consumedMLUnits": 3.14, # The amount of ML units consumed by the job. |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 871 | "completedTrialCount": "A String", # The number of hyperparameter tuning trials that completed successfully. |
| 872 | # Only set for hyperparameter tuning jobs. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 873 | }, |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 874 | "trainingInput": { # Represents input parameters for a training job. # Input parameters to create a training job. |
| 875 | "workerType": "A String", # Optional. Specifies the type of virtual machine to use for your training |
| 876 | # job's worker nodes. |
| 877 | # |
| 878 | # The supported values are the same as those described in the entry for |
| 879 | # `masterType`. |
| 880 | # |
| 881 | # This value must be present when `scaleTier` is set to `CUSTOM` and |
| 882 | # `workerCount` is greater than zero. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 883 | "runtimeVersion": "A String", # Optional. The Google Cloud ML runtime version to use for training. If not |
| 884 | # set, Google Cloud ML will choose the latest stable version. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 885 | "scaleTier": "A String", # Required. Specifies the machine types, the number of replicas for workers |
| 886 | # and parameter servers. |
| 887 | "masterType": "A String", # Optional. Specifies the type of virtual machine to use for your training |
| 888 | # job's master worker. |
| 889 | # |
| 890 | # The following types are supported: |
| 891 | # |
| 892 | # <dl> |
| 893 | # <dt>standard</dt> |
| 894 | # <dd> |
| 895 | # A basic machine configuration suitable for training simple models with |
| 896 | # small to moderate datasets. |
| 897 | # </dd> |
| 898 | # <dt>large_model</dt> |
| 899 | # <dd> |
| 900 | # A machine with a lot of memory, specially suited for parameter servers |
| 901 | # when your model is large (having many hidden layers or layers with very |
| 902 | # large numbers of nodes). |
| 903 | # </dd> |
| 904 | # <dt>complex_model_s</dt> |
| 905 | # <dd> |
| 906 | # A machine suitable for the master and workers of the cluster when your |
| 907 | # model requires more computation than the standard machine can handle |
| 908 | # satisfactorily. |
| 909 | # </dd> |
| 910 | # <dt>complex_model_m</dt> |
| 911 | # <dd> |
| 912 | # A machine with roughly twice the number of cores and roughly double the |
| 913 | # memory of <code suppresswarning="true">complex_model_s</code>. |
| 914 | # </dd> |
| 915 | # <dt>complex_model_l</dt> |
| 916 | # <dd> |
| 917 | # A machine with roughly twice the number of cores and roughly double the |
| 918 | # memory of <code suppresswarning="true">complex_model_m</code>. |
| 919 | # </dd> |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 920 | # <dt>standard_gpu</dt> |
| 921 | # <dd> |
| 922 | # A machine equivalent to <code suppresswarning="true">standard</code> that |
| 923 | # also includes a |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 924 | # <a href="/ml-engine/docs/how-tos/using-gpus"> |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 925 | # GPU that you can use in your trainer</a>. |
| 926 | # </dd> |
| 927 | # <dt>complex_model_m_gpu</dt> |
| 928 | # <dd> |
| 929 | # A machine equivalent to |
| 930 | # <code suppresswarning="true">coplex_model_m</code> that also includes |
| 931 | # four GPUs. |
| 932 | # </dd> |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 933 | # </dl> |
| 934 | # |
| 935 | # You must set this value when `scaleTier` is set to `CUSTOM`. |
| 936 | "hyperparameters": { # Represents a set of hyperparameters to optimize. # Optional. The set of Hyperparameters to tune. |
| 937 | "maxTrials": 42, # Optional. How many training trials should be attempted to optimize |
| 938 | # the specified hyperparameters. |
| 939 | # |
| 940 | # Defaults to one. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 941 | "hyperparameterMetricTag": "A String", # Optional. The Tensorflow summary tag name to use for optimizing trials. For |
| 942 | # current versions of Tensorflow, this tag name should exactly match what is |
| 943 | # shown in Tensorboard, including all scopes. For versions of Tensorflow |
| 944 | # prior to 0.12, this should be only the tag passed to tf.Summary. |
| 945 | # By default, "training/hptuning/metric" will be used. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 946 | "params": [ # Required. The set of parameters to tune. |
| 947 | { # Represents a single hyperparameter to optimize. |
| 948 | "maxValue": 3.14, # Required if typeis `DOUBLE` or `INTEGER`. This field |
| 949 | # should be unset if type is `CATEGORICAL`. This value should be integers if |
| 950 | # type is `INTEGER`. |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 951 | "minValue": 3.14, # Required if type is `DOUBLE` or `INTEGER`. This field |
| 952 | # should be unset if type is `CATEGORICAL`. This value should be integers if |
| 953 | # type is INTEGER. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 954 | "discreteValues": [ # Required if type is `DISCRETE`. |
| 955 | # A list of feasible points. |
| 956 | # The list should be in strictly increasing order. For instance, this |
| 957 | # parameter might have possible settings of 1.5, 2.5, and 4.0. This list |
| 958 | # should not contain more than 1,000 values. |
| 959 | 3.14, |
| 960 | ], |
| 961 | "parameterName": "A String", # Required. The parameter name must be unique amongst all ParameterConfigs in |
| 962 | # a HyperparameterSpec message. E.g., "learning_rate". |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 963 | "categoricalValues": [ # Required if type is `CATEGORICAL`. The list of possible categories. |
| 964 | "A String", |
| 965 | ], |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 966 | "type": "A String", # Required. The type of the parameter. |
| 967 | "scaleType": "A String", # Optional. How the parameter should be scaled to the hypercube. |
| 968 | # Leave unset for categorical parameters. |
| 969 | # Some kind of scaling is strongly recommended for real or integral |
| 970 | # parameters (e.g., `UNIT_LINEAR_SCALE`). |
| 971 | }, |
| 972 | ], |
| 973 | "maxParallelTrials": 42, # Optional. The number of training trials to run concurrently. |
| 974 | # You can reduce the time it takes to perform hyperparameter tuning by adding |
| 975 | # trials in parallel. However, each trail only benefits from the information |
| 976 | # gained in completed trials. That means that a trial does not get access to |
| 977 | # the results of trials running at the same time, which could reduce the |
| 978 | # quality of the overall optimization. |
| 979 | # |
| 980 | # Each trial will use the same scale tier and machine types. |
| 981 | # |
| 982 | # Defaults to one. |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 983 | "goal": "A String", # Required. The type of goal to use for tuning. Available types are |
| 984 | # `MAXIMIZE` and `MINIMIZE`. |
| 985 | # |
| 986 | # Defaults to `MAXIMIZE`. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 987 | }, |
| 988 | "region": "A String", # Required. The Google Compute Engine region to run the training job in. |
| 989 | "args": [ # Optional. Command line arguments to pass to the program. |
| 990 | "A String", |
| 991 | ], |
| 992 | "pythonModule": "A String", # Required. The Python module name to run after installing the packages. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 993 | "jobDir": "A String", # Optional. A Google Cloud Storage path in which to store training outputs |
| 994 | # and other data needed for training. This path is passed to your TensorFlow |
| 995 | # program as the 'job_dir' command-line argument. The benefit of specifying |
| 996 | # this field is that Cloud ML validates the path for use in training. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 997 | "packageUris": [ # Required. The Google Cloud Storage location of the packages with |
| 998 | # the training program and any additional dependencies. |
| 999 | "A String", |
| 1000 | ], |
| 1001 | "workerCount": "A String", # Optional. The number of worker replicas to use for the training job. Each |
| 1002 | # replica in the cluster will be of the type specified in `worker_type`. |
| 1003 | # |
| 1004 | # This value can only be used when `scale_tier` is set to `CUSTOM`. If you |
| 1005 | # set this value, you must also set `worker_type`. |
| 1006 | "parameterServerType": "A String", # Optional. Specifies the type of virtual machine to use for your training |
| 1007 | # job's parameter server. |
| 1008 | # |
| 1009 | # The supported values are the same as those described in the entry for |
| 1010 | # `master_type`. |
| 1011 | # |
| 1012 | # This value must be present when `scaleTier` is set to `CUSTOM` and |
| 1013 | # `parameter_server_count` is greater than zero. |
| 1014 | "parameterServerCount": "A String", # Optional. The number of parameter server replicas to use for the training |
| 1015 | # job. Each replica in the cluster will be of the type specified in |
| 1016 | # `parameter_server_type`. |
| 1017 | # |
| 1018 | # This value can only be used when `scale_tier` is set to `CUSTOM`.If you |
| 1019 | # set this value, you must also set `parameter_server_type`. |
| 1020 | }, |
Sai Cheemalapati | e833b79 | 2017-03-24 15:06:46 -0700 | [diff] [blame^] | 1021 | "predictionInput": { # Represents input parameters for a prediction job. # Input parameters to create a prediction job. |
| 1022 | "modelName": "A String", # Use this field if you want to use the default version for the specified |
| 1023 | # model. The string must use the following format: |
| 1024 | # |
| 1025 | # `"projects/<var>[YOUR_PROJECT]</var>/models/<var>[YOUR_MODEL]</var>"` |
| 1026 | "runtimeVersion": "A String", # Optional. The Google Cloud ML runtime version to use for this batch |
| 1027 | # prediction. If not set, Google Cloud ML will pick the runtime version used |
| 1028 | # during the CreateVersion request for this model version, or choose the |
| 1029 | # latest stable version when model version information is not available |
| 1030 | # such as when the model is specified by uri. |
| 1031 | "inputPaths": [ # Required. The Google Cloud Storage location of the input data files. |
| 1032 | # May contain wildcards. |
| 1033 | "A String", |
| 1034 | ], |
| 1035 | "maxWorkerCount": "A String", # Optional. The maximum number of workers to be used for parallel processing. |
| 1036 | # Defaults to 10 if not specified. |
| 1037 | "uri": "A String", # Use this field if you want to specify a Google Cloud Storage path for |
| 1038 | # the model to use. |
| 1039 | "outputPath": "A String", # Required. The output Google Cloud Storage location. |
| 1040 | "dataFormat": "A String", # Required. The format of the input data files. |
| 1041 | "versionName": "A String", # Use this field if you want to specify a version of the model to use. The |
| 1042 | # string is formatted the same way as `model_version`, with the addition |
| 1043 | # of the version information: |
| 1044 | # |
| 1045 | # `"projects/<var>[YOUR_PROJECT]</var>/models/<var>YOUR_MODEL/versions/<var>[YOUR_VERSION]</var>"` |
| 1046 | "region": "A String", # Required. The Google Compute Engine region to run the prediction job in. |
| 1047 | }, |
| 1048 | "errorMessage": "A String", # Output only. The details of a failure or a cancellation. |
| 1049 | "jobId": "A String", # Required. The user-specified id of the job. |
| 1050 | "state": "A String", # Output only. The detailed state of a job. |
| 1051 | "startTime": "A String", # Output only. When the job processing was started. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 1052 | "endTime": "A String", # Output only. When the job processing was completed. |
| 1053 | "predictionOutput": { # Represents results of a prediction job. # The current prediction job result. |
| 1054 | "outputPath": "A String", # The output Google Cloud Storage location provided at the job creation time. |
Sai Cheemalapati | c30d2b5 | 2017-03-13 12:12:03 -0400 | [diff] [blame] | 1055 | "nodeHours": 3.14, # Node hours used by the batch prediction job. |
Sai Cheemalapati | ea3a5e1 | 2016-10-12 14:05:53 -0700 | [diff] [blame] | 1056 | "predictionCount": "A String", # The number of generated predictions. |
| 1057 | "errorCount": "A String", # The number of data instances which resulted in errors. |
| 1058 | }, |
| 1059 | "createTime": "A String", # Output only. When the job was created. |
| 1060 | }, |
| 1061 | ], |
| 1062 | }</pre> |
| 1063 | </div> |
| 1064 | |
| 1065 | <div class="method"> |
| 1066 | <code class="details" id="list_next">list_next(previous_request, previous_response)</code> |
| 1067 | <pre>Retrieves the next page of results. |
| 1068 | |
| 1069 | Args: |
| 1070 | previous_request: The request for the previous page. (required) |
| 1071 | previous_response: The response from the request for the previous page. (required) |
| 1072 | |
| 1073 | Returns: |
| 1074 | A request object that you can call 'execute()' on to request the next |
| 1075 | page. Returns None if there are no more items in the collection. |
| 1076 | </pre> |
| 1077 | </div> |
| 1078 | |
| 1079 | </body></html> |