Reorganize documentation
diff --git a/docs/advanced/pycpp/index.rst b/docs/advanced/pycpp/index.rst
new file mode 100644
index 0000000..6885bdc
--- /dev/null
+++ b/docs/advanced/pycpp/index.rst
@@ -0,0 +1,13 @@
+Python C++ interface
+####################
+
+pybind11 exposes Python types and functions using thin C++ wrappers, which
+makes it possible to conveniently call Python code from C++ without resorting
+to Python's C API.
+
+.. toctree::
+   :maxdepth: 2
+
+   object
+   numpy
+   utilities
diff --git a/docs/advanced/pycpp/numpy.rst b/docs/advanced/pycpp/numpy.rst
new file mode 100644
index 0000000..8b46b7c
--- /dev/null
+++ b/docs/advanced/pycpp/numpy.rst
@@ -0,0 +1,299 @@
+.. _numpy:
+
+NumPy
+#####
+
+Buffer protocol
+===============
+
+Python supports an extremely general and convenient approach for exchanging
+data between plugin libraries. Types can expose a buffer view [#f2]_, which
+provides fast direct access to the raw internal data representation. Suppose we
+want to bind the following simplistic Matrix class:
+
+.. code-block:: cpp
+
+    class Matrix {
+    public:
+        Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
+            m_data = new float[rows*cols];
+        }
+        float *data() { return m_data; }
+        size_t rows() const { return m_rows; }
+        size_t cols() const { return m_cols; }
+    private:
+        size_t m_rows, m_cols;
+        float *m_data;
+    };
+
+The following binding code exposes the ``Matrix`` contents as a buffer object,
+making it possible to cast Matrices into NumPy arrays. It is even possible to
+completely avoid copy operations with Python expressions like
+``np.array(matrix_instance, copy = False)``.
+
+.. code-block:: cpp
+
+    py::class_<Matrix>(m, "Matrix")
+       .def_buffer([](Matrix &m) -> py::buffer_info {
+            return py::buffer_info(
+                m.data(),                               /* Pointer to buffer */
+                sizeof(float),                          /* Size of one scalar */
+                py::format_descriptor<float>::format(), /* Python struct-style format descriptor */
+                2,                                      /* Number of dimensions */
+                { m.rows(), m.cols() },                 /* Buffer dimensions */
+                { sizeof(float) * m.rows(),             /* Strides (in bytes) for each index */
+                  sizeof(float) }
+            );
+        });
+
+The snippet above binds a lambda function, which can create ``py::buffer_info``
+description records on demand describing a given matrix. The contents of
+``py::buffer_info`` mirror the Python buffer protocol specification.
+
+.. code-block:: cpp
+
+    struct buffer_info {
+        void *ptr;
+        size_t itemsize;
+        std::string format;
+        int ndim;
+        std::vector<size_t> shape;
+        std::vector<size_t> strides;
+    };
+
+To create a C++ function that can take a Python buffer object as an argument,
+simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
+in a great variety of configurations, hence some safety checks are usually
+necessary in the function body. Below, you can see an basic example on how to
+define a custom constructor for the Eigen double precision matrix
+(``Eigen::MatrixXd``) type, which supports initialization from compatible
+buffer objects (e.g. a NumPy matrix).
+
+.. code-block:: cpp
+
+    /* Bind MatrixXd (or some other Eigen type) to Python */
+    typedef Eigen::MatrixXd Matrix;
+
+    typedef Matrix::Scalar Scalar;
+    constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
+
+    py::class_<Matrix>(m, "Matrix")
+        .def("__init__", [](Matrix &m, py::buffer b) {
+            typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
+
+            /* Request a buffer descriptor from Python */
+            py::buffer_info info = b.request();
+
+            /* Some sanity checks ... */
+            if (info.format != py::format_descriptor<Scalar>::format())
+                throw std::runtime_error("Incompatible format: expected a double array!");
+
+            if (info.ndim != 2)
+                throw std::runtime_error("Incompatible buffer dimension!");
+
+            auto strides = Strides(
+                info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
+                info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
+
+            auto map = Eigen::Map<Matrix, 0, Strides>(
+                static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
+
+            new (&m) Matrix(map);
+        });
+
+For reference, the ``def_buffer()`` call for this Eigen data type should look
+as follows:
+
+.. code-block:: cpp
+
+    .def_buffer([](Matrix &m) -> py::buffer_info {
+        return py::buffer_info(
+            m.data(),                /* Pointer to buffer */
+            sizeof(Scalar),          /* Size of one scalar */
+            /* Python struct-style format descriptor */
+            py::format_descriptor<Scalar>::format(),
+            /* Number of dimensions */
+            2,
+            /* Buffer dimensions */
+            { (size_t) m.rows(),
+              (size_t) m.cols() },
+            /* Strides (in bytes) for each index */
+            { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
+              sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
+        );
+     })
+
+For a much easier approach of binding Eigen types (although with some
+limitations), refer to the section on :doc:`/advanced/cast/eigen`.
+
+.. seealso::
+
+    The file :file:`tests/test_buffers.cpp` contains a complete example
+    that demonstrates using the buffer protocol with pybind11 in more detail.
+
+.. [#f2] http://docs.python.org/3/c-api/buffer.html
+
+Arrays
+======
+
+By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
+restrict the function so that it only accepts NumPy arrays (rather than any
+type of Python object satisfying the buffer protocol).
+
+In many situations, we want to define a function which only accepts a NumPy
+array of a certain data type. This is possible via the ``py::array_t<T>``
+template. For instance, the following function requires the argument to be a
+NumPy array containing double precision values.
+
+.. code-block:: cpp
+
+    void f(py::array_t<double> array);
+
+When it is invoked with a different type (e.g. an integer or a list of
+integers), the binding code will attempt to cast the input into a NumPy array
+of the requested type. Note that this feature requires the
+:file:``pybind11/numpy.h`` header to be included.
+
+Data in NumPy arrays is not guaranteed to packed in a dense manner;
+furthermore, entries can be separated by arbitrary column and row strides.
+Sometimes, it can be useful to require a function to only accept dense arrays
+using either the C (row-major) or Fortran (column-major) ordering. This can be
+accomplished via a second template argument with values ``py::array::c_style``
+or ``py::array::f_style``.
+
+.. code-block:: cpp
+
+    void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
+
+The ``py::array::forcecast`` argument is the default value of the second
+template parameter, and it ensures that non-conforming arguments are converted
+into an array satisfying the specified requirements instead of trying the next
+function overload.
+
+Structured types
+================
+
+In order for ``py::array_t`` to work with structured (record) types, we first need
+to register the memory layout of the type. This can be done via ``PYBIND11_NUMPY_DTYPE``
+macro which expects the type followed by field names:
+
+.. code-block:: cpp
+
+    struct A {
+        int x;
+        double y;
+    };
+
+    struct B {
+        int z;
+        A a;
+    };
+
+    PYBIND11_NUMPY_DTYPE(A, x, y);
+    PYBIND11_NUMPY_DTYPE(B, z, a);
+
+    /* now both A and B can be used as template arguments to py::array_t */
+
+Vectorizing functions
+=====================
+
+Suppose we want to bind a function with the following signature to Python so
+that it can process arbitrary NumPy array arguments (vectors, matrices, general
+N-D arrays) in addition to its normal arguments:
+
+.. code-block:: cpp
+
+    double my_func(int x, float y, double z);
+
+After including the ``pybind11/numpy.h`` header, this is extremely simple:
+
+.. code-block:: cpp
+
+    m.def("vectorized_func", py::vectorize(my_func));
+
+Invoking the function like below causes 4 calls to be made to ``my_func`` with
+each of the array elements. The significant advantage of this compared to
+solutions like ``numpy.vectorize()`` is that the loop over the elements runs
+entirely on the C++ side and can be crunched down into a tight, optimized loop
+by the compiler. The result is returned as a NumPy array of type
+``numpy.dtype.float64``.
+
+.. code-block:: pycon
+
+    >>> x = np.array([[1, 3],[5, 7]])
+    >>> y = np.array([[2, 4],[6, 8]])
+    >>> z = 3
+    >>> result = vectorized_func(x, y, z)
+
+The scalar argument ``z`` is transparently replicated 4 times.  The input
+arrays ``x`` and ``y`` are automatically converted into the right types (they
+are of type  ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
+``numpy.dtype.float32``, respectively)
+
+Sometimes we might want to explicitly exclude an argument from the vectorization
+because it makes little sense to wrap it in a NumPy array. For instance,
+suppose the function signature was
+
+.. code-block:: cpp
+
+    double my_func(int x, float y, my_custom_type *z);
+
+This can be done with a stateful Lambda closure:
+
+.. code-block:: cpp
+
+    // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
+    m.def("vectorized_func",
+        [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
+            auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
+            return py::vectorize(stateful_closure)(x, y);
+        }
+    );
+
+In cases where the computation is too complicated to be reduced to
+``vectorize``, it will be necessary to create and access the buffer contents
+manually. The following snippet contains a complete example that shows how this
+works (the code is somewhat contrived, since it could have been done more
+simply using ``vectorize``).
+
+.. code-block:: cpp
+
+    #include <pybind11/pybind11.h>
+    #include <pybind11/numpy.h>
+
+    namespace py = pybind11;
+
+    py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
+        auto buf1 = input1.request(), buf2 = input2.request();
+
+        if (buf1.ndim != 1 || buf2.ndim != 1)
+            throw std::runtime_error("Number of dimensions must be one");
+
+        if (buf1.size != buf2.size)
+            throw std::runtime_error("Input shapes must match");
+
+        /* No pointer is passed, so NumPy will allocate the buffer */
+        auto result = py::array_t<double>(buf1.size);
+
+        auto buf3 = result.request();
+
+        double *ptr1 = (double *) buf1.ptr,
+               *ptr2 = (double *) buf2.ptr,
+               *ptr3 = (double *) buf3.ptr;
+
+        for (size_t idx = 0; idx < buf1.shape[0]; idx++)
+            ptr3[idx] = ptr1[idx] + ptr2[idx];
+
+        return result;
+    }
+
+    PYBIND11_PLUGIN(test) {
+        py::module m("test");
+        m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
+        return m.ptr();
+    }
+
+.. seealso::
+
+    The file :file:`tests/test_numpy_vectorize.cpp` contains a complete
+    example that demonstrates using :func:`vectorize` in more detail.
diff --git a/docs/advanced/pycpp/object.rst b/docs/advanced/pycpp/object.rst
new file mode 100644
index 0000000..8fc165d
--- /dev/null
+++ b/docs/advanced/pycpp/object.rst
@@ -0,0 +1,96 @@
+Python types
+############
+
+Available wrappers
+==================
+
+All major Python types are available as thin C++ wrapper classes. These
+can also be used as function parameters -- see :ref:`python_objects_as_args`.
+
+Available types include :class:`handle`, :class:`object`, :class:`bool_`,
+:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
+:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
+:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
+:class:`array`, and :class:`array_t`.
+
+Casting back and forth
+======================
+
+In this kind of mixed code, it is often necessary to convert arbitrary C++
+types to Python, which can be done using :func:`py::cast`:
+
+.. code-block:: cpp
+
+    MyClass *cls = ..;
+    py::object obj = py::cast(cls);
+
+The reverse direction uses the following syntax:
+
+.. code-block:: cpp
+
+    py::object obj = ...;
+    MyClass *cls = obj.cast<MyClass *>();
+
+When conversion fails, both directions throw the exception :class:`cast_error`.
+
+Calling Python functions
+========================
+
+It is also possible to call python functions via ``operator()``.
+
+.. code-block:: cpp
+
+    py::function f = <...>;
+    py::object result_py = f(1234, "hello", some_instance);
+    MyClass &result = result_py.cast<MyClass>();
+
+Keyword arguments are also supported. In Python, there is the usual call syntax:
+
+.. code-block:: python
+
+    def f(number, say, to):
+        ...  # function code
+
+    f(1234, say="hello", to=some_instance)  # keyword call in Python
+
+In C++, the same call can be made using:
+
+.. code-block:: cpp
+
+    using pybind11::literals; // to bring in the `_a` literal
+    f(1234, "say"_a="hello", "to"_a=some_instance); // keyword call in C++
+
+Unpacking of ``*args`` and ``**kwargs`` is also possible and can be mixed with
+other arguments:
+
+.. code-block:: cpp
+
+    // * unpacking
+    py::tuple args = py::make_tuple(1234, "hello", some_instance);
+    f(*args);
+
+    // ** unpacking
+    py::dict kwargs = py::dict("number"_a=1234, "say"_a="hello", "to"_a=some_instance);
+    f(**kwargs);
+
+    // mixed keywords, * and ** unpacking
+    py::tuple args = py::make_tuple(1234);
+    py::dict kwargs = py::dict("to"_a=some_instance);
+    f(*args, "say"_a="hello", **kwargs);
+
+Generalized unpacking according to PEP448_ is also supported:
+
+.. code-block:: cpp
+
+    py::dict kwargs1 = py::dict("number"_a=1234);
+    py::dict kwargs2 = py::dict("to"_a=some_instance);
+    f(**kwargs1, "say"_a="hello", **kwargs2);
+
+.. seealso::
+
+    The file :file:`tests/test_python_types.cpp` contains a complete
+    example that demonstrates passing native Python types in more detail. The
+    file :file:`tests/test_callbacks.cpp` presents a few examples of calling
+    Python functions from C++, including keywords arguments and unpacking.
+
+.. _PEP448: https://www.python.org/dev/peps/pep-0448/
diff --git a/docs/advanced/pycpp/utilities.rst b/docs/advanced/pycpp/utilities.rst
new file mode 100644
index 0000000..ba0dbef
--- /dev/null
+++ b/docs/advanced/pycpp/utilities.rst
@@ -0,0 +1,57 @@
+Utilities
+#########
+
+Using Python's print function in C++
+====================================
+
+The usual way to write output in C++ is using ``std::cout`` while in Python one
+would use ``print``. Since these methods use different buffers, mixing them can
+lead to output order issues. To resolve this, pybind11 modules can use the
+:func:`py::print` function which writes to Python's ``sys.stdout`` for consistency.
+
+Python's ``print`` function is replicated in the C++ API including optional
+keyword arguments ``sep``, ``end``, ``file``, ``flush``. Everything works as
+expected in Python:
+
+.. code-block:: cpp
+
+    py::print(1, 2.0, "three"); // 1 2.0 three
+    py::print(1, 2.0, "three", "sep"_a="-"); // 1-2.0-three
+
+    auto args = py::make_tuple("unpacked", true);
+    py::print("->", *args, "end"_a="<-"); // -> unpacked True <-
+
+Evaluating Python expressions from strings and files
+====================================================
+
+pybind11 provides the :func:`eval` and :func:`eval_file` functions to evaluate
+Python expressions and statements. The following example illustrates how they
+can be used.
+
+Both functions accept a template parameter that describes how the argument
+should be interpreted. Possible choices include ``eval_expr`` (isolated
+expression), ``eval_single_statement`` (a single statement, return value is
+always ``none``), and ``eval_statements`` (sequence of statements, return value
+is always ``none``).
+
+.. code-block:: cpp
+
+    // At beginning of file
+    #include <pybind11/eval.h>
+
+    ...
+
+    // Evaluate in scope of main module
+    py::object scope = py::module::import("__main__").attr("__dict__");
+
+    // Evaluate an isolated expression
+    int result = py::eval("my_variable + 10", scope).cast<int>();
+
+    // Evaluate a sequence of statements
+    py::eval<py::eval_statements>(
+        "print('Hello')\n"
+        "print('world!');",
+        scope);
+
+    // Evaluate the statements in an separate Python file on disk
+    py::eval_file("script.py", scope);