blob: 1b58dd244d79947f7140cea4077c7fb5ebd5277c [file] [log] [blame]
yoshi-code-botb6dc1b92021-03-02 11:49:08 -08001<html><body>
2<style>
3
4body, h1, h2, h3, div, span, p, pre, a {
5 margin: 0;
6 padding: 0;
7 border: 0;
8 font-weight: inherit;
9 font-style: inherit;
10 font-size: 100%;
11 font-family: inherit;
12 vertical-align: baseline;
13}
14
15body {
16 font-size: 13px;
17 padding: 1em;
18}
19
20h1 {
21 font-size: 26px;
22 margin-bottom: 1em;
23}
24
25h2 {
26 font-size: 24px;
27 margin-bottom: 1em;
28}
29
30h3 {
31 font-size: 20px;
32 margin-bottom: 1em;
33 margin-top: 1em;
34}
35
36pre, code {
37 line-height: 1.5;
38 font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
39}
40
41pre {
42 margin-top: 0.5em;
43}
44
45h1, h2, h3, p {
46 font-family: Arial, sans serif;
47}
48
49h1, h2, h3 {
50 border-bottom: solid #CCC 1px;
51}
52
53.toc_element {
54 margin-top: 0.5em;
55}
56
57.firstline {
58 margin-left: 2 em;
59}
60
61.method {
62 margin-top: 1em;
63 border: solid 1px #CCC;
64 padding: 1em;
65 background: #EEE;
66}
67
68.details {
69 font-weight: bold;
70 font-size: 14px;
71}
72
73</style>
74
75<h1><a href="notebooks_v1.html">Notebooks API</a> . <a href="notebooks_v1.projects.html">projects</a> . <a href="notebooks_v1.projects.locations.html">locations</a> . <a href="notebooks_v1.projects.locations.executions.html">executions</a></h1>
76<h2>Instance Methods</h2>
77<p class="toc_element">
78 <code><a href="#close">close()</a></code></p>
79<p class="firstline">Close httplib2 connections.</p>
80<p class="toc_element">
81 <code><a href="#create">create(parent, body=None, executionId=None, x__xgafv=None)</a></code></p>
82<p class="firstline">Creates a new Scheduled Notebook in a given project and location.</p>
83<p class="toc_element">
84 <code><a href="#delete">delete(name, x__xgafv=None)</a></code></p>
85<p class="firstline">Deletes execution</p>
86<p class="toc_element">
87 <code><a href="#get">get(name, x__xgafv=None)</a></code></p>
88<p class="firstline">Gets details of executions</p>
89<p class="toc_element">
90 <code><a href="#list">list(parent, filter=None, orderBy=None, pageSize=None, pageToken=None, x__xgafv=None)</a></code></p>
91<p class="firstline">Lists executions in a given project and location</p>
92<p class="toc_element">
93 <code><a href="#list_next">list_next(previous_request, previous_response)</a></code></p>
94<p class="firstline">Retrieves the next page of results.</p>
95<h3>Method Details</h3>
96<div class="method">
97 <code class="details" id="close">close()</code>
98 <pre>Close httplib2 connections.</pre>
99</div>
100
101<div class="method">
102 <code class="details" id="create">create(parent, body=None, executionId=None, x__xgafv=None)</code>
103 <pre>Creates a new Scheduled Notebook in a given project and location.
104
105Args:
106 parent: string, Required. Format: `parent=projects/{project_id}/locations/{location}` (required)
107 body: object, The request body.
108 The object takes the form of:
109
110{ # The definition of a single executed notebook.
111 &quot;createTime&quot;: &quot;A String&quot;, # Output only. Time the Execution was instantiated.
112 &quot;description&quot;: &quot;A String&quot;, # A brief description of this execution.
113 &quot;displayName&quot;: &quot;A String&quot;, # Output only. Name used for UI purposes. Name can only contain alphanumeric characters and underscores &#x27;_&#x27;.
114 &quot;executionTemplate&quot;: { # The description a notebook execution workload. # execute metadata including name, hardware spec, region, labels, etc.
115 &quot;acceleratorConfig&quot;: { # Definition of a hardware accelerator. Note that not all combinations of `type` and `core_count` are valid. Check GPUs on Compute Engine to find a valid combination. TPUs are not supported. # Configuration (count and accelerator type) for hardware running notebook execution.
116 &quot;coreCount&quot;: &quot;A String&quot;, # Count of cores of this accelerator.
117 &quot;type&quot;: &quot;A String&quot;, # Type of this accelerator.
118 },
119 &quot;containerImageUri&quot;: &quot;A String&quot;, # Container Image URI to a DLVM Example: &#x27;gcr.io/deeplearning-platform-release/base-cu100&#x27; More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
120 &quot;inputNotebookFile&quot;: &quot;A String&quot;, # Path to the notebook file to execute. Must be in a Google Cloud Storage bucket. Format: gs://{project_id}/{folder}/{notebook_file_name} Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
121 &quot;labels&quot;: { # Labels for execution. If execution is scheduled, a field included will be &#x27;nbs-scheduled&#x27;. Otherwise, it is an immediate execution, and an included field will be &#x27;nbs-immediate&#x27;. Use fields to efficiently index between various types of executions.
122 &quot;a_key&quot;: &quot;A String&quot;,
123 },
124 &quot;masterType&quot;: &quot;A String&quot;, # Specifies the type of virtual machine to use for your training job&#x27;s master worker. You must specify this field when `scaleTier` is set to `CUSTOM`. You can use certain Compute Engine machine types directly in this field. The following types are supported: - `n1-standard-4` - `n1-standard-8` - `n1-standard-16` - `n1-standard-32` - `n1-standard-64` - `n1-standard-96` - `n1-highmem-2` - `n1-highmem-4` - `n1-highmem-8` - `n1-highmem-16` - `n1-highmem-32` - `n1-highmem-64` - `n1-highmem-96` - `n1-highcpu-16` - `n1-highcpu-32` - `n1-highcpu-64` - `n1-highcpu-96` Alternatively, you can use the following legacy machine types: - `standard` - `large_model` - `complex_model_s` - `complex_model_m` - `complex_model_l` - `standard_gpu` - `complex_model_m_gpu` - `complex_model_l_gpu` - `standard_p100` - `complex_model_m_p100` - `standard_v100` - `large_model_v100` - `complex_model_m_v100` - `complex_model_l_v100` Finally, if you want to use a TPU for training, specify `cloud_tpu` in this field. Learn more about the [special configuration options for training with TPU.
125 &quot;outputNotebookFolder&quot;: &quot;A String&quot;, # Path to the notebook folder to write to. Must be in a Google Cloud Storage bucket path. Format: gs://{project_id}/{folder} Ex: gs://notebook_user/scheduled_notebooks
126 &quot;parameters&quot;: &quot;A String&quot;, # Parameters used within the &#x27;input_notebook_file&#x27; notebook.
127 &quot;paramsYamlFile&quot;: &quot;A String&quot;, # Parameters to be overridden in the notebook during execution. Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on how to specifying parameters in the input notebook and pass them here in an YAML file. Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
128 &quot;scaleTier&quot;: &quot;A String&quot;, # Required. Scale tier of the hardware used for notebook execution.
129 },
130 &quot;name&quot;: &quot;A String&quot;, # Output only. The resource name of the execute. Format: `projects/{project_id}/locations/{location}/execution/{execution_id}
131 &quot;outputNotebookFile&quot;: &quot;A String&quot;, # Output notebook file generated by this execution
132 &quot;state&quot;: &quot;A String&quot;, # Output only. State of the underlying AI Platform job.
133 &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Time the Execution was last updated.
134}
135
136 executionId: string, Required. User-defined unique ID of this execution.
137 x__xgafv: string, V1 error format.
138 Allowed values
139 1 - v1 error format
140 2 - v2 error format
141
142Returns:
143 An object of the form:
144
145 { # This resource represents a long-running operation that is the result of a network API call.
146 &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
147 &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
148 &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
149 &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
150 {
151 &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
152 },
153 ],
154 &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
155 },
156 &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
157 &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
158 },
159 &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
160 &quot;response&quot;: { # The normal response of the operation in case of success. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
161 &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
162 },
163}</pre>
164</div>
165
166<div class="method">
167 <code class="details" id="delete">delete(name, x__xgafv=None)</code>
168 <pre>Deletes execution
169
170Args:
171 name: string, Required. Format: `projects/{project_id}/locations/{location}/executions/{execution_id}` (required)
172 x__xgafv: string, V1 error format.
173 Allowed values
174 1 - v1 error format
175 2 - v2 error format
176
177Returns:
178 An object of the form:
179
180 { # This resource represents a long-running operation that is the result of a network API call.
181 &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
182 &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
183 &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
184 &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
185 {
186 &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
187 },
188 ],
189 &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
190 },
191 &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
192 &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
193 },
194 &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
195 &quot;response&quot;: { # The normal response of the operation in case of success. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
196 &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
197 },
198}</pre>
199</div>
200
201<div class="method">
202 <code class="details" id="get">get(name, x__xgafv=None)</code>
203 <pre>Gets details of executions
204
205Args:
206 name: string, Required. Format: `projects/{project_id}/locations/{location}/schedules/{execution_id}` (required)
207 x__xgafv: string, V1 error format.
208 Allowed values
209 1 - v1 error format
210 2 - v2 error format
211
212Returns:
213 An object of the form:
214
215 { # The definition of a single executed notebook.
216 &quot;createTime&quot;: &quot;A String&quot;, # Output only. Time the Execution was instantiated.
217 &quot;description&quot;: &quot;A String&quot;, # A brief description of this execution.
218 &quot;displayName&quot;: &quot;A String&quot;, # Output only. Name used for UI purposes. Name can only contain alphanumeric characters and underscores &#x27;_&#x27;.
219 &quot;executionTemplate&quot;: { # The description a notebook execution workload. # execute metadata including name, hardware spec, region, labels, etc.
220 &quot;acceleratorConfig&quot;: { # Definition of a hardware accelerator. Note that not all combinations of `type` and `core_count` are valid. Check GPUs on Compute Engine to find a valid combination. TPUs are not supported. # Configuration (count and accelerator type) for hardware running notebook execution.
221 &quot;coreCount&quot;: &quot;A String&quot;, # Count of cores of this accelerator.
222 &quot;type&quot;: &quot;A String&quot;, # Type of this accelerator.
223 },
224 &quot;containerImageUri&quot;: &quot;A String&quot;, # Container Image URI to a DLVM Example: &#x27;gcr.io/deeplearning-platform-release/base-cu100&#x27; More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
225 &quot;inputNotebookFile&quot;: &quot;A String&quot;, # Path to the notebook file to execute. Must be in a Google Cloud Storage bucket. Format: gs://{project_id}/{folder}/{notebook_file_name} Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
226 &quot;labels&quot;: { # Labels for execution. If execution is scheduled, a field included will be &#x27;nbs-scheduled&#x27;. Otherwise, it is an immediate execution, and an included field will be &#x27;nbs-immediate&#x27;. Use fields to efficiently index between various types of executions.
227 &quot;a_key&quot;: &quot;A String&quot;,
228 },
229 &quot;masterType&quot;: &quot;A String&quot;, # Specifies the type of virtual machine to use for your training job&#x27;s master worker. You must specify this field when `scaleTier` is set to `CUSTOM`. You can use certain Compute Engine machine types directly in this field. The following types are supported: - `n1-standard-4` - `n1-standard-8` - `n1-standard-16` - `n1-standard-32` - `n1-standard-64` - `n1-standard-96` - `n1-highmem-2` - `n1-highmem-4` - `n1-highmem-8` - `n1-highmem-16` - `n1-highmem-32` - `n1-highmem-64` - `n1-highmem-96` - `n1-highcpu-16` - `n1-highcpu-32` - `n1-highcpu-64` - `n1-highcpu-96` Alternatively, you can use the following legacy machine types: - `standard` - `large_model` - `complex_model_s` - `complex_model_m` - `complex_model_l` - `standard_gpu` - `complex_model_m_gpu` - `complex_model_l_gpu` - `standard_p100` - `complex_model_m_p100` - `standard_v100` - `large_model_v100` - `complex_model_m_v100` - `complex_model_l_v100` Finally, if you want to use a TPU for training, specify `cloud_tpu` in this field. Learn more about the [special configuration options for training with TPU.
230 &quot;outputNotebookFolder&quot;: &quot;A String&quot;, # Path to the notebook folder to write to. Must be in a Google Cloud Storage bucket path. Format: gs://{project_id}/{folder} Ex: gs://notebook_user/scheduled_notebooks
231 &quot;parameters&quot;: &quot;A String&quot;, # Parameters used within the &#x27;input_notebook_file&#x27; notebook.
232 &quot;paramsYamlFile&quot;: &quot;A String&quot;, # Parameters to be overridden in the notebook during execution. Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on how to specifying parameters in the input notebook and pass them here in an YAML file. Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
233 &quot;scaleTier&quot;: &quot;A String&quot;, # Required. Scale tier of the hardware used for notebook execution.
234 },
235 &quot;name&quot;: &quot;A String&quot;, # Output only. The resource name of the execute. Format: `projects/{project_id}/locations/{location}/execution/{execution_id}
236 &quot;outputNotebookFile&quot;: &quot;A String&quot;, # Output notebook file generated by this execution
237 &quot;state&quot;: &quot;A String&quot;, # Output only. State of the underlying AI Platform job.
238 &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Time the Execution was last updated.
239}</pre>
240</div>
241
242<div class="method">
243 <code class="details" id="list">list(parent, filter=None, orderBy=None, pageSize=None, pageToken=None, x__xgafv=None)</code>
244 <pre>Lists executions in a given project and location
245
246Args:
247 parent: string, Required. Format: `parent=projects/{project_id}/locations/{location}` (required)
248 filter: string, Filter applied to resulting executions.
249 orderBy: string, Sort by field.
250 pageSize: integer, Maximum return size of the list call.
251 pageToken: string, A previous returned page token that can be used to continue listing from the last result.
252 x__xgafv: string, V1 error format.
253 Allowed values
254 1 - v1 error format
255 2 - v2 error format
256
257Returns:
258 An object of the form:
259
260 { # Response for listing scheduled notebook executions
261 &quot;executions&quot;: [ # A list of returned instances.
262 { # The definition of a single executed notebook.
263 &quot;createTime&quot;: &quot;A String&quot;, # Output only. Time the Execution was instantiated.
264 &quot;description&quot;: &quot;A String&quot;, # A brief description of this execution.
265 &quot;displayName&quot;: &quot;A String&quot;, # Output only. Name used for UI purposes. Name can only contain alphanumeric characters and underscores &#x27;_&#x27;.
266 &quot;executionTemplate&quot;: { # The description a notebook execution workload. # execute metadata including name, hardware spec, region, labels, etc.
267 &quot;acceleratorConfig&quot;: { # Definition of a hardware accelerator. Note that not all combinations of `type` and `core_count` are valid. Check GPUs on Compute Engine to find a valid combination. TPUs are not supported. # Configuration (count and accelerator type) for hardware running notebook execution.
268 &quot;coreCount&quot;: &quot;A String&quot;, # Count of cores of this accelerator.
269 &quot;type&quot;: &quot;A String&quot;, # Type of this accelerator.
270 },
271 &quot;containerImageUri&quot;: &quot;A String&quot;, # Container Image URI to a DLVM Example: &#x27;gcr.io/deeplearning-platform-release/base-cu100&#x27; More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
272 &quot;inputNotebookFile&quot;: &quot;A String&quot;, # Path to the notebook file to execute. Must be in a Google Cloud Storage bucket. Format: gs://{project_id}/{folder}/{notebook_file_name} Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
273 &quot;labels&quot;: { # Labels for execution. If execution is scheduled, a field included will be &#x27;nbs-scheduled&#x27;. Otherwise, it is an immediate execution, and an included field will be &#x27;nbs-immediate&#x27;. Use fields to efficiently index between various types of executions.
274 &quot;a_key&quot;: &quot;A String&quot;,
275 },
276 &quot;masterType&quot;: &quot;A String&quot;, # Specifies the type of virtual machine to use for your training job&#x27;s master worker. You must specify this field when `scaleTier` is set to `CUSTOM`. You can use certain Compute Engine machine types directly in this field. The following types are supported: - `n1-standard-4` - `n1-standard-8` - `n1-standard-16` - `n1-standard-32` - `n1-standard-64` - `n1-standard-96` - `n1-highmem-2` - `n1-highmem-4` - `n1-highmem-8` - `n1-highmem-16` - `n1-highmem-32` - `n1-highmem-64` - `n1-highmem-96` - `n1-highcpu-16` - `n1-highcpu-32` - `n1-highcpu-64` - `n1-highcpu-96` Alternatively, you can use the following legacy machine types: - `standard` - `large_model` - `complex_model_s` - `complex_model_m` - `complex_model_l` - `standard_gpu` - `complex_model_m_gpu` - `complex_model_l_gpu` - `standard_p100` - `complex_model_m_p100` - `standard_v100` - `large_model_v100` - `complex_model_m_v100` - `complex_model_l_v100` Finally, if you want to use a TPU for training, specify `cloud_tpu` in this field. Learn more about the [special configuration options for training with TPU.
277 &quot;outputNotebookFolder&quot;: &quot;A String&quot;, # Path to the notebook folder to write to. Must be in a Google Cloud Storage bucket path. Format: gs://{project_id}/{folder} Ex: gs://notebook_user/scheduled_notebooks
278 &quot;parameters&quot;: &quot;A String&quot;, # Parameters used within the &#x27;input_notebook_file&#x27; notebook.
279 &quot;paramsYamlFile&quot;: &quot;A String&quot;, # Parameters to be overridden in the notebook during execution. Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on how to specifying parameters in the input notebook and pass them here in an YAML file. Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
280 &quot;scaleTier&quot;: &quot;A String&quot;, # Required. Scale tier of the hardware used for notebook execution.
281 },
282 &quot;name&quot;: &quot;A String&quot;, # Output only. The resource name of the execute. Format: `projects/{project_id}/locations/{location}/execution/{execution_id}
283 &quot;outputNotebookFile&quot;: &quot;A String&quot;, # Output notebook file generated by this execution
284 &quot;state&quot;: &quot;A String&quot;, # Output only. State of the underlying AI Platform job.
285 &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Time the Execution was last updated.
286 },
287 ],
288 &quot;nextPageToken&quot;: &quot;A String&quot;, # Page token that can be used to continue listing from the last result in the next list call.
289 &quot;unreachable&quot;: [ # Executions IDs that could not be reached. For example, [&#x27;projects/{project_id}/location/{location}/executions/imagenet_test1&#x27;, &#x27;projects/{project_id}/location/{location}/executions/classifier_train1&#x27;].
290 &quot;A String&quot;,
291 ],
292}</pre>
293</div>
294
295<div class="method">
296 <code class="details" id="list_next">list_next(previous_request, previous_response)</code>
297 <pre>Retrieves the next page of results.
298
299Args:
300 previous_request: The request for the previous page. (required)
301 previous_response: The response from the request for the previous page. (required)
302
303Returns:
304 A request object that you can call &#x27;execute()&#x27; on to request the next
305 page. Returns None if there are no more items in the collection.
306 </pre>
307</div>
308
309</body></html>