blob: b6c91a8bd9d2caaeae677fe10fc9de4c5098a65d [file] [log] [blame]
Wenzel Jakobde623a72016-03-09 21:11:19 +01001Frequently asked questions
2##########################
3
Wenzel Jakobc62360d2016-05-03 14:32:47 +02004"ImportError: dynamic module does not define init function"
5===========================================================
Wenzel Jakob50ed3612016-04-11 17:38:25 +02006
71. Make sure that the name specified in ``pybind::module`` and
8 ``PYBIND11_PLUGIN`` is consistent and identical to the filename of the
9 extension library. The latter should not contain any extra prefixes (e.g.
10 ``test.so`` instead of ``libtest.so``).
11
122. If the above did not fix your issue, then you are likely using an
13 incompatible version of Python (for instance, the extension library was
14 compiled against Python 2, while the interpreter is running on top of some
Wenzel Jakobc62360d2016-05-03 14:32:47 +020015 version of Python 3, or vice versa)
16
17"Symbol not found: ``__Py_ZeroStruct`` / ``_PyInstanceMethod_Type``"
18========================================================================
19
20See item 2 of the first answer.
21
22The Python interpreter immediately crashes when importing my module
23===================================================================
24
25See item 2 of the first answer.
Wenzel Jakob50ed3612016-04-11 17:38:25 +020026
Wenzel Jakoba439cca2016-05-17 10:47:52 +020027CMake doesn't detect the right Python version, or it finds mismatched interpreter and library versions
28======================================================================================================
29
30The Python detection logic of CMake is flawed and can sometimes fail to find
31the desired Python version, or it chooses mismatched interpreter and library
32versions. A longer discussion is available on the pybind11 issue tracker
33[#f1]_, though this is ultimately not a pybind11 issue.
34
35To force the build system to choose a particular version, delete CMakeCache.txt
36and then invoke CMake as follows:
37
38.. code-block:: bash
39
40 cmake -DPYTHON_EXECUTABLE:FILEPATH=<...> \
41 -DPYTHON_LIBRARY:FILEPATH=<...> \
42 -DPYTHON_INCLUDE_DIR:PATH=<...> .
43
44.. [#f1] http://github.com/pybind/pybind11/issues/99
45
Wenzel Jakobde623a72016-03-09 21:11:19 +010046Limitations involving reference arguments
47=========================================
48
49In C++, it's fairly common to pass arguments using mutable references or
50mutable pointers, which allows both read and write access to the value
51supplied by the caller. This is sometimes done for efficiency reasons, or to
52realize functions that have multiple return values. Here are two very basic
53examples:
54
55.. code-block:: cpp
56
57 void increment(int &i) { i++; }
58 void increment_ptr(int *i) { (*i)++; }
59
60In Python, all arguments are passed by reference, so there is no general
61issue in binding such code from Python.
62
63However, certain basic Python types (like ``str``, ``int``, ``bool``,
64``float``, etc.) are **immutable**. This means that the following attempt
65to port the function to Python doesn't have the same effect on the value
66provided by the caller -- in fact, it does nothing at all.
67
68.. code-block:: python
69
70 def increment(i):
71 i += 1 # nope..
72
Wenzel Jakob4a48afb2016-03-09 21:31:21 +010073pybind11 is also affected by such language-level conventions, which means that
74binding ``increment`` or ``increment_ptr`` will also create Python functions
75that don't modify their arguments.
Wenzel Jakobde623a72016-03-09 21:11:19 +010076
Wenzel Jakob4a48afb2016-03-09 21:31:21 +010077Although inconvenient, one workaround is to encapsulate the immutable types in
Wenzel Jakob2e03a582016-04-14 11:27:15 +020078a custom type that does allow modifications.
Wenzel Jakob4a48afb2016-03-09 21:31:21 +010079
80An other alternative involves binding a small wrapper lambda function that
81returns a tuple with all output arguments (see the remainder of the
82documentation for examples on binding lambda functions). An example:
83
84.. code-block:: cpp
85
86 int foo(int &i) { i++; return 123; }
87
88and the binding code
89
90.. code-block:: cpp
91
92 m.def("foo", [](int i) { int rv = foo(i); return std::make_tuple(rv, i); });
93
Wenzel Jakob2e03a582016-04-14 11:27:15 +020094
Wenzel Jakobc79dbe42016-04-17 21:54:31 +020095How can I reduce the build time?
96================================
97
98It's good practice to split binding code over multiple files, as is done in
99the included file :file:`example/example.cpp`.
100
101.. code-block:: cpp
102
103 void init_ex1(py::module &);
104 void init_ex2(py::module &);
105 /* ... */
106
107 PYBIND11_PLUGIN(example) {
108 py::module m("example", "pybind example plugin");
109
110 init_ex1(m);
111 init_ex2(m);
112
113 /* ... */
114
115 return m.ptr();
116 }
117
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200118The various ``init_ex`` functions should be contained in separate files that
119can be compiled independently from another. Following this approach will
Wenzel Jakobc79dbe42016-04-17 21:54:31 +0200120
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001211. reduce memory requirements per compilation unit.
Wenzel Jakobc79dbe42016-04-17 21:54:31 +0200122
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001232. enable parallel builds (if desired).
Wenzel Jakobc79dbe42016-04-17 21:54:31 +0200124
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001253. allow for faster incremental builds. For instance, when a single class
126 definiton is changed, only a subset of the binding code will generally need
127 to be recompiled.
Wenzel Jakobc79dbe42016-04-17 21:54:31 +0200128
129How can I create smaller binaries?
130==================================
131
132To do its job, pybind11 extensively relies on a programming technique known as
133*template metaprogramming*, which is a way of performing computation at compile
134time using type information. Template metaprogamming usually instantiates code
135involving significant numbers of deeply nested types that are either completely
136removed or reduced to just a few instrutions during the compiler's optimization
137phase. However, due to the nested nature of these types, the resulting symbol
138names in the compiled extension library can be extremely long. For instance,
139the included test suite contains the following symbol:
140
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200141.. only:: html
Wenzel Jakobc79dbe42016-04-17 21:54:31 +0200142
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200143 .. code-block:: none
144
145 __ZN8pybind1112cpp_functionC1Iv8Example2JRNSt3__16vectorINS3_12basic_stringIwNS3_11char_traitsIwEENS3_9allocatorIwEEEENS8_ISA_EEEEEJNS_4nameENS_7siblingENS_9is_methodEA28_cEEEMT0_FT_DpT1_EDpRKT2_
146
147.. only:: not html
148
149 .. code-block:: cpp
150
151 __ZN8pybind1112cpp_functionC1Iv8Example2JRNSt3__16vectorINS3_12basic_stringIwNS3_11char_traitsIwEENS3_9allocatorIwEEEENS8_ISA_EEEEEJNS_4nameENS_7siblingENS_9is_methodEA28_cEEEMT0_FT_DpT1_EDpRKT2_
Wenzel Jakobc79dbe42016-04-17 21:54:31 +0200152
153which is the mangled form of the following function type:
154
155.. code-block:: cpp
156
157 pybind11::cpp_function::cpp_function<void, Example2, std::__1::vector<std::__1::basic_string<wchar_t, std::__1::char_traits<wchar_t>, std::__1::allocator<wchar_t> >, std::__1::allocator<std::__1::basic_string<wchar_t, std::__1::char_traits<wchar_t>, std::__1::allocator<wchar_t> > > >&, pybind11::name, pybind11::sibling, pybind11::is_method, char [28]>(void (Example2::*)(std::__1::vector<std::__1::basic_string<wchar_t, std::__1::char_traits<wchar_t>, std::__1::allocator<wchar_t> >, std::__1::allocator<std::__1::basic_string<wchar_t, std::__1::char_traits<wchar_t>, std::__1::allocator<wchar_t> > > >&), pybind11::name const&, pybind11::sibling const&, pybind11::is_method const&, char const (&) [28])
158
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200159The memory needed to store just the mangled name of this function (196 bytes)
160is larger than the actual piece of code (111 bytes) it represents! On the other
161hand, it's silly to even give this function a name -- after all, it's just a
162tiny cog in a bigger piece of machinery that is not exposed to the outside
163world. So we'll generally only want to export symbols for those functions which
164are actually called from the outside.
Wenzel Jakobc79dbe42016-04-17 21:54:31 +0200165
166This can be achieved by specifying the parameter ``-fvisibility=hidden`` to GCC
167and Clang, which sets the default symbol visibility to *hidden*. It's best to
168do this only for release builds, since the symbol names can be helpful in
169debugging sessions. On Visual Studio, symbols are already hidden by default, so
170nothing needs to be done there. Needless to say, this has a tremendous impact
171on the final binary size of the resulting extension library.
172
173Another aspect that can require a fair bit of code are function signature
174descriptions. pybind11 automatically generates human-readable function
175signatures for docstrings, e.g.:
176
177.. code-block:: none
178
179 | __init__(...)
180 | __init__(*args, **kwargs)
181 | Overloaded function.
182 |
183 | 1. __init__(example.Example1) -> NoneType
184 |
185 | Docstring for overload #1 goes here
186 |
187 | 2. __init__(example.Example1, int) -> NoneType
188 |
189 | Docstring for overload #2 goes here
190 |
191 | 3. __init__(example.Example1, example.Example1) -> NoneType
192 |
193 | Docstring for overload #3 goes here
194
195
196In C++11 mode, these are generated at run time using string concatenation,
197which can amount to 10-20% of the size of the resulting binary. If you can,
198enable C++14 language features (using ``-std=c++14`` for GCC/Clang), in which
199case signatures are efficiently pre-generated at compile time. Unfortunately,
200Visual Studio's C++14 support (``constexpr``) is not good enough as of April
2012016, so it always uses the more expensive run-time approach.
Wenzel Jakobc62360d2016-05-03 14:32:47 +0200202
203Working with ancient Visual Studio 2009 builds on Windows
204=========================================================
205
206The official Windows distributions of Python are compiled using truly
207ancient versions of Visual Studio that lack good C++11 support. Some users
208implicitly assume that it would be impossible to load a plugin built with
209Visual Studio 2015 into a Python distribution that was compiled using Visual
210Studio 2009. However, no such issue exists: it's perfectly legitimate to
211interface DLLs that are built with different compilers and/or C libraries.
212Common gotchas to watch out for involve not ``free()``-ing memory region
213that that were ``malloc()``-ed in another shared library, using data
214structures with incompatible ABIs, and so on. pybind11 is very careful not
215to make these types of mistakes.