commit | 6c8a63a9e24676857d40a3dd4f7631c7a2d0c682 | [log] [tgz] |
---|---|---|
author | Sébastien Marie <semarie@users.noreply.github.com> | Wed Dec 23 18:54:25 2015 +0100 |
committer | Sébastien Marie <semarie@users.noreply.github.com> | Wed Dec 23 20:23:06 2015 +0100 |
tree | 0ce94cbcdd32c8d9e99d53d383cc603c432ccead | |
parent | 6b847426de2ba3eadfd5d1d38d9215a1d2fe33c1 [diff] |
keep openbsd name for dirent field member
A Rust library with native bindings to the types and functions commonly found on various systems, including libc.
First, add the following to your Cargo.toml
:
[dependencies] libc = "0.2"
Next, add this to your crate root:
extern crate libc;
The primary purpose of this crate is to provide all of the definitions necessary to easily interoperate with C code (or "C-like" code) on each of the platforms that Rust supports. This includes type definitions (e.g. c_int
), constants (e.g. EINVAL
) as well as function headers (e.g. malloc
).
This crate does not strive to have any form of compatibility across platforms, but rather it is simply a straight binding to the system libraries on the platform in question.
This crate exports all underlying platform types, functions, and constants under the crate root, so all items are accessible as libc::foo
. The types and values of all the exported APIs match the platform that libc is compiled for.
More detailed information about the design of this library can be found in its associated RFC.
Want to use an API which currently isn't bound in libc
? It's quite easy to add one!
The internal structure of this crate is designed to minimize the number of #[cfg]
attributes in order to easily be able to add new items which apply to all platforms in the future. As a result, the crate is organized hierarchically based on platform. Each module has a number of #[cfg]
'd children, but only one is ever actually compiled. Each module then reexports all the contents of its children.
This means that for each platform that libc supports, the path from a leaf module to the root will contain all bindings for the platform in question. Consequently, this indicates where an API should be added! Adding an API at a particular level in the hierarchy means that it is supported on all the child platforms of that level. For example, when adding a Unix API it should be added to src/unix/mod.rs
, but when adding a Linux-only API it should be added to src/unix/notbsd/linux/mod.rs
.
If you're not 100% sure at what level of the hierarchy an API should be added at, fear not! This crate has CI support which tests any binding against all platforms supported, so you'll see failures if an API is added at the wrong level or has different signatures across platforms.
With that in mind, the steps for adding a new API are:
The following platforms are currently tested and have documentation available:
Tested:
i686-pc-windows-msvc
x86_64-pc-windows-msvc
(Windows)i686-pc-windows-gnu
x86_64-pc-windows-gnu
i686-apple-darwin
x86_64-apple-darwin
(OSX)i686-apple-ios
x86_64-apple-ios
(iOS)i686-unknown-linux-gnu
x86_64-unknown-linux-gnu
(Linux)x86_64-unknown-linux-musl
(Linux MUSL)aarch64-unknown-linux-gnu
mips-unknown-linux-gnu
arm-unknown-linux-gnueabihf
arm-linux-androideabi
(Android)The following may be supported, but are not guaranteed to always work:
x86_64-unknown-freebsd
i686-unknown-freebsd
x86_64-unknown-bitrig
x86_64-unknown-dragonfly
x86_64-unknown-openbsd
x86_64-unknown-netbsd