Dean Moldovan | 67b52d8 | 2016-10-16 19:12:43 +0200 | [diff] [blame] | 1 | .. _numpy: |
| 2 | |
| 3 | NumPy |
| 4 | ##### |
| 5 | |
| 6 | Buffer protocol |
| 7 | =============== |
| 8 | |
| 9 | Python supports an extremely general and convenient approach for exchanging |
| 10 | data between plugin libraries. Types can expose a buffer view [#f2]_, which |
| 11 | provides fast direct access to the raw internal data representation. Suppose we |
| 12 | want to bind the following simplistic Matrix class: |
| 13 | |
| 14 | .. code-block:: cpp |
| 15 | |
| 16 | class Matrix { |
| 17 | public: |
| 18 | Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) { |
| 19 | m_data = new float[rows*cols]; |
| 20 | } |
| 21 | float *data() { return m_data; } |
| 22 | size_t rows() const { return m_rows; } |
| 23 | size_t cols() const { return m_cols; } |
| 24 | private: |
| 25 | size_t m_rows, m_cols; |
| 26 | float *m_data; |
| 27 | }; |
| 28 | |
| 29 | The following binding code exposes the ``Matrix`` contents as a buffer object, |
| 30 | making it possible to cast Matrices into NumPy arrays. It is even possible to |
| 31 | completely avoid copy operations with Python expressions like |
| 32 | ``np.array(matrix_instance, copy = False)``. |
| 33 | |
| 34 | .. code-block:: cpp |
| 35 | |
Wenzel Jakob | 1d1f81b | 2016-12-16 15:00:46 +0100 | [diff] [blame] | 36 | py::class_<Matrix>(m, "Matrix", py::buffer_protocol()) |
Dean Moldovan | 67b52d8 | 2016-10-16 19:12:43 +0200 | [diff] [blame] | 37 | .def_buffer([](Matrix &m) -> py::buffer_info { |
| 38 | return py::buffer_info( |
| 39 | m.data(), /* Pointer to buffer */ |
| 40 | sizeof(float), /* Size of one scalar */ |
| 41 | py::format_descriptor<float>::format(), /* Python struct-style format descriptor */ |
| 42 | 2, /* Number of dimensions */ |
| 43 | { m.rows(), m.cols() }, /* Buffer dimensions */ |
| 44 | { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */ |
| 45 | sizeof(float) } |
| 46 | ); |
| 47 | }); |
| 48 | |
Wenzel Jakob | 1d1f81b | 2016-12-16 15:00:46 +0100 | [diff] [blame] | 49 | Supporting the buffer protocol in a new type involves specifying the special |
| 50 | ``py::buffer_protocol()`` tag in the ``py::class_`` constructor and calling the |
| 51 | ``def_buffer()`` method with a lambda function that creates a |
| 52 | ``py::buffer_info`` description record on demand describing a given matrix |
| 53 | instance. The contents of ``py::buffer_info`` mirror the Python buffer protocol |
| 54 | specification. |
Dean Moldovan | 67b52d8 | 2016-10-16 19:12:43 +0200 | [diff] [blame] | 55 | |
| 56 | .. code-block:: cpp |
| 57 | |
| 58 | struct buffer_info { |
| 59 | void *ptr; |
| 60 | size_t itemsize; |
| 61 | std::string format; |
| 62 | int ndim; |
| 63 | std::vector<size_t> shape; |
| 64 | std::vector<size_t> strides; |
| 65 | }; |
| 66 | |
| 67 | To create a C++ function that can take a Python buffer object as an argument, |
| 68 | simply use the type ``py::buffer`` as one of its arguments. Buffers can exist |
| 69 | in a great variety of configurations, hence some safety checks are usually |
| 70 | necessary in the function body. Below, you can see an basic example on how to |
| 71 | define a custom constructor for the Eigen double precision matrix |
| 72 | (``Eigen::MatrixXd``) type, which supports initialization from compatible |
| 73 | buffer objects (e.g. a NumPy matrix). |
| 74 | |
| 75 | .. code-block:: cpp |
| 76 | |
| 77 | /* Bind MatrixXd (or some other Eigen type) to Python */ |
| 78 | typedef Eigen::MatrixXd Matrix; |
| 79 | |
| 80 | typedef Matrix::Scalar Scalar; |
| 81 | constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit; |
| 82 | |
Wenzel Jakob | 1d1f81b | 2016-12-16 15:00:46 +0100 | [diff] [blame] | 83 | py::class_<Matrix>(m, "Matrix", py::buffer_protocol()) |
Dean Moldovan | 67b52d8 | 2016-10-16 19:12:43 +0200 | [diff] [blame] | 84 | .def("__init__", [](Matrix &m, py::buffer b) { |
| 85 | typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides; |
| 86 | |
| 87 | /* Request a buffer descriptor from Python */ |
| 88 | py::buffer_info info = b.request(); |
| 89 | |
| 90 | /* Some sanity checks ... */ |
| 91 | if (info.format != py::format_descriptor<Scalar>::format()) |
| 92 | throw std::runtime_error("Incompatible format: expected a double array!"); |
| 93 | |
| 94 | if (info.ndim != 2) |
| 95 | throw std::runtime_error("Incompatible buffer dimension!"); |
| 96 | |
| 97 | auto strides = Strides( |
| 98 | info.strides[rowMajor ? 0 : 1] / sizeof(Scalar), |
| 99 | info.strides[rowMajor ? 1 : 0] / sizeof(Scalar)); |
| 100 | |
| 101 | auto map = Eigen::Map<Matrix, 0, Strides>( |
| 102 | static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides); |
| 103 | |
| 104 | new (&m) Matrix(map); |
| 105 | }); |
| 106 | |
| 107 | For reference, the ``def_buffer()`` call for this Eigen data type should look |
| 108 | as follows: |
| 109 | |
| 110 | .. code-block:: cpp |
| 111 | |
| 112 | .def_buffer([](Matrix &m) -> py::buffer_info { |
| 113 | return py::buffer_info( |
| 114 | m.data(), /* Pointer to buffer */ |
| 115 | sizeof(Scalar), /* Size of one scalar */ |
| 116 | /* Python struct-style format descriptor */ |
| 117 | py::format_descriptor<Scalar>::format(), |
| 118 | /* Number of dimensions */ |
| 119 | 2, |
| 120 | /* Buffer dimensions */ |
| 121 | { (size_t) m.rows(), |
| 122 | (size_t) m.cols() }, |
| 123 | /* Strides (in bytes) for each index */ |
| 124 | { sizeof(Scalar) * (rowMajor ? m.cols() : 1), |
| 125 | sizeof(Scalar) * (rowMajor ? 1 : m.rows()) } |
| 126 | ); |
| 127 | }) |
| 128 | |
| 129 | For a much easier approach of binding Eigen types (although with some |
| 130 | limitations), refer to the section on :doc:`/advanced/cast/eigen`. |
| 131 | |
| 132 | .. seealso:: |
| 133 | |
| 134 | The file :file:`tests/test_buffers.cpp` contains a complete example |
| 135 | that demonstrates using the buffer protocol with pybind11 in more detail. |
| 136 | |
| 137 | .. [#f2] http://docs.python.org/3/c-api/buffer.html |
| 138 | |
| 139 | Arrays |
| 140 | ====== |
| 141 | |
| 142 | By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can |
| 143 | restrict the function so that it only accepts NumPy arrays (rather than any |
| 144 | type of Python object satisfying the buffer protocol). |
| 145 | |
| 146 | In many situations, we want to define a function which only accepts a NumPy |
| 147 | array of a certain data type. This is possible via the ``py::array_t<T>`` |
| 148 | template. For instance, the following function requires the argument to be a |
| 149 | NumPy array containing double precision values. |
| 150 | |
| 151 | .. code-block:: cpp |
| 152 | |
| 153 | void f(py::array_t<double> array); |
| 154 | |
| 155 | When it is invoked with a different type (e.g. an integer or a list of |
| 156 | integers), the binding code will attempt to cast the input into a NumPy array |
| 157 | of the requested type. Note that this feature requires the |
| 158 | :file:``pybind11/numpy.h`` header to be included. |
| 159 | |
| 160 | Data in NumPy arrays is not guaranteed to packed in a dense manner; |
| 161 | furthermore, entries can be separated by arbitrary column and row strides. |
| 162 | Sometimes, it can be useful to require a function to only accept dense arrays |
| 163 | using either the C (row-major) or Fortran (column-major) ordering. This can be |
| 164 | accomplished via a second template argument with values ``py::array::c_style`` |
| 165 | or ``py::array::f_style``. |
| 166 | |
| 167 | .. code-block:: cpp |
| 168 | |
| 169 | void f(py::array_t<double, py::array::c_style | py::array::forcecast> array); |
| 170 | |
| 171 | The ``py::array::forcecast`` argument is the default value of the second |
| 172 | template parameter, and it ensures that non-conforming arguments are converted |
| 173 | into an array satisfying the specified requirements instead of trying the next |
| 174 | function overload. |
| 175 | |
| 176 | Structured types |
| 177 | ================ |
| 178 | |
| 179 | In order for ``py::array_t`` to work with structured (record) types, we first need |
| 180 | to register the memory layout of the type. This can be done via ``PYBIND11_NUMPY_DTYPE`` |
| 181 | macro which expects the type followed by field names: |
| 182 | |
| 183 | .. code-block:: cpp |
| 184 | |
| 185 | struct A { |
| 186 | int x; |
| 187 | double y; |
| 188 | }; |
| 189 | |
| 190 | struct B { |
| 191 | int z; |
| 192 | A a; |
| 193 | }; |
| 194 | |
| 195 | PYBIND11_NUMPY_DTYPE(A, x, y); |
| 196 | PYBIND11_NUMPY_DTYPE(B, z, a); |
| 197 | |
| 198 | /* now both A and B can be used as template arguments to py::array_t */ |
| 199 | |
| 200 | Vectorizing functions |
| 201 | ===================== |
| 202 | |
| 203 | Suppose we want to bind a function with the following signature to Python so |
| 204 | that it can process arbitrary NumPy array arguments (vectors, matrices, general |
| 205 | N-D arrays) in addition to its normal arguments: |
| 206 | |
| 207 | .. code-block:: cpp |
| 208 | |
| 209 | double my_func(int x, float y, double z); |
| 210 | |
| 211 | After including the ``pybind11/numpy.h`` header, this is extremely simple: |
| 212 | |
| 213 | .. code-block:: cpp |
| 214 | |
| 215 | m.def("vectorized_func", py::vectorize(my_func)); |
| 216 | |
| 217 | Invoking the function like below causes 4 calls to be made to ``my_func`` with |
| 218 | each of the array elements. The significant advantage of this compared to |
| 219 | solutions like ``numpy.vectorize()`` is that the loop over the elements runs |
| 220 | entirely on the C++ side and can be crunched down into a tight, optimized loop |
| 221 | by the compiler. The result is returned as a NumPy array of type |
| 222 | ``numpy.dtype.float64``. |
| 223 | |
| 224 | .. code-block:: pycon |
| 225 | |
| 226 | >>> x = np.array([[1, 3],[5, 7]]) |
| 227 | >>> y = np.array([[2, 4],[6, 8]]) |
| 228 | >>> z = 3 |
| 229 | >>> result = vectorized_func(x, y, z) |
| 230 | |
| 231 | The scalar argument ``z`` is transparently replicated 4 times. The input |
| 232 | arrays ``x`` and ``y`` are automatically converted into the right types (they |
| 233 | are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and |
| 234 | ``numpy.dtype.float32``, respectively) |
| 235 | |
| 236 | Sometimes we might want to explicitly exclude an argument from the vectorization |
| 237 | because it makes little sense to wrap it in a NumPy array. For instance, |
| 238 | suppose the function signature was |
| 239 | |
| 240 | .. code-block:: cpp |
| 241 | |
| 242 | double my_func(int x, float y, my_custom_type *z); |
| 243 | |
| 244 | This can be done with a stateful Lambda closure: |
| 245 | |
| 246 | .. code-block:: cpp |
| 247 | |
| 248 | // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization) |
| 249 | m.def("vectorized_func", |
| 250 | [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) { |
| 251 | auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); }; |
| 252 | return py::vectorize(stateful_closure)(x, y); |
| 253 | } |
| 254 | ); |
| 255 | |
| 256 | In cases where the computation is too complicated to be reduced to |
| 257 | ``vectorize``, it will be necessary to create and access the buffer contents |
| 258 | manually. The following snippet contains a complete example that shows how this |
| 259 | works (the code is somewhat contrived, since it could have been done more |
| 260 | simply using ``vectorize``). |
| 261 | |
| 262 | .. code-block:: cpp |
| 263 | |
| 264 | #include <pybind11/pybind11.h> |
| 265 | #include <pybind11/numpy.h> |
| 266 | |
| 267 | namespace py = pybind11; |
| 268 | |
| 269 | py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) { |
| 270 | auto buf1 = input1.request(), buf2 = input2.request(); |
| 271 | |
| 272 | if (buf1.ndim != 1 || buf2.ndim != 1) |
| 273 | throw std::runtime_error("Number of dimensions must be one"); |
| 274 | |
| 275 | if (buf1.size != buf2.size) |
| 276 | throw std::runtime_error("Input shapes must match"); |
| 277 | |
| 278 | /* No pointer is passed, so NumPy will allocate the buffer */ |
| 279 | auto result = py::array_t<double>(buf1.size); |
| 280 | |
| 281 | auto buf3 = result.request(); |
| 282 | |
| 283 | double *ptr1 = (double *) buf1.ptr, |
| 284 | *ptr2 = (double *) buf2.ptr, |
| 285 | *ptr3 = (double *) buf3.ptr; |
| 286 | |
| 287 | for (size_t idx = 0; idx < buf1.shape[0]; idx++) |
| 288 | ptr3[idx] = ptr1[idx] + ptr2[idx]; |
| 289 | |
| 290 | return result; |
| 291 | } |
| 292 | |
| 293 | PYBIND11_PLUGIN(test) { |
| 294 | py::module m("test"); |
| 295 | m.def("add_arrays", &add_arrays, "Add two NumPy arrays"); |
| 296 | return m.ptr(); |
| 297 | } |
| 298 | |
| 299 | .. seealso:: |
| 300 | |
| 301 | The file :file:`tests/test_numpy_vectorize.cpp` contains a complete |
| 302 | example that demonstrates using :func:`vectorize` in more detail. |